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ABSTRACT

This paper compares and generalizes some testing procedures for structural change in

the context of cointegrated regression models. The Lagrange Multiplier (LM) tests

proposod by Hansen (1992) are generalized to testing for partial structural change. An

exponential average LM test is also suggested following the idea of Andrews and

Ploberger (1992). In particular, an optimal test for cointegration is developed. We also

propose a new cointegration test which is robust to a possible one-time discrete jump in

the intercept. We tabulate the asymptotic critical values for the above tests and conduct

a small Monte Carlo simulation to investigate their finite sample performance.
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-I. INTRODUCTION

When an econometric model is used for forecasting or policy simulations, an

implied assumption is the structural stability of such a model. The detection of

structural change will not only provide evidence on whether a particular economic

theory or policy is correct or not, it can also lead directly to improvements in forecasting

performance. Therefore, it has become a routine practice for econometricians to test the

structural stability assumption in econometric models.

Recently, Hansen (1992) developed the limiting theory for the Lagrange

Multiplier (LM) test for structural change in the context of cointegrated regression

models. Making use of the fully modified OLS (FM) estimation method of Phillips and

Hansen (1990), Hansen (1992) derived the asymptotic distribution of various test

statistics against different alternatives of interest and found that they are free of nuisance

parameters but depend upon the stochastic process describing the regressors. At the

same time, Quintos and Phillips (1993) proposed a LM test against the random walk

alternative which corresponds with Hansen's approach. They argue that while Hansen's

tests apply to the full vector of cointegrating coefficients, their LM test can be applied to

subvectors of the cointegrating vector as well as the full cointegrating vector. Such a

formulation is especially useful in empirical work, since it provides a means of isolating

the variables that are responsible for the failure of the null hypothesis.

This paper further investigates the problem of testing for structural change in the

context of cointegrated regression models. Such a problem is particularly important in

that cointegrated regression models are often estimated over long sample periods, and

the structural stability assumption is more likely to be violated.

A direct comparison of Hansen's approach with Quintos and Phillips' approach

(section 3) shows that against the same alternative hypothesis, the various test statistics

only differ in terms of the choice of the weighting matrix. Then following the idea of

Andrews and Ploberger (1992), an average exponential form of the LM test which is

asymptotically optimal in terms of weighted average power can be easily constructed

(section 4). It is also found that Hansen's tests can be directly extended to testing for

subvectors of the cointegrating vector, or, in other words, for partial structural change.

As a special case, testing the null hypothesis of cointegration against the alternative of

no cointegration is equivalent to testing the constancy of one coefficient, the intercept,

against a random walk alternative. In this sense, a new test statistic can be formulated to
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test for this particular partial structural change. An interesting finding is that such a test

is exactly the same as the test for a unit root first proposed by Kwiatkowski, Phillips,

Schmidt and Shin (1992) and extended to the problem of testing the null hypothesis of

cointegration by Harris and Inder (1994). Section 4 also includes a new optimal test of

the null of cointegration, constructed in the average exponential form of the LM test

against a particular partial structural change.

As observed by Hansen, a LM test against the random walk alternative also has

good power against the discrete jump alternative. Therefore the cointegration test of

Harris and Inder (1994) cannot discriminate between the random walk in the residuals

and a discrete jump in the intercept. A robust cointegration test is thus suggested in

section 4 to overcome this problem.

This paper is organized as follows. Section 2 sets up the structure of the

cointegration model and briefly describes the method of FM estimation. Section 3

compares the various test statistics suggested by Hansen and Quintos and Phillips.

Section 4 gives the average exponential form of the LM test and extend Hansen's tests

to testing for partial structural change. It also derives the new optimal test of the null of

cointegration against the alternative of no cointegration and the robust cointegration test.

Section 5 conducts a Monte Carlo experiment to investigate and compare the behavior

of the various tests. The conclusion is given in section 6.

To represent the asymptotics concisely, here and elsewhere in this paper, all limits

apply as T co. Integrals (such as III B) are understood to be taken with respect to

Lebesgue measure (that is 113B (r)dr) when otherwise unspecified. Let [.] denote "integer

part".

2. THE COINTEGRATED REGRESSION MODEL

Consider the cointegrated regression model

yt =a+ xii3+ ut,

t= 1,....,T
(1)

where a is a scalar, 1315 a kxl vector of unknown parameters, xt is a kxl vector of

regressors, and ut is a stationary error, hence yt and xt are cointegrated and (-1, 137 is

the cointegrating vector.
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Let = [ut, vt1] be a k+1 dimensional process which satisfies the multivariate

invariance principle as set out by Phillips and Durlauf (1986) . Let

[Tr]
RT(r) = RErri = , then T-1/2R--[Tr] =W(r)= (WO (r), WI CO),

where W(r) is a k+1 dimensional Brownian motion and partitioned in conformity with

ct. The covariance matrix of W(r) is

iirri T—I tj(i(
w T—÷co 

1 1

where

U) =E+A+A'

T t-1
[ aO Eoll, . = A011= E= iim T-1E(i tct) = a lim 1-1E Eqctci)=['2°-r_400 1 Eio Et T—>c0 t=2 j=1 A10 Al

and they are partitioned in conformity with

[Define A = E + A = A°
A io 

A6,011 and denote consistent estimators of w and A as

41 and A , respectively. Partition tif and A as w and A. Set

^2 ^2 ^ ^-1^ A+ A "A' ̂ —1 ̂
°30.1 =WO — 4/01W1 4110)A10 =A10 — L-11W1 W10•

Define the transformed dependent variable

Y4-t =yt v

with FM disturbances

--
ut = ut kti oikil 

1 
vt

The cointegrated regression model (1) can be transformed to

y+t = a + xii3+ u+t = ety + u+t (2)

where

z =(1,xi)',y =(a,f3T.

The FM estimator of y is then given by

-1+
T1+) = ZtZi) (E Zty-t — T( 

'o

V340))

with FM residuals

(3)
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=yt - zii+ •
(0 )

Set 'it = (etii+t
A 10

(4)

then D, =0 . Therefore gt can be regarded as the first order conditions or score
T=1

vectors of the cointegrated regression model. gt play a very important role in the

forming of the LM test statistics. For convenience of comparison, denote

-0
st = 11+t A+10 •

(Then k can be written as it = ii+t ,g(t) .

3. A COMPARISON OF DIFFERENT APPROACHES

time,

Modify (1) to incorporate possible structural change by allowing y to depend on

yt = zity t + ut

z = (1 x' vt ,xt = vt t = 1,...., T
(5)

The null hypothesis can be formulated as

Ho:y i =y2 = =7T =y.

Different test statistics can be constructed against several alternatives of interest. The

first test models yt as obeying a single structural change at unknown time [Tr] for 0<r<1.

In this case, the alternative is

Hi:yt = 
{Y 1

Y 2

t [Tr]

t > [Tr]

A LM test of H0 against H1 is given by

. (6)

-1
sup LM = sup LMT (r), LMT (r) = §T(r)164.1 VT (r)] ST (r) (7)

t* en
[Tr)

where §T(r) = t is the partial sum of the first order conditions which are given by
t=1

(4), 11 is a subset of (0, 1) and
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[Tr]

VT(r) = MT(r)— NCr(r)MT(1)-IMT(r),MT(r). Eztzi.

The second and third tests model yt as a martingale process,

= 7t-i +ct, E(ct = 0, E(cc) = 82Gt

where Et is some increasing sequence of a-field to which yt is adapted and Gt is some

known covariance matrix which measures the parameter stability in the t'th period. In

this context, the hypothesis testing problem becomes

H0:82 =0 against H:62> 0.

Hansen (1992) shows that a LM test of H0 against Hill is given by

L= L§T(r)'GT(r)-1§T(r). (8)

By choosing different GT(r), we can get different test statistics. If we choose

G1 (r) = L MT (i) then we get the Lc test of Nyblom (1989) which was originally

proposed in the context of stationary regression models,

_IALc L§T(r),[61,mT(1)1 sT(r). (9)

If we choose GT(r) = 02.1 VT (r), this corresponds to the meanLM test of Hansen

(1990) under stationary regression models,

meanLM = LLMT(r)= L§T(r)'[6.iLVT(r)1-1§T(r). (10)

On the other hand, Quintos and Phillips (1993) focus on the coefficients of the

nonstationary regressors. Under their specification, the cointegrated regression model is

yt = a+ x'tf3t +u,
(11)

xtxt-i + vt t= 1,...,T. 

13, is supposed to follow a random walk,

pt +it, it —N(0,a2TiEn). . (12)

The hypothesis under interest becomes Ho: cY j = 0 against Hr : a2 > 0n •

Quintos and Phillips derived a LM test of parameter constancy against the random

walk alternative under the cointegrated regression model with or without a constant

term. For the model with a constant term, their test statistic is given by
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Q—P=T-3i1++ 12 L(I 0111-1)L D x 1 - X 0.1

0 -

where D = diag(xi , L =
x

.k

[Tr] [Tr]

T-1 E T-1 E -u +xtut _ - xtt - rAio.
1 1

(13)

and 11++ is defined to make

Making use of the notation of score vector in the context of the cointegrated

regression model, the Quintos-Phillips test statistic can be expressed

+
Q—P=  3,42 E{[E(ut xi —A10)11/1 [E(xtut —6.10)

T (Doi j=i t=i t=1

„
= t§-7:(r)[T26,11‘1/ 11

-t 
S- (r). (14)

We see that the Lc test, the meanLM test and the Q-P test are simply weighted

averages of the squared partial sums of the first order conditions (4). They only differ in

terms of how to choose the weighting matrix. For the Lc test, choosing [MT(1)]-1 as the

weighting matrix results in a constant weighting matrix. As observed by Hansen (1990)

for the case of stationary regression models, the effect of such a choice is to place
-

unequal weights across ST(rYGT(r)
1 ST(r) because its asymptotic expectation is r(1-r).

It varies over r and attains the maximum at r = 0.5. Thus the Lc test places more weight

on the middle observations and has difficulty in detecting early or late structural change.

The same happens to the Q-P test which uses the long run covariance matrix as the

weighting matrix. This problem is overcome by replacing GT(r) with 021 VT (r) and this

leads to the meanLM test.

The meanLM test differs from the supLM test simply by the choice of norm.

While the supLM test picks the largest from the T elements, the meanLM test calculates

the average of these T elements. They are based on the same components but have

particular power against the one-time discrete jump and random walk alternatives,

respectively.

Although choosing VT(r) as the weighting matrix might be helpful in detecting

structural change early or late in the sample, such a choice also has some adverse effect

on the power of the supLM test and the meanLM test. Because both tests are based on

the convergence a [VT(r)]-1, as r —› 0 or 1, VT(r) would not converge in distribution. In
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c.

Order to implement the tests, Hansen (1992) suggested selecting II = [0.15, 0.85] to

ensure the convergence of the test statistics. While this is an asymptotically useful

approach, it also introduces an element of arbitrariness. When the structural change

point is outside 11, the tests will lose power. On the other hand, the Lc test and the Q-P

test are valid for 11 = (0.1), hence excluding any form of arbitrariness.

4. SOME GENERALIZATIONS

4.1 The expLM Test

The meanLM test is a particular form of the class of asymptotically optimal tests

suggested by Andrew and Ploberger (1992) which is given by

Exp — LMT (r) = (1+ c)-1/2 Lexp[  
2(1+ c) 

1 LMT (r)] dJ(r), (15)

where LMT(r) is just the standard LM test statistic for the null of no structural change

versus the alternative of a particular type of structural change given the parameter r, J(.)

is weighting function over values of r in H, c is a scalar constant that depends on the
chosen weighting function and determines power direction. Notice that

lim 2(Exp — LMT —1) / c = LMT (r)dr = meanLM.
C-40.

Thus the limit as c --> 0 of the Exp-LMT(r) test is equal to the meanLM test.

The Monte Carlo simulation conducted by Andrews, Lee and Ploberger (1992)

suggested that the power of such optimal tests is not very sensitive to changes in c.

They also found that choosing c = co results in a new test statistic which is slightly

preferred to the meanLM test. Under such a choice,

exp LM = lim log[(1 + c)k/2 Exp — LMT = log In expLMT (r)
c-)00

(16)

Under the cointegration regression model (1), this corresponds to a new test

statistic

-
exp LM = log Lexp{-2-1 §T (r)16 (11 VT (01 ST (01 .

Denote V(r) = M(r) - M(r)M(l)M(r), S*(r) = S(r) - M(r)M(1)-IS(1)

(17)
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_ _

P
where S(r) = 

Bo .1 1 

3dB 
, M(r) = 

r .g Bi
, 80.1 and B1 are independent

1 0.1

_

_ sCB1 .g131 13i
_ _

standard Brownian motion with dimension 1 and k, respectively. Then by Theorem 2 of
d

Hansen (1992), we have LMT(r) LM(r) = S*(rYV(r)-1S*(r). By the continuous

mapping theorem of Billingsley (1968, p.30),

exp LM= log. in exp[-21 S*(r)1V(r)-1S*(r)].
(18)

The asymptotic distribution of the expLM test does not depend on any nuisance

parameters. It is, however, a function of the number of regressors.

4.2 LM Tests for Partial Structural Change

Although Hansen did not derive the test statistic for partial structural change, the

extension is straighforward. Suppose we are interested in some subvector y1 of the

cointegrating vector y. Without loss of generality, we can set yi as the first subset of y,

then y = (y ,sy . Partition §T(r), MT (r) and VT(r) in conformity with y. Define

following test statistics for partial structural change:

7. 2 11 - ̂ isup LM = sup 6T (r) [630.1VT (r)]
1 
 ST (r),

ren

-,,
meanLM 1 = Sr (r)161.1\4' (r)]

1
 S (r),

Lic = L 4(r),[ imp(1)]-'§T1 (r),

exp LN41 = log Lexp{-21 4(r)1[6(2).1\4'(r)r4(1)1.

In order to derive the asymptotic distributions of the above test statistics, define

the weighting matrix:

/1 1 A -1/2\
= tif ). (19)

Partition F, S*(r), M(r) and V(r) in conformity with y. Applying theorem 1 of

Hansen (1992), we have
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1 1 d 1 1' 1 1 d *11 I ' 1S—F MT (1)1" 11 (1),Tr VT1 (r)r V (0,—, F1 T(r) (00.IS
1
(r).

Again, by the continuous mapping theorem of Billingsley, we have the following

asymptotic distributions of the above partial structural change test statistics:

-,
sup LM' = sup ST (r)'pi L 

, 
(r)]

1 
S
,
=r(r),

rer1

sup S*1 
-(r) it(r)] 1 S.1(0,

r

-.1
meanLM1 = 0,1/40164u VT (r)l

1
• ST (r)

S*I (01[V" (r)]_1 S*1 (r),

In (r)'pi (1)144 (r)=

*•s*I(olmii(1)] S' (r),

exp LM = log L exp{-21 §;- (016 L (r)r §!/. (01

(20)

(21)

(22)

log in expGS*1(r) '[V11(r)] 
-1

 S*1(r)} . (23)

Asymptotic distributions of the above test statistics depend only on the total

number of explanatory variables in the cointegrated regression model, and the number

of explanatory variables under interest for the partial structural change. Hence we can

obtain the critical values for both full and partial structural change for various numbers

of regressors. They are found by simulation using a GAUSS program with a sample

size of 1000 and 20000 replications for one to five explanatory variables. The results

are given from Tables 1 to 4. For the supLM test, the meanLM test, the meanLM test

and the expLM test, we set n = [0.15, 0.85] while for the Lc test we set fl = (0, 1). In
particular, we tabulate critical values for the intercept change and the slope change,

respectively'.

Our simulation results show that critical values for the meanLM test and the expLM test are
nonmonotonic. While this is unusual, it happens in the literature which deals with the similar
problem. See, for example, Tables 4B (a) to (d) of Quintos and Phillips (1993).
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TABLE 1
(a) Asymptotic Critical Values of the supLM Test

Number of regressors
(Excluding Constant) 10% 5% 1% 

1 10.50 12.28 16.16

2 12.92 14.70 18.61
3 15.14 17.07 21.23
4 16.93 18.94 23.23
5 18.82 20.96 24.25

(b) Asymptotic Critical Values of the intercept supLM test

Number of regressors
(Excluding Constant) 10% 5% 1%

1 7.95 9.51 13.15

2 8.57 10.11 13.44

3 9.07 10.61 14.21
4 9.39 10.91 14.66
5 9.79 11.37 14.97

(c) Asymptotic Critical Values of the slope supLM test at 10% level

Total regressors Number of subset regressors
(Excluding Constant) 1 2 3 4 5

1 7.93
2 8.23 10.84 .
3 8.53 11.09 13.27
4 8.69 11.27 13.39 15.21
5 8.94 11.53 13.51 15.41 17.19

(d) Asymptotic Critical Values of slope SupLM Test at 5% Level

Total regressors Number of subset regressors
(Excluding Constant) 1 2 3 4 5

1
2
3
4
5

9.52
9.74
10.04
10.26
10.55

12.53
12.81
13.03
13.27

15.10
15.19
15.41

17.11
17.35 19.26

(e) Asymptotic Critical Values of slope meanLM Test at 1% Level

Total regressors Number of subset regressors
(Excluding Constant) 1 2 3 4 5

1 12.79
/ 13.10 16.25
3 13.55 16.48 18.92
4 13.87 16.80 19.12 21.23
5 14.07 17.05 19.27 21.60 23.43
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TABLE 2
(a) Asymptotic Critical Values of the meanLM Test

Number of regressors
(Excluding Constant) 10% 5% 1%

1 3.678 4.525 6.630
2 5.086 6.125 8.323
3 6.568 7.738 10.218
4 7.847 9.072 12.103
5 9.172 10.540 13.505

(b) Asymptotic Critical Values of the intercept meanLM test
Number of regressors
(Excluding Constant) 10% 5% 1%

1 1.992 2.600 4.111
2 1.885 2.415 3.765
3 1.828 2.315 _ 3.502
4 1.751 2.205 3.212
5 1.745 2.120 3.172

(c) Asymptotic Critical Values of the slope meanLM test at 10% level
Total regressors Number of subset regressors

(Excluding Constant) 1 2 3 4 5

1 2.037
2 1.997 3.591
3 1.945 3.573 5.073 .
4 1.915 3.530 5.014 6.388
5 1.888 3.542 5.022 6.430 7.788

(d) Asymptotic Critical Values of the slope meanLM Test at 5% Level
Total regressors Number of subset regressors

(Excluding Constant) 1 • 2 3 4 5
1 2.644
2 2.539 4.364
3 2.494 4.404 6.078
4 2.443 4.319 5.976 7.533
5 2.440 4.346 5.994 7.515 9.044

(e) Asymptotic Critical Values of the slope meanLM test at 1% level
Total regressors Number of subset regressors

(Excluding Constant) 1 2 3 4 5"
1 4.063
2 3.985 6.226
3 4.009 6.350 8.317
4 3.845 6.274 8.387 10.335
5 3.788 6.225 8.207 10.193 11.711
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TABLE 3
(a) Asymptotic Critical Values of the Lc Test

Number of regressors
(Excluding Constant) 10% 5% 1% 

1 0.4454 0.5726 0.8791
2 0.5530 0.6787 0.9930
3 0.6844 0.8264 1.1926
4 0.7919 0.9576 1.3514
5 0.8948 1.0817 1.4696

(b) Asymptotic Critical Values of the intercept Lc test
Number of regressors
(Excluding Constant) 10% 5% 1%

1 0.2300 0.3144 0.5295
2 0.1643 0.2213 0.3888
3 0.1202 0.1600 0.2851
4 0.0941 0.1220 0.2019
5 0.0763 0.0970 0.1639

(c) Asymptotic Critical Values of the slope Lc test at 10% level
Total regressors Number of subset regressors

(Excluding Constant) 1 2 3 4 5
1 0.2155
2 0.1770 0.3535
3 0.1506 0.3082 0.4864
4 0.1271 0.2725 0.4442 0.6153
5 0.1096 0.2477 0.3973 0.5600 0.7248

(d) Asymptotic Critical Values of slope Lc Test at 5% Level
Total regressors Number of subset regressors

(Excluding Constant) 1 2 3 4
1 0.2899
2 0.2397 0.4475
3 0.2054 0.3923 0.6104
4 0.1682 0.3485 0.5437 0.7450
5 0.1477 0.3147 0.4880 0.6695 0.8772

(e) Asymptotic Critical Values of the slope Lc test at 1% level
Total regressors Number of subset regressors

(Excluding Constant) 1 2 3 4 5
1 0.5014
2 0.4144 0.6899
3 0.3631 0.6090 0.8877
4 0.2975 0.5411 0.8139 1.0906
5 0.2659 0.4888 0.7227 0.9824 1.2009
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TABLE 4
(a) Asymptotic Critical Values of the expLM Test

Number of regressors
(Excluding Constant) 10% 5% 1%

1 2.554 3.205 4.777
2 3.476 4.09 5.840
3 4.415 5.199 7.143
4 5.215 6.125 8.044
5 6.030 6.944 9.025

(b) Asymptotic Critical Values of the intercept expLM test
Number of regressors
(Excluding Constant) 10% 5% 1%

1 1.520 2.042 3.336
2 1.550 2.054 3.232
3 1.583 2.080 3.404
4 1.567 2.055 3.322
5 1.617 2.121 3.409

(c) Asymptotic Critical Values of the slope expLM test at 10% level

Total regressors Number of subset regressors
(Excluding Constant) 1 2 3 4 5

1 1.533
2 1.526 2.578 •
3 1.534 2.600 3.563
4 1.527 2.606 3.515 4.375
5 1.572 2.655 3.558 4.429 5.282

(d) Asymptotic Critical Values of slope expLM Test at 5% Level
Total regressors Number of subset regressors

(Excluding Constant) 1 2 3 4 5

1 2.022
2 2.031 3.186
3 2.038 3.249 4.276
4 2.045 3.263 4.299 5.217
5 2.087 3.325 4.305 5.227 6.116

(e) Asymptotic Critical Values of the slope expLM test at 1% level
Total regressors Number of subset regressors

(Excluding Constant) 1 2 3 4 5
1 3.324
2 3.274 4.728
3 3.365 4.696 6.004
4 3.339 4.792 6.002 7.101
5 3.440 4.809 6.009 7.083 8.045
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4.3 An Optimal Cointegration Test

In the case of estimating a cointegrating relationship, a natural hypothesis to test

is the assumption of cointegration itself. Assume that yt and xt are not cointegrated.

This is equivalent to the statement that the error term ut is I(1). Decompose ut as

Ut = Wt + Et

where wt is a random walk and Et is stationary. Hansen (1992) notice that "no

cointegration" in model (1) is equivalent to one coefficient, the intercept, following a

random walk by writing (1) as

yt = at ± x'131 -E. Et (24)

where

at = a + wt

Equation (24) thus becomes a special case of equation (2). Hansen therefore

concludes that the Lc test can be used as a test of the null of cointegration against the

alternative of no cointegration. In particular, (24) can be regarded as a cointegrated

regression model with partial structural change or, in other words, with the intercept

following the random walk. Although Hansen did not specially develop the partial

structural change version of the Lc test, it can be easily derived from (22) and has the

form

T A J2
T

1- 

[ 2 - j=1 t=1
9c = T-1 

j 

E +t (TC° 0.1 
1 

) I a = 
t+ 2 2

j=1 t=1 t=1 T 00.1
(25)

This is exactly the statistic of testing for unit root first proposed by Kwiatkowski et al.

(1992) and extended to testing the null hypothesis of cointegration by Harris and Inder

(1994).

As we observed in section 4.1, among the class of optimal tests for structural

change given by (16), the expLM test is particulary appealing in terms of its power

performance under the stationary regression model. Under the cointegrated regression

model (1), an optimal test for cointegration is simply the intercept change version of the

expLM test which is given by

expLMT° = log ;1;1 E exp EuAt)(626.,vinyl(Eat+)1}y-rEn t=i t=i
(26)
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where

tX
-1

' E t) x t

T T
+EXi EXtXi--TEXtEX't

1 1 1 1

and T* = E 1.

j/TEll

4.4 A Robust Cointegration Test

-1
T (T T

(r-j)-EXi Extxi) Ext1 1 j+1

-1[v1
T x

J
t ---Lxt]}

As observed earlier, due to the similarities between different test statistics, the

rejection of the null of parameter constancy does not definitely imply the particular

alternative the test was designed to detect. In particular, as a test of the null of

cointegration, the 12, test would have good power against a one-time discrete jump in

the intercept as well as the random walk in regression residuals. Considering that large

samples are often used to estimate the cointegration model, it is not unlikely that a one-

time discrete jump may occur in the intercept. This leads us to suggest a test for

cointegration which is robust to a possible discrete jump in the intercept. Such a new

test is formed by including a dummy variable in the regression equation to capture the

possible jump in the intercept. Since the jump point is unknown, the test statistic is

formed by taking the minimum value of the L statistic at each possible jump point.

Consider the following model:

Yt = gicir +112 + 43+ ut (27)

where dr is a dummy variable with

1 if t [Tr]
dr =

0 if t > [Tr]

and 0 < r < 1. If the regression model is not cointegrated, this is equivalent to the
statement that the error ut is I(1). Decompose ut as

Ut = wt + Et

where wt is a random walk and Et is stationary. Equation (27) can be expressed as

yt f-t2t ± +Et,
1-L2t =1-1•2 +W.
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This is a cointegrated regression model with a non-stationary coefficient in the

intercept term. Therefore a test of null of cointegration which is robust to the discrete

j iss

E
T (xL )2

Lut
=1 =

Cc = inf Oc = inf J t1 (28)
rell rell T2641 _

where et is the FM residuals for model (27).

* * *
Let Z =(z, a2,...,

* ‘,
z
* 
=zT) , t

model (27) is then equivalent to yt = z*t'

J(1, 1, xt1,..., xtk )'

1(0, 1, xti ,..., xtk )'

ift/T r

ift/T > r'

+u or Y = Zso + u.

Except for the intercept term, model (27) is the same as the general cointegrated

regression model (1). Under the same notation given in section 2, (27) can be written as

+yt = µid, +112 + xif3+ u+t or 17+ = Z*5 + u+.

The FM estimator of 5 is

(...+
gi

8+ = 1:i=(zvz*

134')

* 

_ _
Tr

Tr Tr Exi
1
T*, 

where Z Z = Tr T E xi
1

[Tr] T T

EXt Ext Extxi
- 1 1 1 -

I 0

0

The FM residuals of model (29) are then given by

, A
..-+ + . -4-ut = yt -zt o .

(29)

(30)

(31)

To derive the asymptotic distribution of the test statistic I:c, define the weighting

matrix

_
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F = diag(1, 1, L-1
1/2 )

then we have following results:

1
—
1 *1
F( ZZ

* .—r

Tr Tr

Tr

Ext

1, r(z *f 1u+). r Ez*tu-ti-
Iff 1

1 [1.'1 *
—
T
F; =

1

minaTT],[Tr])-

T -1 [TT]

[TT]
-3/2 -1/2 v"T x.

1

r, d
r f(r)13;

r 1 for Bf = Q(r),

for Bi hr34 13113f

0.1

rIT-1(6+ - 8) = ,t1T-1 ( eie)_i u+

1 *, * -I 1
= [—F(Z Z [ 

rVT
_1"(Z

[TT] [TT] [TT] *

Eat Ezi
VT VT

1 [,-.1.t1
= -
VT

(8+-5)

([TT]

rj[lfr-1(84- -6)]

d W0.1 (t) [T, t,fotBi]o00.1Q(0-1 f(r) if r

T, Jot Bi lo) oAQ(r)-1 f(r) ift > r

B0.1(r)

B01(1)

BidBol

0.1 Q(0-1 f(r). (32)

(33)
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Thus I:c = inf
rEfl

T ti‘ 2

j=1 t=1
T2641

inf
rEn

+

2

—(t, T aC B i) Q( rr 1 f( r)ch

2

t, .r BD Q( r) f(r)di (34),

which is free of any nuisance parameters.

Due to the requirements of recursive calculations, it is particularly time-

consuming to calculate the critical values of the robust cointegration test Cc by

simulation. Hence the asymptotic critical values are found by simulation using a

GUASS program with a sample size of only 300 and with 3000 replications for one to

five explanatory variables. Since the asymptotic distribution of the LI test is dependent

on the convergence of Q(r) 1, therefore 11 is set to be [0.15, 0.85]. The results are given

in Table 5.

TABLE 5

Asymptotic Critical Values of the Robust Cointegration Test

Number of regressors
(Excluding Constant) 10% 5%

1
2-
3
4
5

0.06228
0.05041
0.04128
0.03480
0.03064

0.07545
0.06012
0.04856
0.04084
0.03560

1%
0.11590
0.08460
0.06837
0.05265
0.04644

5. A MONTE CARLO EXPERIMENT •

5.1 Experimental Design

A Monte Carlo Study was conducted to investigate and compare the finite sample

properties of the various tests discussed in this paper. In particular, we consider the

following cointegrated regression model

Yt = (1, xt)Yt ut,

xt = xt_i + vt, t= 1,...,T, (35)
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•where yt = (at 'Pi), ut and vt are generated by the processes

ut = Pt iut-1

vt =P21Ut W = P22wt-1 P23112t

with Tilt and 112t being independently and identically distributed standard normal

variables. Three sets of parameter values are used in our Monte Carlo study. They are,

respectively

1: (pii, P12) = (0, 1), (P21) P227 P23) = (01 0, 1);

2: (pi 1, P12) = (0.2, 0.98), (P21, P222 P23) = (015, 0.25, 0.935);

3: (pii, P12) --= (0.5, 0.866), (P21, P22) P23) = (0.25, 0.25, 0.935).

Since the Q-P test is derived under the assumption of no intercept change, we

therefore confine the structural change in the slope for the fair comparison. The

alternative hypothesis is a one-time discrete jump and the random walk, respectively.

Against a one-time discrete jump, we consider

{(1, 1)' when t [Tr]
(36)t (1, 1.5)' when t > [Tr]

where [Tr] is the break point and occurs at r = 0.1, 0.3, 0.5, 0.7, 0.9.

Against the random walk alternative, we consider

at = ao = 1, 13 = + 0.0342b Po = 1, 42t — N(0, 1). (37)

As we observed in section 4.3, to test the null hypothesis of cointegration against the

alternative of no cointegration is equivalent to testing the intercept following a random

walk. In order to compare the performance of two "cointegration" tests, the I a°c test and

the exp LIvq. test, we consider the random walk alternative in the intercept,

at = at l + 0.241t, ao = 1, 4it — N(0, Pt= Po = 1, (38)

2 2where cr equals 0 or 1. When a equals 0, it implies that there exists cointegration in

model (35). When 0:t equals 1, it implies that there is no cointegration in model (35).

To investigate the performance of the robust cointegration test, the null

hypothesis is designed to be a one-time discrete jump in the intercept,

{(1, 1)' when t [Tr}
Ho:y t = (39)

(1.5, 1)' when t > [Tr]
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Under the alternative hypothesis, on the other hand, the intercept follows a

random walk which is given by (38).

Against alternative hypotheses (36) and (37), we consider both the full structural

change version and the slope change version of the expLM test, the supLM test, the

meanLM test and the Lc test. The Q-P test corresponds to the slope change version of

above tests in the sense that there is no full structural change version of the Q-P test.

We use superscript "1" to denote the slope change version of each test. Against the

alternative hypothesis (38), we consider the Oc test and the exp LIvOr test. We also

consider the robust cointegration test .I:c against the same alternative but the null

hypothesis is (39). In experiment 1 the regressors are exogenous and Axt.are serially

uncorrelated. In experiments 2 and 3, xt are endogenous as well as having serially

correlated innovations. At the same time, we introduce autocorrelation in regression

residuals ut. For each experiment we do 1000 replications and record the rejection

frequencies of the various tests using 5% asymptotic critical values.2 The sample size is

100 and 250, respectively.

5.2 Results on the Estimated Sizes and Powers

Tables 6 and 7 report the estimated sizes and powers of various tests against

alternative hypotheses (36) and (37). Table 8 reports the estimated sizes and powers of

the 12c test and the exp LIvOr test against the alternative hypothesis (38). Table 9_

reports the estimated sizes and powers of the 1-sc test. The Q-P test and three versions

of the Lc test are evaluated across the full sample while the other tests are evaluated by

restricting IT = [0.15, 0.85].

We observe that all of the tests demonstrate reasonable size performance and the

accuracy in approximating the nominal size typically improves as T increases. For the

two versions of the supLM test, their estimated sizes are always significantly below

their nominal size. A similar result was found by Gregory and Nason (1992) in their

Monte Carlo study of various tests of structural change. In contrast, the estimated sizes

of other tests are much closer to the nominal size. In particular, estimated sizes of the

2 We also calculated size-corrected powers of above tests. Results are similar to those based on
their asymptotic critical values and thus are not reported here.
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TABLE 6

Rejection Frequencies with 5% Asymptotic Critical Values

(Slope change, T = 100)

/r 0.0 0.1 0.3 0.5 0.7 0.9 rw

Experiment 1

expLM .045 .184 .879 .924 .892 .534 .372

Lc .050 .164 .517 .764 .821 .490 .361

meanLM .054 .165 .713 .892 .852 .423 .327

supLM .026 .122 .838. .878 .814 . .430 .272

expLM1 .045 .183 .941 .967 .939 .509 .466

Llc .049 .111 .594 .832 .856 .591 .443

meanLM1 .046 .154 .851 .937 .888 .347 .411

supLM1 .028 .148 .898 .942 .895 .488 .369

Q-P .056 .080 .340 .553 .582 .377 .310
Experiment 2

expLM .030. .132 .719 .708 .625 .277 .276

Lc .047 .138 .363 .514 .545 .278 .299 .

meanLM .041 .134 .495 .663 .608 .238 .273

supLM .011 .066 .608 .527 .439 .169 .155

expLM1 .036 .144 .862 .820 .710 .274 .398

Llc .047 .097 .451 .656 .634 .332 .386

meanLM' .039 .129 .724 .764 .652 .213 .345

supLM1 .018 .094 .801 .740 .623 .221 .272

Q-P .049 .074 .192 .346 .358 .155 .285
Experiment 3

expLM .018 .036 .226 .242 .225 .066 .061

Lc .036 .074 .163 .231 .273 .122 .113

meanLM .033 .056 .201 .297 .273 .088 .090

supLM .004 .007 .080 .066 .056 .016 .016

expLM1 .026 .059 .461 .436 .374 .081 .168

Lic .043 .059 .262 .407 .386 .148 .210

meanLM1 .035 .068 .391 .466 .379 .091 .140

supLM1 .007 .023 .272 .198 .171 .029 .064

Q-P .043 .060 .084 .129 .134 .030 .200
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TABLE 7
Rejection Frequencies with 5% Asymptotic Critical Values

(Slope change, T = 250)

/r 0.0 0.1 0.3 0.5 0.7 0.9 rw

Experiment 1

expLM .049 .626 1.000 .996 .978 .864 - .991

Lc .051 .527 .895 .978 .970 .845 .940

meanLM .052 .519 .998 .991 .971 .773 .983

supLM .038 .609 1.000 .995 .965 .848 .983

expLM1 .055 .582 1.000 1.000 .984 .823 .997

Llc ' .060 .308 .855 .971 .976 .850 .972

meanLM1 .054 .443 1.000 .999 .981 .689 .983

supLM1 .042 .580 1.000 .997 .981 .842 .994

Q-P .053 .155 .707 .891 .872 .681 .781
Experiment 2

expLM .044 .599 .991 .899 .831 ' .663 .935

Lc .048 .477 .743 .832 .798 .631 .856

meanLM .049 .470 .949 .882 .809 .577 .939

supLM .025 .555 .983 .868 .773 .620 .881

expLM1 .049 .530 .995 .953 :877 .580 .954

Lic .051 .249 .743 .860 .850 .632 .911

meanLM1 .045 .389 .984 .927 .835 .460 .932

supLM1 .033 .520 .992 .922 .844 .593 .939

Q-P .052 .108 .536 .743 .698 .374 .727
Experiment 3

expLM .042 .333 .849 .653 .549 .362 .658

Lc .044 .281 .460 .529 .551 .362 .588

meanLM .046 .262 .675 .644 .572 .304 .677

supLM .015 .265 .809 .549 .446 .274 .487

expLM1 .041 .324 .936 .762 .638 .306 .756

Llc .049 .163 .543 .641 .607 .358 • .728

meanLM1 .042 .233 .852 .724 .609 .247 .769

supLM1 .022 .300 .910 .686 .540 .282 .634

Q-P .050 .054 .205 .306 .257 .059 .449
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Q-P test and three versions of the Lc test seem closer than those of the expLM test and

the meanLM test. A comparison between three versions of the expLM test and two

versions of the meanLM. test shows that they have essentially the same size

performance. There is little difference in terms of accuracy of approximating the

nominal size. We also observe that the robust cointegration test LI has very good

estimated sizes3.

TABLE 8
Rejection Frequencies with 5% Asymptotic Critical Values

(Null Hypothesis: Cointegration)
cr4 = 0 a-4 = 1

Exp.1 Exp.2 Exp.3 Exp.1 Exp.2 Exp.3
T= 100

expLM0 .044 .040 .032 .731 .524 .160

14 .048 .044 .042 .465 .308 .151
T = 250

expLM0 .048 .050 .045 .991 .980 .921

14 .050 .050 .050 .971 .960 .864

TABLE 9
Rejection Frequencies with 5% Asymptotic Critical Values

(Null Hypothesis: One-Time Discrete Jump)

Estimated Sizes (r = 0.5)  Estimated Powers

Exp.1 Exp.2 Exp.3 Exp.1 Exp.2 Exp.3 

T= 100

.029 .023 .017 .190 .127 .059

T = 250

.052 .034 .035 .936 .820 .374

In terms of power performance, we see that all of the tests are more powerful in

experiment 1 than in experiments 2 and 3. The introduction of endogeneity as well as

serially correlated innovations leads to a decline in power. At the same time, the sample

3 Since the estimated sizes of the Cc test are very close. We therefore only reported its estimated

sizes when r = 0.5 in table 9.
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size plays a very significant role. When T is increased from 100 to 250, the estimated

powers of these tests improve dramatically. In addition, the restriction on 11 with [0.15,

0.85] has very little effect on estimated powers of the expLM test, the meanLM test and

the supLM test. When r = 0.1 or 0.9, it is outside the range of 11 = [0.15, 0.85] or, in

other words, the structural change occurs outside the range in which the above test

statistics are evaluated. In this case, their estimated powers are still comparable to those

of the Lc test. This suggests that the expLM test, the meanLM test and the supLM test

are not very sensitive to the choice of II.

We now briefly discuss the results on testing for the slope change. A comparison

of the estimated powers of the full structural change version of various tests shows that

against a one-time discrete jump, the expLM test is almost always more powerful than

the other tests. A few exceptions occur in experiment 3 when T is small. When T is

large, the power gain of applying the expLM test is quite obvious. Our results also show

that with the exception of the expLM test, the supLM test outperforms the other tests

when T is large. When T is small, the performance of the Lc test and the meanLM test

is very similar, they are preferred to the supLM test. When the alternative is the random

walk, the expLM test still dominates the other tests in experiment 1. In experiments 2

and 3, however, the Lc test seems more powerful when T is small. When T is large, on

the other hand, the meanLM test demonstrates some power advantage over the other

tests.

With respect to the estimated powers of the slope change version of above tests as

well as the Q-P test, the expLM' test obviously outperforms the other tests against either

alternative. .There is often a significant power improvement from using the expLM'

test, particularly when T is small. The performance of the Lc test, the meanLMI test

and supLM' test is reasonably similar. It is also quite clear that the Q-P test performs

worst among all the tests under comparison. The only exception occurs in experiment 3

when T is small. In this case, Q-P test is slightly preferred to the other tests against

random walk alternative.

Our results also suggest that the slope change version of a test typically

outperforms its corresponding full structural change version. Exceptions mainly occur

when r is far from the middle of the sample, and against the one-time discrete jump

alternative. However, in cases where the full structural change version of a test is more

powerful, the power difference is small and often negligible. On the other hand, in cases
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'where the slope change version of such a test is more powerful, there is often a

substantial power improvement. Our results suggest that when the partial structural

change occurs and such information is available, the correct specified partial structural

change version of a test might be significantly more powerful than the full structural

change version of such a test.

In terms of the estimated powers of the I° test and the expLM° test, the expLM°

test is consistently more powerful than the 12, test. Sometimes the power discrepancy is

large. This can be easily observed when T is small. We therefore conclude that as a

cointegration test, the expLM° test possesses some desirable properties.

With respect to the estimated powers of the Cc test, our results suggest that the

test has very good power when T is large. When T is small, it is harder to distinguish

the random walk from a one-time discrete jump, yet the test has reasonable power in

experiments 1 and 2. We also observe that when endogeneity and autocorrelation are

introduced, the estimated powers of the L test drop very quickly.

6. CONCLUSION

This paper has investigated the problem of testing for structural change in the

context of cointegrated regression models. A direct comparison of different approaches

suggests that various test statistics only differ in terms of the choice of either different

weighting matrix or different norm. Following the idea of Andrews and Ploberger

(1992), we derived the asymptotic distribution of the expLM test and generalized it,

together with the LM tests of Hansen (1992), to testing for partial structural change.

Further, we suggested a new test for cointegration which is robust to the discrete jump

in the intercept.

The finite sample properties of the various tests were investigated via a Monte

Carlo experiment. It is found that both full and partial structural change versions of the

expLM test typically outperform its competitors. Our results also suggested that the

correctly specified partial structural change version of a test usually outperforms the full

structural change version of a test. In particular, the expLM° test possesses some

desirable finite sample properties. We also found that when robust cointegration test

performs well when the sample size is reasonably large.
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