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ABSTRACT

This paper compares and generalizes some testing procedures for structural change in
the context of cointegrated regression models. The Lagrange Multiplier (LM) tests
proposod by Hansen (1992) are generalized to testing for partial structural change. An
exponential average LM test is also suggested following the idea of Andrews and
Ploberger (1992). In particular, an optimal test for cointegration is developed. We also
propose a new cointegration test which is robust to a possible one-time discrete jump in
the intercept. We tabulate the asymptotic critical values for the above tests and conduct

a small Monte Carlo simulation to investigate their finite sample performance.




INTRODUCTION

When an econometric model is used for forecasting or policy simulations, an
implied assumption is the structural stability of such a model. The detection of
structural change will not only provide evidence on whether a particular economic
theory or policy is correct or not, it can also lead directly to improvements in forecasting
performance. Therefore, it has become a routine practice for econometricians to test the

structural stability assumption in econometric models.

Recently, Hansen (1992) de\)eloped the limiting theory for the Lagrange

Multiplier (LM) test for structural change in the context of cointegrated regression
models. Making use of the fully modified OLS (FM) estimation method of Phillips and
Hansen (1990), Hansen (1992) derived the asymptotic distribution of various test
statistics against different alternatives of interest and found that they are free of nuisance
pérameters but depend upon the stochastic process describing the regressors. At the
same time, Quintos and Phillips (1993) proposed a LM test against the random walk
alternative which corresponds with Hansen’s approach. They argue that while Hansen’s
tests apply to the full vector of cointegrating coefficients, their LM test can be applied to
subvectors of the cointegrating vector as well as the full cointegrating vector. Such a
formulation is especially useful in empirical work, since it provides a means of isolating

the variables that are responsible for the failure of the null hypothesis.

This paper further investigates the problem of testing for structural change in the
context of cointegrated regression models. Such a problem is particularly important in
that cointegrated regression models are often estimated over long sample periods, and

the structural stability assumption is more likely to be violated.

A direct comparison of Hansen’s approach with Quintos and Phillips’ approach
(section 3) shows that against the same alternative hypothesis, the various test statistics
only differ in terms of the choice of the weighting matrix. Then following the idea of
Andrews and Ploberger (1992), an average exponential form of the LM test which is
asymptotically optimal in terms of weighted average pdwer can be easily constructed
(section 4). It is also found that Hansen’s tests can be diréctly extended to testing for
subvectors of the cointegrating vector, or, in other words, for partial structural change.
As a special case, testing the null hypothesis of cointegration against the alternative of
no cointegration is equivalent to testing the constancy of one coefficient, the intercept,

against a random walk alternative. In this sense, a new test statistic can be formulated to




test for this particular partial structural change. An interesting finding is that such a test
is exactly the same as the test for a unit root first proposed by Kwiatkowski, Phillips,
Schmidt and Shin (1992) and extended to the problem of testing the null hypothesis of
cointegration by Harris and Inder (1994). Section 4 also includes a new optimal test of
the null of cointegration, constructed in the average exponential form of the LM test

against a particular partial structural change.

As observed by Hansen, a LM test against the random walk alternative also has
good power against the discrete jump alternative. Therefore the cointegration test of
Harris and Inder (1994) cannot discriminate between the random walk in the residuals
and a discrete jump in the intercept. A robust cointegration test is thus suggested in

section 4 to overcome this problem.

This paper is organized as follows. Section 2 sets up the structure of the
cointegration model and briefly describes the method of FM estimation. Section 3
compares the various test statistics suggested by Hansen and Quintos and Phillips.
Section 4 gives the average exponential form of the LM test and extend Hansen’s tests
to testing for partial structural change. It also derives the new optimal test of the null of
cointegration against the alternative of no cointegration and the robust cointegration test.
Section 5 conducts a Monte Carlo experiment to investigate and compare the behavior
of the various tests. The conclusion is given in section 6.

To represent the asymptotics concisely, here and elsewhere in this paper, all limits

1
apply as T — 0. Integrals (such as LB) are understood to be taken with respect to

- 1 . . i .
Lebesgue measure (that is L B (r)dr) when otherwise unspecified. Let [.] denote “integer

part”.

THE COINTEGRATED REGRESSION MODEL

Consider the cointegrated regression model

Y =a+XxB+u, M

Xt = xl_l + Vt,

where a is a scalar, B is a kx1 vector of unknown parameters, X, is a kx1 vector of
regressors, and u, is a stationary error, hence y, and x, are cointegrated and (-1, ') is

the cointegrating vector.




Let & = [u, v{'] be a k+1 dimensional process which satisfies the multivariate
invariance principle as set out by Phillips and Durlauf (1986) . Let

(Tr)
Rr(r)=Rpy = th,then TR g, = W(r) = (Wp(r), Wy (1)),

where W(r) is a k+1 dimensional Brownian motion and partitioned in conformity with

€. The covariance matrix of W(r) is

[m% Wox]_hm]‘ E(Zc)[iétj;zﬂmﬂy

Yip Yp | To= 1

where
Tow ) 2 o =2 j=I AlO Ay

and they are partitioned in conformity with ;.

Ag A4

Ap 4

DeﬁneA=Z+A=|:

'] and denote consistent estimators of y and A as

n

and A respectively. Partition ¥ and A as yand A. Set

051 =05 - V07" ¥10,AT0 = A0 — A §T" 0.
Define the transformed dependent variable
i =Y - Uity

with FM disturbances
uy =u, _‘i’OI‘IJl-th .

The cointegrated regression model (1) can be transformed to
yi =a+Xx{B+uy =zly +uf

where

z, =(L,x¢)",y =(a,p’)".

The FM estimator of y is then given by

. =[g+) {t;ulz;)-l(izty? ‘1{?&70)) |

with FM residuals




Atr 4 1A+
Ug =Y —ZeY -

. R 0
Set §, =(z;u: —(A+ J), 4
0

1

T
then th =0 . Therefore S, can be regarded as the first order conditions or score
T=I

vectors of the cointegrated regression model. S, play a very important role in the
forming of the LM test statistics. For convenience of comparison, denote

A0 _rn+ A+
S; = XUy —Ajp-

’

’
Then §; can be written as §, =(ﬁt+,§? ) .

A COMPARISON OF DIFFERENT APPROACHES

Modify (1) to incorporate possible structural change by allowing y to depend on

time,

Yi =ZtY o + Uy,
z, = (L, X)), Xy = Xy +Vy, t=1..,T

&)

The null hypothesis can be formulated as
HO:YI =Y2= ... =Yt =Y.

Different test statistics can be constructed against several alternatives of interest. The
~ first test models ¥, as obeying a single structural change at unknown time [Tr] for 0<r<1.

In this case, the alternative is

o Jn t=[Tr]
HI-Y:—{h t>[Tr] . (6)

A LM test of Hy against H; is given by

. ) 1-1 A .
supLM = sup LM (r), LM (r) = ST(r)'[(o %.,VT(r)] §+(r) 0)

. (Tr)
where S;(r) = th is the partial sum of the first order conditions which are given by

=1
(4), T is a subset of (0, 1) and




(Te]
Vo(r) = Mp(r) = ME(OM (D) Mp (0, M1 (1) = D 2,2}
l

The second and third tests model y, as a martingale process,
Y =Y. +&, E(&]E.)=0, E(ge!)=8°G,
where =, is some increasing sequence of o-field to which y; is adapted and G, is some

known covariance matrix which measures the parameter stability in the t'th period. In

this context, the hypothesis testing problem becomes
Hy:8% =0 against HR:5% > 0.
Hansen (1992) shows that a LM test of Hj against H{{ is given by

L= LéT(r)'GT(r)'léaT(r). (8)

By choosing different G1(r), we can get different test statistics. If we choose
GT(r)=(‘33JMT(1), then we get the L. test of Nyblom (1989) which was originally

proposed in the context of stationary regression models,
R . o 1-la
L = [ $:@[65:Mr (0] 810 ©)

If we choose Gr(r) = @2,V (r), this corresponds to the meanLM test of Hansen
01 VT

(1990) under stationary regression models,

meanLM = [ LMq(r) = jn§T(r)'[03%_1VT(r)]-l§T(r). (10)

On the other hand, Quint'os and Phillips (1993) focus on the coefficients of the

nonstationary regressors. Under their specification, the cointegrated regression model is

yt=a+x£Bt+ut’ (11)

Xy =X +Vy t=1,.,T.

B, is supposed to follow a random walk,
B =Biot + N> M ~N(0,67Z,).

The hypothesis under interest becomes Hy: cﬁ =0 against H}‘ : 0'3] > 0.

Quintos and Phillips derived a LM test of parameter constancy against the random
walk alternative under the cointegrated regression model with or without a constant

term. For the model with a constant term, their test statistic is given by




Q-P=T74" D, LU ®% ™)L D'y u™ /&, (13)

Iy 0

where D =diag(xj, X3,..., X7), L= R and &%

is defined to make
Iy
(Tr] [Tr]

T % 07" =T Y x, i —r1Aq.
1 1

Making use of the notation of score vector in the context of the cointegrated

regression model, the Quintos-Phillips test statistic can be expressed

Q-P F;,Ei{[i(ﬁ:x{— io)]@x—l[i(xtﬁ:"m")]}

j=1 {Lt=1 t=1

- [SYo[redi] o, a9

We see that the L. test, the meanLM test and the Q-P test are simply weighted
averages of the squared partial sums of the first order conditions (4). They only differ in
terms of how to choose the weighting matrix. For the L, test, choosing [MT(I)]'I as the
weighting matrix results in a constant weighting matrix. As observed by Hansen (1990)
for the case of stationary regression models, the effect of such a choice is to place
unequal weights across ST(r)’GT(r)'lST(r) because its asymptotic expectation is r(1-r).
It varies over r and attains the maximum at r = 0.5. Thus the L, test places more weight
on the middle observations and has difficulty in detecting early or late structural change.
The same happens to the Q-P test which uses the long run covariance matrix as the
weighting matrix. This problem is overcome by replacing G1(r) with 6)(2,', Vz(r)and this

leads to the meanLM test.

The meanLM test differs from the supLM test simply by the choice of norm.
While the supLM test picks the largest from the T elements, the meanLM test calculates
the average of these T elements. They are based on the same components but have
particular power against the one-time discrete jump and random walk alternatives,

respectively.

Although choosing Vr(r) as the weighting matrix might be helpful in detecting
structural change early or late in the sample, such a choice also has some adverse effect
on the power of the supLM test and the meanLM test. Because both tests are based on

the convergence of [VT(r)]'l, asr — 0 or 1, V(r) would not converge in distribution. In




order to implement the tests, Hansen (1992) suggested selecting IT = [0.15, 0.85] to
ensure the convergence of the test statistics. While this is an asymptotically useful
approach, it also introduces an element of arbitrariness. When the structural change
point is outside IT, the tests will lose power. On the other hand, the L. test and the Q-P

test are valid for IT= (0.1), hence excluding any form of arbitrariness.

4.  SOME GENERALIZATIONS
4.1 The expLM Test

The meanLM test is a particular form of the class of asymptotically optimal tests

suggested by Andrew and Ploberger (1992) which is given by

LMT(r)] di(r), (15)

Exp— LMt (r)=(1+ c)"m j;_'exp[

1
2(1+c)

where LMr(r) is just the standard LM test statistic for the null of no structural change
versus the alternative of a particular type of structural change given the parameter r, J(.)
is weighting function over values of r in II, ¢ is a scalar constant that depends on the

chosen weighting function and determines power direction. Notice that

lim 2(Exp - LMy —1)/c= jnLMT(r)dr = meanLM.

C—0

Thus the limit as ¢ — 0 of the Exp-LM+(r) test is equal to the meanLM test.

The Monte Carlo simulation conducted by Andrews, Lee and Ploberger (1992)
suggested that the power of such optimal tests is not very sensitive to changes in c.
They also found that choosing ¢ = o results in a new test statistic which is slightly

preferred to the meanLM test. Under such a choice,

expLM = cl;rg log[(l +c) 2 Exp - LMT] = log .[_lexpLMT (r) (16)

Under the cointegration regression model (1), this corresponds to a new test

statistic

exp LM = log .(_Iexp{%éT(r)’[(f) 3.|V'r(r)]_l §T(r)} . (17)

Denote V(r) = M(r) - M(r)M(1) 'M(r), S*(r) = S(r) - M()M(1)'S(1)




By, r EB{ _
where S(r) = £B1d80] , M(n) = , By, and B, are independent

(B [BiB;
standard Brownian motion with dimension 1 and k, respectively. Then by Theorem 2 of

d
Hansen (1992), we have LM(r) = LM(r) = S*(r)'V(r)'lS*(r). By the continuous

mapping theorem of Billingsley (1968, p.30),
exp LM lo Lex [ls'(r)'V(r)"s‘(r)]
p JE : (18)

The asymptotic distribution of the expLM test does not depend on any nuisance

parameters. It is, however, a function of the number of regressors.

4.2 LM Tests for Partial Structural Change

Although Hansen did not derive the test statistic for partial structural change, the
extension is straighforward. Suppose we are interested in some subvector y, of the

cointegrating vector y. Without loss of generality, we can set y; as the first subset of v,
then y = (y{,Y3)'. Partition §T(r), M+ (r)and V(r) in conformity with y. Define

following test statistics for partial structural change:
n R -1
sup LM! = sup S-lr(r)'[co (Z,JVT” (r)] S-lr(r),
rell

. . 14
meanLM! = L S%(r)’[m%_lvru(f)] ST(r),

ik = [ $tofeimi o] sk,

1 A . -1
expLM' = log Lexp{—z—s%(r)'[m%'lvy(r)] s‘T(r)}.

In order to derive the asymptotic distributions of the.above test statistics, define

the weighting matrix:

[ = diag(l,—= §7). (19)

JT

Partition I", S*(r), M(r) and V(r) in conformity with y. Applying theorem 1 of
Hansen (1992), we have




’ d ’ d ' d .
%r‘ M'T’(l)r':M“(l),-lT-r' vil(or! :v"(r),ir‘ St =>wq,S " (r).

JT

Again, by the continuous mapping theorem of Billingsley, we have the following

asymptotic distributions of the above partial structural change test statistics:
. . -1
supLM! = sup S%-(r)’[m%_lv%l(r)] Sh(n),
rell
4 Ji TN P!
=sup S '(r)|V (r)] S (),
rell
N . “1a
meanLM' = Ls}(r)'[mg,lv;‘(r)} Sk
d * -l *
= [s"@[v" o] s" @),
A . -1,
L= [Ste[etMYm] 8t
d o -l s
= [ s"oM O] s" o),

| R -1a
expLM! =log Lexp{ESlT(r)’[o)%_,V{-'(r)] s‘T(r)}

:d>log Lexp{%sq(r)'[V“(r)]_lS”(r)}. (23)

Asymptotic distributions of the above test statistics depend only on the total
number of explanatory variables in the cointegrated regression model, and the number
of explanatory variables under interest for the partial structural change. Hence we can

obtain the critical values for both full and partial structural change for various numbers

- . of regressors. They are found by simulation using a GAUSS program with a sample

size of 1000 and 20000 replications for one to five explanatory variables. The results
are given from Tables 1 to 4. For the supLM test, the meanLM test, the meanLM test
and the expLM test, we set IT = [0.15, 0.85] while for the L, test we set IT= (0, 1). In
particular, we tabulate critical values for the intercept change and the slope change,

N B
_respectively .

' Our simulation results show that critical values for the meanLM test and the expLM test are
nonmonotonic. While this is unusual, it happens in the literature which deals with the similar
problem. See, for example, Tables 4B (a) to (d) of Quintos and Phillips (1993).




TABLE 1
(a) Asymptotic Critical Values of the supLM Test
Number of regressors
(Excluding Constant) 10% 5%
1 10.50 12.28
12.92 _ 14.70
15.14 17.07
16.93 18.94
18.82 20.96

(b) Asymptotic Critical Values of the intercept supLM test
Number of regressors
(Excluding Constant) 10% 5% 1%
1 7.95 9.51 13.15
8.57 10.11 13.44
9.07 10.61 14.21
9.39 10.91 14.66
9.79 11.37 14.97

(c) Asymptotic Critical Values of the slope supLM test at 10% level
Total regressors Number of subset regressors
(Excluding Constant) 1 2 3 4
1 7.93

8.23 10.84 '
8.53 11.09 13.27
8.69 11.27 13.39 15.21
8.94 11.53 13.51 15.41 17.19

(d) Asymptotic Critical Values of slope SupLM Test at 5% Level
Total regressors ‘ Number of subset regressors
(Excluding Constant) 1 2 3 .4

9.52
9.74 12.53

10.04 12.81 15.10

10.26 13.03 15.19 17.11

10.55 1327 - 1541 17.35 19.26

(e) Asymptotic Critical Values of slope meanLM Test at 1% Level

Total regressors Number of subset regressors
(Excluding Constant) 1 2 3 4

16.25
16.48
16.80 " 21.23
17.05 21.60




TABLE 2
(a) Asymptotic Critical Values of the meanLM Test

Number of regressors

(Excluding Constant) 10% 5% 1%
3.678 4.525 6.630
5.086 6.125 8.323
6.568 . 7.738 10.218
7.847 9.072 12.103
9.172 10.540 13.505

(b) Asymptotic Critical Values of the intercept meanLM test
Number of regressors
(Excluding Constant) 10% 5% 1%
1 1.992 2.600 4.111
2 1.885 2.415 3.765
3 1.828 2.315 3.502
4
5

1.751 2.205 3.212
1.745 2.120 3.172

(c) Asymptotic Critical Values of the slope meanLM test at 10% level
Total regressors Number of subset regressors

(Excluding Constant) 1 2 3 4 5
2.037
1.997 3.591
1.945 3.573 5.073
1.915 3.530 5.014 6.388
1.888 3.542 5.022 6.430 7.788

(d) Asymptotic Critical Values of the slope meanLM Test at 5% Level
Total regressors Number of subset regressors

(Excluding Constant) | 2 3 4 5
2.644
2.539 4.364
2.494 4.404 6.078
2.443 4319 5.976 7.533
2.440 4.346 5.994 7.515 9.044

(e) Asymptotic Critical Values of the slope meanLM test at 1% level

Total regressors Number of subset regressors
(Excluding Constant) 1 2 3 4

6.226
6.350
6.274 10.335
6.225 10.193




TABLE 3
(a) Asymptotic Critical Values of the L. Test
Number of regressors
(Excluding Constant) 10% 5%
1 0.4454 0.5726
0.5530 0.6787
0.6844 0.8264
0.7919 0.9576
0.8948 1.0817

(b) Asymptotic Critical Values of the intercept L. test
Number of regressors
(Excluding Constant) 10% 5% 1%
0.2300 0.3144 0.5295
0.1643 0.2213 0.3888
0.1202 0.1600 0.2851
0.0941 0.1220 0.2019
0.0763 0.0970 0.1639

(c) Asymptotic Critical Values of the slope L, test at 10% level

Total regressors Number of subset regressors
(Excluding Constant) 1 2 3 4
0.2155
0.1770 0.3535
0.1506 0.3082 0.4864
0.1271 0.2725 0.4442 0.6153
0.1096 0.2477 0.3973 0.5600 0.7248

(d) Asymptotic Critical Values of slope L, Test at 5% Level
Total regressors Number of subset regressors
(Excluding Constant) 1 2 3 4
: 0.2899

0.2397 0.4475
0.2054 0.3923 0.6104
0.1682 - 0.3485 0.5437 0.7450
0.1477 0.3147 0.4880 0.6695 0.8772

(e) Asymptotic Critical Values of the slope L test at 1% level

Total regressors Number of subset regressors
(Excluding Constant) 1 2 3 4

0.6899

0.6090 0.8877

0.5411 0.8139 1.0906

0.4888 0.7227 0.9824 1.2009




TABLE 4
(a) Asymptotic Critical Values of the expLM Test
Number of regressors
(Excluding Constant) 10% 5% 1%
2.554 3.205 4.777
3.476 4.199 5.840
4415 5.199 ‘ 7.143
5.215 6.125 8.044
6.030 6.944 9.025

(b) Asymptotic Critical Values of the intercept expLM test

Number of regressors

(Excluding Constant) 10% 5% 1%
1.520 2.042 3.336
1.550 2.054 3.232
1.583 2.080 3.404
1.567 2.055 3.322
1.617 2.121 3.409

(c) Asymptotic Critical Values of the slope expLM test at 10% level
Total regressors Number of subset regressors

(Excluding Constant) 1 2 3 4 5
1.533
1.526 2598 -
1.534 2.600 3.563
1.527 2.606 3.515 4.375
1.572 2.655 3.558 4.429 5.282

(d) Asymptotic Critical Values of slope expLM Test at 5% Level
Total regressors - Number of subset regressors
(Excluding Constant) 1 2 3 4
1 2.022
2.031 3.186
2.038 3.249 4.276
2.045 - 3.263 4.299 5.217
2.087 3.325 4.305 5.227 6.116

(e) Asymptotic Critical Values of the slope expLM test at 1% level
Total regressors Number of subset regressors
(Excluding Constant) 1 2 3 4 5

3.324

3.274 4.728
3.365 4.696
3.339 4.792
3.440 4.809




4.3  An Optimal Cointegration Test

In the case of estimating a cointegrating relationship, a natural hypothesis to test
is the assumption of cointegration itself. Assume that y, and x, are not cointegrated.
This is equivalent to the statement that the error term u, is I(1). Decompose u, as

U = wyt g

where w; is a random walk and g is stationary. Hansen (1992) notice that “no

cointegration” in model (1) is equivalent to one coefficient, the intercept, following a

random walk by writing (1) as

Ve = a+xXBte | ' (24)

where

oy = a+wt.

Equation (24) thus becomes a special case of equation (2). Hansen therefore
concludes that the L, test can be used as a test of the null of cointegration against the
alternative of no cointegration. In particular, (24) can be regarded as a cointegrated
regression model with partial structural change or, in other words, with the intercept
following the random walk. Although Hansen did not specially develop the partial

structural change version of the L. test, it can be easily derived from (22) and has the

(25)

* This is exactly the statistic of testing for unit root first proposed by Kwiatkowski et al.
(1992) and extended to testing the null hypothesis of cointegration by Harris and Inder
(1994).

As we observed in section 4.1, among the class of optimal tests for structural
change given by (16), the expLM test is particulary appealing in terms of its power
performance under the stationary regression model. Under the cointegrated regression
model (1), an optimal test for cointegration is simply the intercept change version of the

expLM test which is given by

i i J
exp LMY = log l—* > exp 1 >af (ég.lvj‘v') l >y
T 2\ t=1

j/Tell




-1
T -l

T-ix;(thxi]_lixt (T—j)—ix;@x!x;) 2%

1 j+1

- T J
1

j T P S j
NSRS o] £ X
1 1 1 1 1

and T* = Z 1.
JTell

4.4 A Robust Cointegration Test

As observed earlier, due to the. similarities between different test statistics, the
rejection of the null of parameter constancy does not definitely imply the particular
alternative the test was designed to detect. In particular, as a test of the null of
cointegration, the L°c test would have good power against a one-time discrete jump in
the intercept as well as the random walk in regression residuals. Considering that large
samples are often used to estimate the cointegration model, it is not unlikely that a one-
time discrete jump may occur in the intercept. This leads us to suggest a test for
cointegration which is robust to a possible discrete jump in the intercept. Such a new
test is formed by including a dummy variable in the regression equation to capture the
possible jump in the intercept. Since the jump pdint is unknown, the test statistic is
formed by taking the minimum value of the L‘l statistic at each possible jump point.

Consider the following model:

Ye=md, + 1y +X1B+u, ' (27)
where d; is a dummy variable with
_|1if t < [Tr]
"7loif t >[Tr]”’

and 0 < r < 1. If the regression model is not cointegrated, this is equivalent to the
statement that the error u, is I(1). Decompose u, as

U =wtg
where w, is a random walk and g, is stationary. Equation (27) can be expressed as

Yo =pyd, + R +XB+E,,

Hop =l + Wy




This is a cointegrated regression model with a non-stationary coefficient in the

intercept term. Therefore a test of null of cointegration which is robust to the discrete
jump is

L, = inf L =i
where ﬁf is the FM residuals for model (27).

. . . * ., * (1, 1, Xtpseees X‘k)' ift/T<r
Let Z' =(zy, z3,..0, 27)" 5 2y = {(0’ 1 Xqyoos Xg )’ if6/T > 1

K
model (27) is then equivalentto y, =z, | p, | + u, or Y = Z'5 +u.

B

Except for the intercept term, model (27) is the same as the general cointegrated

regression model (1). Under the same notation given in section 2, (27) can be written as
v =pd, +p, +x{B+uf or Y =25 +u". (29)
The FM estimator of 6 is

Th Yt 0
5+ =| i ="z ;) [ 0
B* Z( ! J TAY,

1 \XtY

Tr
Tt Tr D x{
1

where 2 Z"=| Tr T Zx{

1
[Tr] T T

th th thx{

L | 1

T
1

The FM residuals of model (29) are then given by
i =yt -z 5*. | G1)

. - . . . . . ‘ . .
To derive the asymptotic distribution of the test statistic L., define the weighting
matrix
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then we have following results:
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Thus L = inf
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which is free of any nuisance parameters.

Due to the requirements of recursive calculations, it is particularly time-
consuming to calculate the critical values of the robust cointegration test L, by
simulation. Hence the asymptotic critical values are found by simulation uéing a
GUASS program with a sample size of only 300 and with 3000 replications for one to
five explanatory variables. Since the asymptotic distribution of the L‘c test is dependent
on the convergence of Q(r)", therefore IT is set to be [0.15, 0.85]. The results are given
in Table 5.

TABLE 5

Asymptotic Critical Values of the Robust Cointegration Test
Number of regressors
(Excluding Constant) 10% 5% 1%
1 0.06228 0.07545 0.11590
0.05041 0.06012 0.08460
0.04128 0.04856 0.06837
0.03480 0.04084 0.05265
0.03064 0.03560 0.04644

A MONTE CARLO EXPERIMENT -

Experimental Design

A Monte Carlo Study was conducted to investigate and compare the finite sample
properties of the various tests discussed in this paper. In particular, we consider the
following cointegrated regression model -

ye=(1, xQve tu,

Xt = Xt-1 + Vi t= lv--’T,




where 1, = (®¢,Bt), u and v, are generated by the processes
U = Pt + Pi2Nin
Vi = PaqUp T Wy, Wi = p2aWeg + P3Nt
with 1, and my being independently and identically distributed standard normal

variables. Three sets of parameter values are used in our Monte Carlo study. They are,

respectively

12 (P15 P12) = (0, 1), (P21, P22, P23) = (0, 0, 1);
2: (p11, P12) = (0.2, 0.98), (P21, P22, P23) = (0.25, 0.25, 0.935);
3: (p11> P12) = (0.5, 0.866), (P21, P22, P23) = (0.25, 0.25, 0.935).

Since the Q-P test is derived under the assumption of no intercept change, we
therefore confine the structural change in the slope for the fair comparison. The
alternative hypothesis is a one-time discrete jump and the random walk, respectively.

Against a one-time discrete jump, we consider

_{(1, 1)’ when t <[Tr] 36)

"=, 1.5) whent > [Tr]
where [Tr] is the break point and occurs atr=0.1, 0.3, 0.5, 0.7, 0.9.
Against the random walk alternative, we consider
o =0 =1, =P +0.03&, Bo=1, &2~ N(O, 1). (37

As we observed in section 4.3, to test the null hypothesis of cointegration against the
alternative of no cointegration is equivalent to testing the intercept following a random
walk. In order to compare the performance of two “cointegration” tests, the L°c test and
the exp LM(% test, we consider the random walk alternative in the intercept,

o= oy +0.28 ), 0g =1, &1~ N(0,0%), B =Po=1, (38)

where 0'% equals 0 or 1. When 0'% equals 0, it implies that there exists cointegration in

model (35). When cg equals 1, it implies that there is no cointegration in model (35).

To investigate the performance of the robust cointegration test, the null
hypothesis is designed to be a one-time discrete jump in the intercept,

(L 1)’ whent < [Tr]
. 39
0T {(1.5, 1) whent > [Tr]’ 9)




Under the alternative hypothesis, on the other hand, the intercept follows a

random walk which is given by (38).

Against alternative hypotheses (36) and (37), we consider both the full structural
change version and the slope change version of the expLM test, the supLM test, the
meanLM test and the L. test. The Q-P test corresponds to the slope change version of
above tests in the sense that there is no full structural change version rof the Q-P test.
We use superscript “1” to denote the slope change version of each test. Against the
alternative hypothesis (38), we consider the L(l test and the exp LM% test. We also
consider the robust cointegration test L‘c against the same alternative but the null
hypothesis is (39). In experiment 1 the regressors are exogenous and Ax, are serially
uncorrelated. In experiments 2 and 3, x, are endogenous as well as having serially
correlated innovations. At the same time, we introduce autocorrelation in regression
residuals u,. For each experiment we do 1000 replications and record the rejection

frequencies of the various tests using 5% asymptotic critical values.> The sample size is

100 and 250, respectively.

5.2 Results on the Estimated Sizes and Powers

Tables 6 and 7 report the estimated sizes and powers of various tests against
alternative hypotheses (36) and (37). Table 8 reports the estimated sizes and powers of
the LOc test and the exp LM% test against the alternative hypothesis (38). Table 9
reports the estimated sizes and powers of the L.c test. The Q-P test and three versions
of the L, test are evaluated across the full sample while the other tests are evaluated by
restricting IT = [0.15, 0.85].

We observe that all of the tests demonstrate reasonable size performance and the
accuracy in approximating the nominal size typically improves as T increases. For the
two versions of the supLM test, their estimated sizes are always significantly below
their nominal size. A similar result was found by Gregory and Nason (1992) in their
Monte Carlo study of various tests of structural change. In contrast, the estimated sizes

of other tests are much closer to the nominal size. In particular, estimated sizes of the

? We also calculated size-corrected powers of above tests. Results are similar to those based on
their asymptotic critical values and thus are not reported here.




TABLE 6
Rejection Frequencies with 5% Asymptotic Critical Values
(Slope change, T = 100)

Ir 0.0 0.1 0.3 0.5 0.7 0.9
Experiment 1
expLM : .184 879 924 892
L. 050 .164 517 764 821
meanLM . .165 713 .892 .852
supLM . 122 838 878 814 .
expLM! . .183 941 967 939
Lo . A1l 504 832 856
meanLM! . 154 851 937 .888

supLM! . .148 .898 942 .895
Q-P : .080 340 553 582

) Experiment 2
expLM 030 132 719 708 625
L, . 138 363 514 545
meanLM . 134 495 .663 .608
supLM . .066 .608 527 439
expLM! . 144 .862 .820 710
L, . 097 451 656 634
meanLM! : 129 724 764 652
supLM! . 094 .801 740 623

Q-P . 074 .192 346 358
Experiment 3

expLM . 036 226 242 225
Lc . 074 163 231 273
meanLM . 056 201 297 273
supLM . .007 .080 .066 056
expLM! . .059 461 436 374
L. . 059 262 407 386
meanLM! . 068 391 466 379
supLM! . 023 272 .198 171
Q-P ) 060 084 129 .134




TABLE 7
Rejection Frequencies with 5% Asymptotic Critical Values
(Slope change, T =250)

Ir 0.0 0.1 0.3 0.5 0.7 0.9
Experiment 1
expLM . 626 1.000 . .996 978
L. ) 527 .895 978 970
meanLM . 519 998 991 971
supLM . .609 1.000 995 965
expLM! . .582 1.000 1.000 984
L . 308 855 971 976
meanLM! ) 443 1.000 .999 981
supLM! . .580 1.000 997 981

Q-P . .155 707 .891 872
Experiment 2

expLM . .599 991 .899 831"
L . AT17 743 .832 798
meanLM . 470 .949 .882 .809

supLM . .555 .983 .868 773

expLM! . 530 995 953 877
LY . 249 743 860 850
meanLM! . 389 984 927 835
supLM! . 520 992 922 844

Q-P I 108 - 536 743 698
Experiment 3

expLM . 333 .849 653 .549
L. . 281 460 .529 551
meanLM . 262 675 644 572
supLM . 265 809 549 446
expLM! . 324 936 762 638
Le : 163 543 641 607
meanLM! . 233 852 724 .609
supLM! . .300 910 .686 .540
Q-P 3 .054 205 306 257




Q-P test and three versions of the L, test seem closer than those of the expLM test and
the meanLM test. A comparison between three versions of the expLM test and two
versions of the meanLM test shows that they have essentially the same size
performance. There is little difference in terms of accuracy of approximating the

. . . . *
nominal size. We also observe that the robust cointegration test L, has very good

. . 3
estimated sizes™.

TABLE 8
Rejection Frequencies with 5% Asymptotic Critical Values
(Null Hypothesis: Cointegration)

c§=0 : c§=1

Exp.1 Exp.2 Exp.3 Exp.1 Exp.2

T =100
.044 .040 .032 731 524

.048 .044 .042 465 308
T=250

.048 . .045 991 .980
.050 . .050 971 .960

TABLE 9
Rejection Frequencies with 5% Asymptotic Critical Values
(Null Hypothesis: One-Time Discrete Jump)

Estimated Sizes (r = 0.5) Estimated Powers

Exp.1 Exp.2 Exp.3 Exp.1 Exp.2

.029 .023 .017 .190 127

.052 .034 .035 .936 .820

In terms of power performance, we see that all of the tests are more powerful in
experiment | than in experiments 2 and 3. The introduction of endogeneity as well as

serially correlated innovations leads to a decline in power. At the same time, the sample

. . . ‘ . .
? Since the estimated sizes of the Lc test are very close. We therefore only reported its estimated
sizes when r = 0.5 in table 9.




size plays a very significant role. When T is increased from 100 to 250, the estimated
powers of these tests improve dramatically. In addition, the restriction on IT with [0.15,
0.85] has very little effect on estimated powers of the expLM test, the meanLM test and
the supLM test. When r = 0.1 or 0.9, it is outside the range of IT=[0.15, 0.85] or, in
other words, the structural change occurs outside the range in which the above test
statistics are evaluated. In this case, their estimated pc;wers are still comparable to those
of the L, test. This suggests that the expLM test, the meanLM test and the supLM test

are not very sensitive to the choice of I1.

We now briefly discuss the results on testing for the slope change. A comparison
of the estimated powers of the full structural change version of various tests shows that
against a one-time discrete jump, the expLM test is almost always more powerful than
the other tests. A few exceptions occur in experiment 3 when T is small. When T is
large, the power gain of applying the expLM test is quite obvious. Our results also show
that with the exception of the expLM test, the supLM test outperforms the other tests
when T is large. When T is small, the performance of the L test and the meanLM test
is very similar, they are preferred to the supLM test. When the alternative is the random
walk, the expLM test still dominates the other tests in experiment 1. In experiments 2
and 3, however, the L, test seems more powerful when T is small. When T is large, on
the other hand, the meanLM test demonstrates some power advantage over the other

tests.

With respect to the estimated powers of the slope change version of above tests as
well as the Q-P test, the expLMl test obviously outperforms the other tests against either

alternative. There is often a significant power improvement from using the expLMl

test, particularly when T is small. The performance of the Llc test, the meanLM! test

and s'upLMl test is reasonably similar. It is also quite clear that the Q-P test performs
worst among all the tests under comparison. The only exception occurs in experiment 3
when T is small. In this case, Q-P test is slightly preferred to the other tests against

random walk alternative. .

Our results also suggest that the slope change version of a test typically
outperforms its corresponding full structural change version. Exceptions mainly occur
when r is far from the middle of the sample, and against the one-time discrete jump
alternative. However, in cases where the full structural change version of a test is more

powerful, the power difference is small and often negligible. On the other hand, in cases




‘where the slope change version of such a test is more powerful, there is often a
substantial power improvement. Our results suggest that when the partial structural
change occurs and such information is available, the correct specified partial structural
change version of a test might be significantly more powerful than the full structural

change version of such a test.

In terms of the estimated powers of the L°c test and the o&:xpLM0 test, the expLMo
test is consistently more powerful than the L?: test. Sometimes the power discrepancy is
large. This can be easily observed when T is small. We therefore conclude that as a

cointegration test, the expLM0 test possesses some desirable properties.

With respect to the estimated powers of the L'c test, our results suggest that the
test has very good power when T is large. When T is small, it is harder to distinguish
the random walk from a one-time discrete jump, yet the test has reasonable power in
experiments 1 and 2. We also observe that when endogeneity and autocorrelation are

introduced, the estimated powers of the L‘c test drop very quickly.

6.  CONCLUSION

This paper has investigated the problem of testing for structural change in the
context of cointegrated regression models. A direct comparison of different approaches
suggests that various test statistics only differ in terms of the choice of either different
weighting matrix or different norm. Following the idea of Andrews and Ploberger
(1992), we derived the asymptotic distribution of the expLM test and generalized it,
together with the LM tests of Hansen (1992), to testing for partial structural change.
Further, we suggested a new test for cointegration which is robust to the discrete jump

in the intercept.

The finite sample properties of the various tests were investigated via a Monte
Carlo experiment. It is found that both full and partial structural change versions of the
expLM test typically outperform its competitors. Our results also suggested that the
correctly specified partial structural change version of a test usually outperforms the full
structural change version of a test. In particular, the expLM0 test possesses some

desirable finite sample properties. We also found that when robust cointegration test L:

performs well when the sample size is reasonably large.
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