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Abstract

This paper considers the analysis of cointegrated time series using principal components

methods. These methods have the advantage of neither requiring the normalisation

imposed by the triangular error correction model, nor the specification of a finite order

vector autoregression. An asymptotically efficient estimator of the cointegrating vectors

is given, along with tests for cointegration and tests of certain linear restrictions on the

cointegrating vectors. An illustrative application is provided.
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1 Introduction

It is convenient to consider estimators and tests for cointegrating vectors as falling into

two categories. One category requires restrictions to be placed on the cointegrating vec-

tors so that the individual elements of the vectors are identified. An obvious example of

this is the use of a cointegrating regression, or, equivalently, a triangular error correction

model. This topic has been studied extensively, with the properties of OLS regression

being derived by Stock (1987), Phillips and Durlauf (1986) and Park and Phillips (1988).

Modifications to OLS regression designed to give asymptotically efficient estimators were

provided by Phillips and Hansen (1990), Park (1991), Saikkonen (1991), Engle and Yoo

(1990), Phillips and Loretan (1992), Stock and Watson (1993) and Inder (1995), and

maximum likelihood estimation of the triangular error correction model was considered

by Phillips (1991a). Related estimators that do not refer explicitly to cointegrating

regressions include Ahn and Reinsel (1990), Engle and Granger (1987) and Saikkonen

(1992). The optimal properties of these estimators and resulting hypothesis tests are

dependent on these identifying restrictions being valid. The advantage of most of the

methods listed above is that they apply for a wide class of data generating processes,

since it is often not necessary to fully parameterise the short run dynamic part of the

model.

The second category of estimators of cointegrating vectors does not impose identi-

fying restrictions. Instead, a basis for the space spanned by the cointegrating vectors

is estimated, and any identifying restrictions can subsequently be tested. The most

prominent of these methods is based on the reduced rank regression estimation of an

error correction model, the theory for which was derived by Johansen (1988, 1991). The

disadvantage of this method is that it requires the specification of a finite order VAR

prior to estimation. Unlike many of the regression methods listed above, it is necessary

to parameterise the short run dynamic part of the error correction model before estima-

tion and inference can be carried out on the cointegrating vectors. In many applications,

varying the length of the VAR can result in varying conclusions about the cointegrating

vectors.
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It is the purpose of this paper to provide an estimator of the cointegrating vectors

that requires neither the prior imposition of identifying restrictions, nor the prior spec-

ification of a full model of the short run dynamics. This will be done by considering

another method which falls in the second category of estimators, but which has received

less attention in the literature. This is the principal components estimator, which was

first used in the context of testing for common trends by Stock and Watson (1988). Its

asymptotic properties have not been published (apart from Gonzalo (1994), who derived

its asymptotic distribution for a particular data generating process), and its potential

as an estimator of cointegrating vectors has not been fully explored. In section 2 of this

paper we will show that the principal components estimator is consistent but asymp-

totically inefficient in general. We will then provide a modified principal components

estimator that is asymptotically efficient for a wide class of data generating processes.

This is done for three cases — where the model contains no deterministic components,

where the model contains a level term, and where the model contains a linear trend. In

sections 3 and 4 we consider some hypothesis testing problems which can be addressed

using the modified principal components estimator. These are tests of certain linear

restrictions on the cointegrating vectors and testing for cointegration. An illustrative

application is provided in section 5.

2 Principal Components Estimation

In this section we will define the Principal Components (PC) estimator of the cointe-

grating vectors, derive its asymptotic distribution, and give a modified PC estimator

that is asymptotically efficient in the sense of Saikkonen (1991). In the next subsection

we consider the prototypical case of a cointegrated system with no deterministic terms,

and we then allow for a level and a linear trend in the following subsection.

2.1 No Deterministic Terms

Suppose that we have a sample yt, (t = 1, . . . ,T), which is a p dimensional /(1) cointe-
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grated time series generated by

OfYt = zt, (1)

)31AYt = wt, (2)

where i3 is a full rank p x r matrix of cointegrating vectors and '3j is a full rank p x — r)

matrix such that I3'I3 j_ = 0. Throughout we will assume that the cointegrating rank r

is known, although in practice we could simply proceed conditional on the outcome of

some statistical procedure to choose r. Further we assume that the p x 1 random vector

Ct = (ilt, iult)' is a zero mean stationary time series satisfying the functional central limit

theorem
[Ts]

„
T"2 

d 
loc(S), 0 S 1,

t=1
(3)

where B( is a p dimensional Brownian motion with covariance matrix
00

c/a =

(see Phillips and Durlauf (1986) for more on the multivariate functional central limit

theorem). We will also assume that the additional weak convergence result

T t 1 oo

T-1 E 
( 

E (;) Is 13( (s) dB( (s) E E (Ct—k(;)t=i j=1 k=0

(4)

holds (see Hansen (1992b) for appropriate conditions and a proof of this convergence).

We then partition .13( and 11(‘ conformably with (t as follows:

Cizz
= Bz /(•C =

Bw Qww

Note that the data generating process (1)—(2) is a natural extension of a cointegrating

regression. However, one difference is that a cointegrating regression generally does not

involve the arbitrary normalisation of f3'01_ = 0. For example, if we let

Ylt
Yt= I I ,

Y2t

=

ir

—00
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where yit is r x 1 and y2t is (p — r) x 1, then the data generating process

O'Yt = zt, (5)

i3c'AYt = Wt, (6)

becomes

Yit = AY2t + zt, (7)

AY2t = Wt (8)

which is the standard cointegrating regression data generating process. That is, if we

want to use a cointegrating regression to obtain estimates of the r cointegrating vectors

in 0, we require the partitioning of yt into yit and y2t such that neither yit or y2t are

individually cointegrated. The properties of cointegrating regression estimators depend

upon this identification being made correctly. We aim to use the principal components

method to obtain an estimator of the space spanned by the columns of 3 that does

not require the prior specification of these identifying restrictions. Our normalisation of

= 0 does not affect this space. Note also that we make no assumptions about the

data generating process for Ct apart from it being stationary and satisfying the regularity

conditions for (3) and (4) above.

The PC estimator of /3 in (1)—(2) is based on the sample cross-product matrix

Syy = T-1 E ytyit.
t=i

We define to be the p x r matrix of eigenvectors corresponding to the smallest r

eigenvalues satisfying

I AIp — Syy j =0, (9)

normalised such that 414 = Ir. It follows that an estimator of 31 (denoted 4±) is the
p x — r) matrix of eigenvectors corresponding to the largest p —r eigenvalues. The in-

tuition behind suggesting is the same as that behind OLS in a cointegrating regression.

Using OLS in a cointegrating regression such as (7) provides the linear combination of

yit and y2t with minimum sample variance, or, the "most stationary" linear combina-

tion. In (1)—(2), the /(1) time series yt has explosive variance, but the cointegrating
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vectors fi give r linear combinations zt = 131yt that have finite variance. We therefore

choose the r linear combinations of yt with minimum variance (i.e. the smallest r prin-

cipal components) to be those corresponding to the estimated cointegrating vectors. On

this basis, PC provides a natural extension of OLS estimation to models without the

identifying restrictions necessary to write down a cointegrating regression.

Engle and Granger (1987) went some way towards this motivation of a PC approach

in their discussion of possible estimators of cointegrating vectors. In particular, they

demonstrated that the matrix 7-1Syy (MT in their notation) converges to a singular

matrix whose null space is the same as the space spanned by the cointegrating vectors.

This fact lies at the heart of our proof of the consistency of the PC estimator given in

Lemma 1 below. However, Engle and Granger (1987) proceeded to impose identifying

restrictions on the cointegrating vectors before suggesting their least squares estimator,

while we aim to avoid the prior imposition of these restrictions.

The PC estimator can also be given a reduced rank regression interpretation. It is

well known (see Brillinger (1981) for example) that the principal components analysis of

yt is the same as a reduced rank regression of yt on itself. In this case we choose the lin-

ear combinations of yt that have minimum sample correlations with yt, since they should

correspond to the stationary linear combinations of yt which will have zero correlation

with the /(1) time series yt. With this interpretation, principal components has much in

common with the reduced rank regression estimator of Yang (1994), which involves a re-

duced rank regression of (pre-whitened versions of) yt on yt_i and the choice of the linear

combinations corresponding to the minimum correlations. The reduced rank regression

estimator of Johansen (1988, 1991) uses a reduced rank regression of (pre-whitened ver-

sions of) Ayt on yt_i and the choice of the linear combinations corresponding to the

maximum correlations.

We can now give the asymptotic properties of the PC estimator.

LEMMA 1 If yt is generated by (1)-(2) then 3 is super-consistent in the sense that
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(Ip - 13(0' f3)-'13') = Op(T-1). The asymptotic distribution of is given by
-

(4(0'M-10'13 - c-j- (.1 Bw.13,„' 
)1 r

BwdBzi + Ati,z)

where Awz =ET.' 0 E(wt_jz). Also, AL is consistent in the sense that
(/3F/3)1 

01)IL = Op (T-1) .

(10)

Note that we are estimating a basis for the space spanned by 0, and not itself, so we

Pdo not have a standard consistency result such as "0 . Instead we have the result

in Lemma 1 which shows that the columns of asymptotically span the same space

as the columns of 0, and hence that a basis for the cointegrating space is consistently

estimated. Similarly, the asymptotic distribution does not deal with the standardised

error T - 0), but rather with a re-arranged form of T (4 - 13 (373)-1 13'i3). The dis-

tribution given in (10) is dependent on the nuisance parameters Qwz and Awz. As a

result, the distribution is not mixed normal (see Phillips (1991a)) and does not have

a zero mean. If these nuisance parameters were zero, then the distribution would be

normal with a zero mean (conditional on Bw), and, as shown by Saikkonen (1991),

would then be an asymptotically efficient estimator. These results correspond to those

found by Park and Phillips (1988) for the OLS estimation of a cointegrating regression.

As suggested by (7) and (8), zt plays the role of the regression error term, while Wt drives

the /(1) part of the system. Both OLS and PC are asymptotically efficient if zt and tut

are uncorrelated at all lags (or at least Owz = Awz = 0), but their distributions are de-

pendent on nuisance parameters otherwise. Phillips and Hansen (1990) and Park (1992)

have suggested semi-parametric modifications to OLS that always produce asymptoti-

cally efficient estimators, and we will now give an asymptotically efficient modified PC

estimator analogous to Park's estimator.

As can be seen in the proof of the previous lemma, 13 can be given the representation

T (4 (139)-1 13' - 0) = (T-1 Olsyy)(34 1 01Syy13 + Op (T-'), (11)

and the nuisance parameter dependency of the asymptotic distribution arises from the

intermediate result

I3i_Syy0 Bilidgz Awz. (12)

7
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In particular, it is the correlation between Bii, and Bz (given by C2) and the presence

of 6,„,z that causes the problems. We define a transformation of the data which directly

addresses these two nuisance parameters. The transformation makes use of consistent

(but not necessarily asymptotically efficient) estimators of 3 and /31_, and it follows

from Lemma 1 that PC provides consistent estimators ;3 and We also make use of

consistent estimators of the nuisance parameters which have the general form

T-1

Oab = E k (2-n) ab (j)
j=—T+1

where

T-1
L

L ab = 
; 1,nE (-) 1- ab )

j=0

(13)

ab(i) = T-1 E
t=i

at and bt are any time series, k(.) is a lag window and m is a bandwidth parameter such

that m oo and mIT ----+ 0 as T oo. Andrews (1991) gives the optimal choice of

k(.) and m for estimating S2ab in the sense of the minimisation of the asymptotic mean

squared error of the estimator. This corresponds to using the Quadratic Spectral lag

window and an automatic data-dependent bandwidth parameter, formulae for which are

given by Andrews (1991). Furthermore, Hansen (1992a, section 2.1) advocates the use of

these optimal estimators when calculating the Fully Modified OLS estimator of Phillips

and Hansen (1990), and provides additional exposition of their use in this context. Given

that our aim is to suggest a modification to the PC estimator analogous to the Phillips

and Hansen (1990) modification to the OLS estimator, these optimal estimators should

be well suited. If we let

Zt
it = SlYt tbt = y t , =

itht

then the transformation to yt is

YiK = Yt — (4'Sy1 f2ztv(i;l/tht — 41 (414±)-1 AtvA—cl& (14)

where &‘. = T-1 E The first modification in (14) is designed to remove the nuisance

parameter fiwz, while the second modification removes Awz. Notice that yiK is invariant

to the normalisation of f and in the sense that 3 (or AL) may be replaced by 4K
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(f̂3±K), where K is a full rank r x r ((p — r) x (p — r)) matrix, without affecting y. The

modified PC estimator 14* is defined to be the p x r matrix of eigenvectors corresponding

to the smallest r eigenvalues satisfying

I A/p — S;y1 = 0, (15)

where Sy% = T 1 yyi". That is, we simply apply the PC estimator to y;` instead of

yt. The asymptotic properties of this estimator are given by the following theorem.

THEOREM 1 The modified PC estimator is consistent, and its asymptotic distribution

is given by

—1

(ij* (i0*) 1 073 — 0) —01 (f BtoB'w) BwdB:.' , (16)

where _134; = Bz — QzwatT,LBw is independent of B.

Clearly the asymptotic distribution of /3** does not depend on the nuisance parameters

liwz and A. and it follows that *4̀  is asymptotically efficient. Conditional on Bw, the

distribution specified by the right hand side of (16) is normal with mean 0 and variance

matrix 13± (f BwB,,,T1 01 C2zz, a fact we will use in defining hypothesis tests for [3

below.

2.2 Deterministic Terms

We now consider the principal components estimation of the cointegrating vectors where

deterministic terms may also enter the system. In particular, we consider the two cases

of

yt = /I+ xt,

yt = + St+ xt,

where xt is an /(1) time series generated by

0/Xt = Zt

(17)

(18)

(19)

/31Axt = wt, (20)
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and (t = witY is a zero mean /(0) time series that satisfies the functional central limit

theorem, just as in the previous section. Then yt in both (17) and (18) is cointegrated

with cointegrating vectors given by the columns of 13, since 131yt is stationary about a

constant in (17), and stationary about a linear trend in (18).

When yt is generated by (17) the PC estimator 73 is the p x r matrix of eigenvectors

corresponding to the smallest r eigenvalues satisfying

IA/p — Sxx l = 0, (21)

where S'sx = T-1 ET-1 and ±-t = yt — T-1 ET-1 Yt• When yt is generated by (18)

the PC estimator ij is the p x r matrix of eigenvectors corresponding to the smallest r

eigenvalues satisfying

lAip — = 0, (22)

where AS-ix = T-1 ElLi and -it are the residuals from a de-trending regression of yt

on a constant and time trend.

It is shown in Theorem 2 below that both 61 and 13- suffer from the same problems

as .4 in the previous section. That is, although both are consistent, their asymptotic

distributions are dependent on the nuisance parameters I2„,z and Aillz, and they are

neither asymptotically normal nor asymptotically efficient. This is to be expected since

the source of these problems is the correlation between zt and tut in (19) and (20).

However we can use the modified PC estimator from the previous section to provide

asymptotically efficient alternatives to -/-3 and [3.
In the case of 3, we define the variables

2t
2t =/3t, 'tht = ;Y_LA-±t, =

'tht

and the data transformation

= Xt-3 (-07-3)-1 1 tpt - /31. ($17-31.) Aw(gc—ci (23)

In (23) we make use of the consistent estimator j,which is the estimator of [31. obtained

using the eigenvectors corresponding to the largest p-r eigenvalues satisfying (21), and

10



the nuisance parameter estimators nzin, nw„, and Aw( which are of the form (13) and
calculated using 2t and t-vt. Then the modified PC estimator 13* is the p x r matrix of

eigenvectors corresponding to the smallest r eigenvalues satisfying

I A/p - S;cx I = (24)

where Stx*s = T-1 ET_i 441.

We proceed similarly to modify S. Define

and

= riqt, = = 2t
fOt

Xt = ±t — fi VzwDt — t3± (pIAL) iiwcsVt. (25)

The modified PC estimator 13-* is the p x r matrix of eigenvectors corresponding to the

smallest r eigenvalues satisfying

I Aip - = (26)

where ,:;-';x = T The t • The asymptotic properties of these estimators are given

in the following theorem.

THEOREM 2 (i) If yt is generated by (17), (19)-(20) then 73 and fi are consistent and

have asymptotic distributions given by

T CS' (073)-1 13' - -_ (I BB) -1 (I .13„,c1.13' , (27)

T ([3* (073*)-1 1373 - -1-14 -AL dB', (28)

where :(s) = B(s) - fB.

(ii) If yt is generated by (18), (19)-(20) then 13. and "i(3.* are consistent and have asymp-

totic distributions given by

-1
T (13. (0'1'3)-1 010 - -c-L -01. (I Lit) (I ijtodErz + Awz) , (29)
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T (* (0' -1-3*) 1 f3'13 —13) —13± (j '„,) 1  (30)

where B( s) = 13(s) + 2(3s — 2) f B„, — 6(2s — 1) f rBu,.

Equations (27) and (29) provide a natural extension of the results in Theorems 3.2(a)

and 3.3(a) of Park and Phillips (1988) for the OLS estimation of cointegrating regressions

to the case of PC estimation. Clearly both 3 and 3 suffer from the same nuisance

parameter dependencies as Equations (28) and (30) show that the modified PC

estimators -0* and fj* are asymptotically efficient.

3 Tests of Linear Restrictions on the Cointegrating Vectors

We consider here two types of linear restrictions on the cointegrating vectors. Both types

of restrictions have been used by Johansen and Juselius (1992) among others. The first

hypothesis is that

Ho : = Hi(P, (31)

where H1 is a known p x s matrix, cp is an s x r matrix of unknown parameters and

r < s < p. Equation (31) states that the cointegrating space lies within the space

spanned by the columns of H1. If s = r then the null hypothesis fully specifies 0, and if

s = p then no restriction is placed on 0. To test (31) we introduce the p x (p — s) matrix

J1 chosen such that J11-11 = 0. For example, Ji can be obtained as the p x (p — s) matrix

of eigenvectors corresponding to the zero eigenvalues of H1R-1. Then can always be

written

= cio + (32)

where q5 is an unknown (p — s) x r matrix. Clearly, if (31) is true, then = 0. Alter-

natively, 43 = 0 if (31) is true, and JP 0 if (31) is not true. We will therefore base

our tests on the significance of the sample quantities JO*, .4/3* and JO*. The test

statistics and their asymptotic properties are given in the following theorem.

THEOREM 3 (i) If yt is generated by (1)—(2), then the test statistic for testing (31) is

:51 = T trfrz;1*1,11(.11Sy—yi

12



where fi'szcz = (2zz — (2zw(2,1,1(wz. If Ho is true then :51 xr2(p_s). If Ho is false then

,§ = Op (T)

(ii) If yt is generated by (17), (19)-(20), then the test statistic for _testing (31) is

g = T trcrz;1 -0-*/ (t1 ,5"x-xl th)-1 JP*,

where 11 Z = nzz -nzwna,nwz. If Ho is true then Si xr2(p_s). If Ho is false then

= Op (T).

(iii) If yt is generated by (18), (19)-(20), then the test statistic for testing (31) is

= T trf1 -113*Vi (.0;x1.11)-1

where Icz = — wz. If Ho is true then ..§.1 4(p_s). If Ho is false then

= Op (T).

These three tests can be considered as Wald-type tests in the sense that each statistic

tests the significance of the difference between an unrestricted estimate of 13 and the

null hypothesis. The fact that each has an asymptotic x2 distribution under the null

hypothesis is a direct consequence of -131*, S* and -14* having asymptotically conditionally

normal distributions. The use of asymptotically inefficient estimators such as

and fj in the test statistics would not result in tests with asymptotic x2 distributions.

The derivation of the asymptotic distributions for each test statistic is unaffected by

the replacement of Syy :5-fxx and gxx by AS;y At and :tx respectively. The presence of

these terms partially standardises the asymptotic normal distributions of the estimators,

and the choice may potentially be made on the grounds of finite sample performance.

Given that the test statistics diverge under the alternative hypothesis, rejecting the

null hypothesis for values of the test statistics larger than the appropriate x2 critical

values will provide consistent tests. Note that the test statistics are invariant to the

normalisation of both th and the estimator of 0. This is appropriate since the null

hypothesis is a test about the space spanned by )3, and we would not want a different

test from a re-normalised version of the null. Similarly, the test statistic is invariant to

the method of constructing Ji from

13



The second hypothesis we consider is

Ho = (H2,0), (33)

where H2 is a known p x Ti matrix, 0 is a p x (r — r1) matrix of unknown parameters,

and 0 < r1 < r. The hypothesis specifies r1 columns of 3 and leaves the other columns

unspecified. If r = r1 then 3 is completely specified and (33) is equivalent to (31) with

s = r. Note that (33) is similar to (31) in the sense that in (31) 3 must lie in the space

spanned by the columns of H1, while in (33) H2 must lie in the space spanned by the

columns of 0. Tests of the two hypotheses are therefore quite similar. If (33) is true

then 011/2 = 0 since 010 = 0. We therefore base our tests of (33) on the significance of

the sample quantities 4):Z.H2, it_H2 and 13-1'1/2, where it, RI and it are calculated from

the corresponding efficient estimators of the cointegrating vectors to satisfy itt;* = 0,

-0f0* = 0 and /jfij* = 0 respectively. The tests are given in the following theorem.

THEOREM 4 (i) If yt is generated by (1)—(2), then the test statistic for testing (33) is

:52 = T trO711H112i3i (itS;y141)-1

where 12HH = HO* (4,„i3.*)
--1 (24.; z .

13*1H2. If Ho is true then .§2 Xr2i(p_r). If

Ho is false then .-§2 = Op (T2).

(ii) If yt is generated by (17), (19)—(20), then the test statistic for testing (33) is

= T tr2HOI (r31',5;x1S1) —1,(311-12,

where n„„ = Ho* (,(341-1 n.szcz Cris*/ -131-1 ;6- B-2. If Ho is true then g2 Xr21(p—r)•

11-0 is false then 82 = Op (T2).

(iii) If yt is generated by (18), (19)—(20), then the test statistic for testing (33) is

= T trfrii1H1101(iitx1S1)-1

If

where HH = HO* ($
*,4*)-1 filcz *13,0)-1

H If Ho is true then §2 41(p-r) • If

1/0 is false then g2 = Op (T2).

This theorem provides Wald-type tests of (33) that have asymptotic x2 distributions

and that are consistent when we reject the null for large values of the test statistics.

14



The comments following Theorem 3 apply equally here. One difference between the

tests of Theorems 3 and 4 is that the rates of divergence of the test statistics under the

alternative hypotheses are Op (T2) for Theorem 4 rather than Op (T) for Theorem 3.

To explore this point more fully we give the asymptotic distributions of the gi and :52

under sequences of local alternatives.

LEMMA 2 (i) Under the sequence of local alternatives

HAT: J113 = T-1 Al

where A1 is a fixed p—sxr matrix, gi has a non-central xr2(p_s) distribution conditional

on Bw, with non-centrality parameter

--1 --1
tr0;z1Ac [481 (f B)' Ai -

(ii) Under the sequence of local alternatives

HAT : 1120 = T-1 A2)

where A2 is a fixed ri x (p — r) matrix, :52 has a non-central Xr21(p_r) distribution condi-

tional on Bw, with non-centrality parameter

—1 —1
trS2H-1HA'2 [010 j_ BwB'w) 010±1 A2.

This result shows that both .§1 and :s2 have power against alternatives that approach the

null at rate 0(T), and hence the faster rate of divergence of .§2 under a fixed alterna-

tive does not lead to asymptotic power of a higher order. The conditional distributions

are presented for convenience, and the calculation of the asymptotic local power func-

tions would require the evaluation of the non-standard unconditional distributions. The

unconditional distribution of gi is a mixture of non-central xr2(p_3) random variables,

averaged over realisations of f BwBw' , while :52 is similarly a mixture of non-central
2
Xri(p_r) random variables.
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4 Testing for Cointegration

All estimators of the cointegrating vectors require prior knowledge of the cointegrating

rank r. In this section we provide a test for cointegration based on the efficient estimators

in section 2. This test may be used as a diagnostic to check if a predetermined r is

appropriate, or it may be used to form a sequence of tests to select r if it is unknown.

The test we suggest is an extension of the residual based tests of the null hypothesis

of cointegration in cointegrating regressions developed by Harris and Inder (1994) and

Shin (1994), which in turn extended tests of the null hypothesis of stationarity of a

univariate time series given by Kwiatkowski, Phillips, Schmidt and Shin (1992). Choi

and Ahn (1995) have also suggested tests for the null hypothesis of cointegration that

are applicable in systems of cointegrating regressions. They extend Shin's (1994) tests to

the case of a multivariate cointegrating regression, and do the same to the test of the null

hypothesis of stationarity of Choi (1994). Of course, these tests require the imposition of

identifying restrictions to specify the cointegrating regressions, while our tests suggested

here using principal components analysis do not require these restrictions.

Suppose the null hypothesis is that yt has r cointegrating vectors, and the alternative

is that there are fewer than r cointegrating vectors. We note that this selection of

hypotheses is the opposite of that used for tests for cointegration by Johansen (1988,

1991) in the sense that, in Johansen's tests, the alternative hypothesis is that there

are greater than r cointegrating vectors. It should be relatively straightforward to

derive tests against this alternative by adapting the residual based tests of Phillips and

Ouliaris (1990) to principal components estimation. However, since the theory for such

tests would not be derived from Theorems 1 and 2, we do not pursue them here.

We define the time series

= /j*'Ysi, = =

Under the null hypothesis the relevant time series will be / (0), while under the alterna-

tive it will have at least one / (1) component. We therefore construct tests for the null

16



hypothesis of the stationarity of 4, "Etic and 4. Let

= 2;1

and define the test statistics

j=1 j=1 j=1

a = T-2 E
t=i

= T-2 E
t=Ti

=
t=i

To present the asymptotic properties of these test statistics, we first define a p x 1

standard Brownian motion W, partitioned as (In W)' conformably with B. Now let

W2 (s) = W2 (s) W2)

TIT- 2 (s) = W2 (s) ± 2 (3s -2) / W2 —6 (2s - 1) f rW2,

be de-meaned and de-trended W2 respectively, and define

-1 s
V (s) = (s) - dWiM W2M) / W2 (r) dr,

- (s) = (s) - dWiM (f W2W2) 1 f s W2 (r) dr,

-1 s
(s) = W1 (s) - dW1f1.7- (.1 W. 2 lo 7- 2 (r) dr.

The asymptotic properties of the test statistics are now given by the following theorem.

THEOREM 5 (i) If yt is generated by (1)-(2) then, under the null hypothesis of r coin-

tegrating vectors,

a v(s)'v (s) ds.

(ii) If yt is generated by (17), (19)-(20), then under the null

f (s)1 1-7 (s) ds
0
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,

(iii) If yt is generated by (18), (19)-(20), then under the null

d 
-c- -- 
1 (s)1 - -

+ V ' V (s) ds.
0

(iv) In each case, the test statistic is Op (T /m) under the alternative of fewer than r

cointegrating vectors, where m is the bandwidth parameter used in calculating (r c&

and ci- ,..*..z respectively.

The null distributions found in this theorem are non-standard, and critical values are

given in Tables la, 1b and lc. In view of part (iv) of this theorem, a consistent test is

obtained by rejecting the null hypothesis for values of the test statistics that are larger

than the relevant critical values.

5 Application

In this section we provide an illustrative application of the methods suggested in the

paper. King, Plosser, Stock and Watson (1991) give a simple real business cycle model

involving private output, consumption and investment. An implication which can be

drawn from this model is that the logs of output and consumption should be cointegrated

with cointegrating vector (1, —1) , and similarly the logs of output and investment should

be cointegrated with cointegrating vector (1, —1). Therefore, considered as a vector, the

time series yt = (Ct, It, Yt)' should have a cointegrating rank of r = 2 with cointegrating

vectors
i 1 0 \

f3= 0 1 (34)

\ —1 —1 /

We use the Australian equivalent of the data analysed by King et al. That is, Ct, It

and Yt are logs of private final consumption, private investment and private output

respectively. Each series is measured per capita and in constant 1989/90 dollars, and

the observations are quarterly, seasonally adjusted and sampled from June 1971 to

September 1994. Private output represents the output of the private sector only and
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is constructed by subtracting government expenditure from Australian gross domestic

product. The data are graphed in Figure 1.

Since we have a hypothesis that there should be two cointegrating vectors, we set

r = 2 and calculate the asymptotically efficient PC estimator from section 2:

0.62 —0.48 \

0* = 0.18 0.86

\ —0.76 —0.19 /

As mentioned in section 2.1, the nuisance parameter estimators in equation (13) were

calculated using the Quadratic Spectral lag window and the optimal data-dependent

bandwidth parameter based on univariate AR (1) approximating equations. Note that

)3-* is an estimator of a basis for the cointegrating space and is not directly comparable

with (34). However, re-normalising the estimate we find

1 0 \

= 0 1

\ —0.99 —0.78 /

which is suggestive of (34). Before testing whether )3 in (34) and -0* span the same

space, we test whether the linear combinations of yt specified by )3-* are I (0) using the

test in section 4. That is, we test the null hypothesis that r = 2 against the alternative

that r <2. In this sense, the cointegration test is a diagnostic test of our original belief

that r = 2, which is essentially the same way that residual based tests for cointegration

are used in regression based methods. The calculated test statistic is -6 = 0.27, which

when compared with the 5% critical value of 0.51, supports our assertion that r = 2.

We can now test some hypotheses about the cointegrating space. Our first hypothesis

fully specifies the cointegrating space:

This is of the form of the second hypothesis considered in section 3 (see equation (33)),

and we calculate the test statistic g2 = 4.03. Since ri = 2, there are 2 degrees of freedom
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for the test, and the x2 critical value is 5.99. We therefore accept that the cointegrating

vectors have the structure given in (34). We can also individually test whether each

column in (34) is a valid cointegrating vector. The calculated statistic for (1, 0, —1)' is

0.018, and for (0,1, —1)' it is 3.27. Both tests have 1 degree of freedom, so in both cases

we accept the hypothesized vector as a cointegrating vector. As an illustrative example

of the first hypothesis considered in section 3, we can test whether h can be excluded

from the cointegrating relations. The null hypothesis takes the form

1 0 \

Ho : = (p, H1= 0 1

\ 0 0

where cp is a 2 x 2 matrix of unknown parameters. It follows that J1 = (0, 0,1)' and the

calculated test statistic is gi = 26.57. The test has 2 degrees of freedom so we reject the

hypothesis that It does not enter the cointegrating relations, as would be expected.
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Table la. Critical Values for a

Size = 10% Number of Variables (p)

1 2 3 4 5 6

1

Cointegrating 2

rank 3

(r) 4

5

6

1.17 0.86 0.62 0.47 0.38 0.31

2.06 1.49 1.10 0.84 0.67

2.82 2.06 1.54 1.19

3.51 2.64 1.95

4.23 3.16

4.93

Size = 5% Number of Variables (p)

1 2 3 4 5 6

1

Cointegrating 2

rank 3

(r) 4

5

6

1.64 1.21 0.89 0.68 0.54 0.44

2.63 1.95 1.46 1.12 0.89

3.45 2.56 1.97 1.52

4.21 3.23 2.42

4.99 3.81

5.71

Size = 1% Number of Variables (p)

1 2 3 4 5 6

1

Cointegrating 2

rank 3

(r) 4

5

6

2.75 2.09 1.61 1.25 0.99 0.80

3.92 3.04 2.32 1.81 1.45

4.78 3.79 2.97 2.36

5.73 4.62 3.54

6.60 5.28

7.47
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Table lb. Critical Values for E

Size = 10% Number of Variables (p)

1 2 3 4 5 6

1

Cointegrating 2

rank 3

(r) 4

5

6

0.35 0.24 0.16 0.12 0.093 0.076

0.61 0.42 0.30 0.22 0.17

0.84 0.59 0.42 0.31

1.06 0.76 0.55

1.28 0.93

1.48

Size = 5% Number of Variables (p)

1 2 3 4 5 6

1

Cointegrating 2

rank 3

(71) 4

5

6

0.47 0.32 0.22 0.16 0.12 0.097

0.74 0.53 0.37 0.27 0.21

1.00 0.72 0.52 0.38

1.23 0.91 0.67

1.47 1.09

1.69

Size = 1% Number of Variables (p)

1 2 3 4 5 6

1

Cointegrating 2

rank 3

(r) 4

5

6

0.74 0.55 0.39 0.28 0.20 0.15

1.07 0.81 0.60 0.43 0.32

1.35 1.06 0.78 0.57

1.60 1.24 0.95

1.89 1.46

2.13
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Table lc. Critical Values for a

Size = 10% Number of Variables (p)

1 2 3 4 5 6

1

Cointegrating 2

rank 3

(r) 4

5

6

0.12 0.098 0.082 0.069 0.059 0.051

0.21 0.18 0.15 0.12 0.11

0.30 0.25 0.21 0.18

0.38 0.32 0.27

0.46 0.39

0.54

Size = 5% Number of Variables (p)

1 2 3 4 5 6

1

Cointegrating 2

rank 3

(r) 4

5

6

0.15 0.12 0.10 0.085 0.072 0.062

0.25 0.21 0.17 0.15 0.12

0.34 0.28 0.24 0.20

0.42 0.36 0.30

0.50 0.43

0.59

Size = 1% Number of Variables (p)

1 2 3 4 5 6

1

Cointegrating 2

rank 3

(r) 4

5

6

0.22 0.18 0.15 0.13 0.11 0.092

0.32 0.28 0.23 0.20 0.17

0.43 0.37 0.31 0.26

0.52 0.45 0.38

0.61 0.52

0.70
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Figure 1. Logs of real private per capita Consumption, Investment and Output

Notes:

1. The data is obtained from the Australian dX database. All series are seasonally
adjusted and measured in constant 1989/90 M.

2. Private output is the difference between Gross Domestic Product (dX identifier:
NPDQ.AK9OGDP#E) and Government Expenditure, which is constructed as the
sum of Government Final Consumption Expenditure (NADQ.AC#GG#99FCE),
Public Enterprise Gross Fixed Capital Expenditure (NADQ.AC#GE#99GFC) and
General Government Gross Fixed Capital Expenditure (NADQ.AC#GG#99GFC)
each deflated by their respective Implicit Price Deflators (NPDQ.AD9OGGC#,
NPDQ.AD9OPEK#, NPDQ.AD9OGGK).

3. Real Private Consumption (NPDQ.AK9OPRC#) and Private Gross Fixed Capi-
tal Expenditure (NPDQ.AK9OPRK#) are used for consumption and investment
respectively.

4. The Estimated Resident Population of Australia (DCRQ.UN71ERPAUSPER) is
used to construct per capita series.

5. In Figure 1 only, 0.9 has been added to investment for readability.
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6 Proofs

PROOF OF LEMMA 1. We will make use of the following intermediate results:

/3'S/3 Ezz = E (ztzit) ,

T-1131Syy13± -1 B„,13„

T3±Syyf3 .13„,dgz + Atoz,

(35)

(36)

(37)

where (36) and (37) follow from Park and Phillips (1988). We first demonstrate the

behaviour of the eigenvalues satisfying (9). Pre-multiplying (9) by 163, T-1/2[31Y1 and

post-multiplying by 1(i3,T-1/2/31)1 gives

0

0 T-1 131131

( Of Syy f3 T-11213' Syy,(3±)

T-11213' S T-10' SYY YYr--I-

= 0,

which, using (35)-(37), shows that the r smallest eigenvalues converge to constants

satisfying IWO - Ezz I = 0, while the remaining p - r eigenvalues diverge at rate Op (T).

The estimator 3 satisfies

syy4 = A.

We decompose 3 in the directions of and /31 as

= o(/31/3)-1,3116' + colo_o--1/31:j,

and substituting this into (38), pre-multiplying by 01 and re-arranging gives

(/31j31) 1 - j31j3 (/3iol) -1 i3jA = -olsyyo (o'or1 oFij.

On vectorising this expression we find

(38)

(39)

vec [(i3101)-1014] = [(A 0 01131) - /31syy/31)1-1 vec [0140 (0'0)-1 /3411 •

(40)

Since OISyy131 = O(T), it follows from (40) that (1310±)-1 014 = Op (T-1). On re-

arranging (39), we find 4-0([3'0)-1[39 = /31 (0131)-1 1314, and hence 4— owl 0)-1 0/
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Op (T-1). To find the asymptotic distribution of 3 we write (40) in un-vectorised form,
—

pre-multiply by T/31 and post-multiply by (01 0 
1

) o' to obtain

T (4 (0'14) 1 0'0 — 13)= —f3± (T-1)31Syyfil) 1 /31Syy0 ± Op (f—'). (41)

Applying (35)—(37) gives (10) as required. We note that )39 is invertible because

has full column rank (r) and the random matrix also has full column rank by the

construction of the eigenvectors in the principal components estimator. With respect to
A

41, we consider any estimator such that 151/31 = 0. We write

= 
(/3F/3)1 

/3/41_ + 01 
(/3//3)1

 0141)

so that

j1/3 
131-1 091_ = -13/ 13_L 

(010_)
-1 101_ = Op (T-1)

because of the consistency of . Thus (010)-1/39± = —131 (01/31)-1 01)

Op (T-1).

PROOF OF THEOREM 1. We consider first the behaviour of the terms 01,51;y0± and

)31Sy*y[3. Since the difference between 1314 and !TIN is / (0), we find

T-1 131 Sy; 13±= T-101SyyA1 + Op(1)

---+

We can write 01,5;y0 as

Sy*y = T-1 E olyt (zt — 0'4 ('4)-1 s2.zwfit--2/-btt=1
-13141. (414.1) - 1 AwACT-1 Et (zt —t=i
---)314 (49)-1 f2zu,f2,-,-,LT-1

t=1

Etihy';')(3t=i
(4141) 41,3

+0141(141) - AwA-c1T-17' S(C AC
t=1

26
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The last three terms are Op (T-1) because 3/31 and 4113 are Op (T-1). In the first
two terms, we can replace by -1'3 (0'4)-1 073 (including terms involving it) because

yiK has been defined to be invariant to the normalisation of 4. This can in turn be
replaced by + Op (1-1) because of the consistency of 4. Similarly, we can replace 4.„
by 01 + Op (T-1) since yi* is invariant to the normalisation of 41 and AL is consistent.
Therefore, the first two terms above are respectively:

and

,Y_Lyt (zt
t=i

T-1 EgLyt (zt
t=1

- oc,,j (4//j)-1 (2.(21-1Litht)

Qz.RTnillwt + op (1)

Bwc1.13:' (Awz — AuntAILC2wz)

T \I

(41±4±)-1 Et (zt — f2zwf2a,ti)t)
t=1

E (tit — Awc,57(17-1 E collt'agw-wl Qwz + op (1)
t=1 t=1

AwcSc-c1T-1
t=i
E ct(t (air, o)'

_ Awcsc_ciT_i E (0, ,_p_r), c2wz op (1)

t=i

Awz — AwwO;w1 Owz °P (1) ,

since Awc = Awz, Aww). Thus

OIS;y0 BwdBV

It is similarly straightforward to show that O'Sy*yr3 = Op (1). As in the proof of Lemma

1, we can then show that the smallest r eigenvalues satisfying (15) converge to positive

constants, while the largest p — r eigenvalues diverge at Op (T), and hence we can

represent f3̂* as

T ([3* (pi 0' — = — (T-1 015;0 1)-1 l31S;y0 + Op (T-1) . (42)

Applying the above results proves the theorem.
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PROOF OF THEOREM 2. (i) We first consider the properties of 55t. We can write

Thus

and

= yt — T-1 E yt = xt — 1-1 Ext.t=i t=i

= zt — zt,
t=i

T-112131x-t = 
T 112/3 x t — T-312 \--` t B(s)

t=1

Using these results we find

and

0%0 P Ezz = E (ztdt)

T-1 f31:51xxi3± = T-2 E olt-t±403.1.
t=1

/31Ssx13 ,31±.t±ito

= B(s).

t=1

T-1 E fyixt4 — T-312 E oIxt . T-1/2 E
t=i t=i t=i

BwdlYz + Awz — Bw • Bz(l)'

Bwdgz + Awz.

Following the same arguments as in the proof of Lemma 1, we find that the smallest

r eigenvalues satisfying IA/p — gxxi = 0 converge to finite constants, while the largest

p — r eigenvalues diverge at rate Op (T). As in Lemma 1, we can write

vec [(01131) 01/3] = [(A 0 0101) — 131Sxs13±)]-1 vec [131Sixf3 (0'0)-1 13'13] ,

and show consistency by noting that /31,51xxi3j_ = Op (T) , and then

T (f3' i3)-1 073 — [3) = 131 (71— filSsx f3±) 1 131S xx + Op (T-1)

— 
') 

—1
Bwdgz 
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to obtain the asymptotic distribution as required.

We now consider the modified estimator -0* based on 4 defined in (23). The method

is similar to the proof of Theorem 1. First

T-1 1315"LO I = T-1 fij_Sxx0± + op (T-1) -+ 
d f 5 5 i

.1.-Iwl-lw 7

since Et' and -±t differ only by / (0) terms. To find the behaviour of 131,--S;Kx0, note that

we can write

131X-i°

13/±7

= filt't — Aw(S"(Kc-1 Cr ± op (1),

T

= Zt — T-1 E zt - c2zwE-2,7,wi wt + op (1) ,
t=1

where q = (4 - T-1 EL 47 w)
/
 and S'('`.c = T-1 EL C (7' , since 0' -±t = zt-T-1 EL zt

and )311i-±t = )31Axt = wt. Then

T

= T 1 0„....., " 13 — Awc,5"(K c-1T-1131'3;x13 -'
t=1

The first term is

TI T

T-1 E o'ixt - T-1 EiTixt
t=i t=1
T

= T-1 E,31xt (zt - Rzwcrwwi wt)
d_..+.

/

T

E cgo + up (1) .

T

(Zt — T-1 E zt -t=i
T

— T-312 E of ._Lxt

C2 zwEVuwi Wt)

T

• T-1/2 E (zt - Rzwcuwt)
t=i t=i t=i

I1.3wdBV ± (Awz - AwwS1,71,Qwz) - I Bw • B: (1)

. I P,dB;' + (A. — Awwcit-LLC2wz)

and the second is

Thus

T
AID( s,(4, (-175-1 E ,.*,t zt - T- E zt

t=1 t=1
T

= AwcVT-1 E (c' (if, 0)t=1
= _wz - Awwf2,7,1c2wz•A

)— Aw( AV 
T-1

T

/

T

E(N'tni-L-,w1 c2.
t=1

- Aw,v7-1 E ccr (0 7 Ip-r) Qt;LQ w z

131,51;s13 --d— f fjwdBV .
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a

It then follows we can represent r3. as
T (0/161-1 0' — 0) = - (T-1131SLOI) 1 131SLO + Op (T-1)

—13± I ,
-

as required.

(ii) We first consider -it, which is the set of residuals

±-t =

= xt — — ft) — — s) t,

where fa and :5- are the OLS estimators of the de-trending regression:

T ET_it 11 (— EL xt

— 

) IL

ET 1 t2 txt

1 (4T + 2) ET_i xt — EL txt
T (T — 1) —6 ET 1 xt +12 (7' + 1)-1 ElLi txt

We then have the following intermediate results:

T7_1/201 (A _ ft) = 4T + 2 T_312 E , _   
T tt

T —1 .1_, Lu3 T
6
—
T
1
T-512 E t E wi

t=i 3=1 t=1 j=1

d
---+ 4 I Bit, - 6 I r13,,,,

T T

E zt
6T  

TTv2fii (ii — it) = 
4T + 2

T-1/2 —3/2 E tzt
T — 1 T-1 t=1t=1

--d-4 4B(1) — 61 rdBz

= —2Bz (1) + 6 I Bz,

T112 01 (3 —)6 = 
T —1

T— I E (E w3) + 
(T — 1) (T +1)

2 E E wi
t=i J=1

—6T 3 2 T t 12T2 T t

—c-L> —

—6T T 

6 I Bw + 12 f rBw,

713120' CS — a) =  T-1/2 E zt ± 12T2 T

T —1 (T — 1) (T +1)
T-312 E tzt

t=i t=i

c--2, —6Bz (1) + 12 f rdBz

= 6Bz (1) — 12 I Bz.
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Then

T-112,31±-t T-112131xt — T-11201(I1— 1-1)— T11201('S — (5)

so that

BID (S) - Bw f rBill) — s (-6 I Bu, + 12 rBw)

Bw(s)± 2 (3s - f Bill — 6 (2s - 1) I rBill

w(s),

T 113 813± = T-2 E 13/1±- 1401
t=1

We now consider i3ISxx1i3:

131S1xxi3 =
T It

T-1 ' —1wi z —T t
t=i j=1 Jt=i j=1

T _t_

—T-1 E t E tu — 6)" 0 +t=1 J=1

nil

 
t

 T
- 131 - .5) T-1 E tzt + — 6) — by 0T-1 E t2

,

t=1 t=1

+131 (_o) - f3T-1 E t + — p,) (i5 — 13T-1 E t.
t=i

These terms have the following asymptotic behaviour:

T (t
T-1 E Ewi c-1-4 I Hu,d14.4- Awz,

t=i j=i
T (t

T-1 E (A- AY --d-4 By, • (-2Bz (1) ± 6 / /3z)/
t=i j=i

131 (11 /-1) T-1 E zt
t=i

T (t

(4 f Bu, — 6 f rBw) • B., (1)' ,

T-1 t wi)(s — -d- r13„; • (6B, (1) — 12 I B,) ,

t=1 j=1

f Bu, — 6 f rBw) (-2Bz (1) + 6 f B z)

01 - T—'Etzt (- 6 f Bw+ 12 f rBw) (.13,(1)— B,) ,

t=1
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Oil CS — (5) 13T-1 2 t (-6 f Bill+ 121 rBy,) (-2Bz (1) +61 
Bz)/

d 1

t=1

d 1
131 11) (b — 13T-1 E t -(f By,— 6f r.13w) (6Bz (1) — 12f rdBz)2t=1

[31(3 
—) 

—6) 13T-1 E t2
t=1

1
(-6 f By, + 12 I 7-13w) (6B(1) — 12 f rdBz) .

Combining these results gives

/51S1-xxi3 I 13y,dgz+ 21 By, • Bz(1)' — 6 f rBy, • Bz (1)'

+12 I rBii, f 13"z-6 I ./3„, I Biz - - Awz,

which is simply a rearrangement of

ol&.13 wd.13".+ Awz•

We again apply the arguments of the proof of Lemma 1 to show that the smallest r eigen-

values satisfying 1A/p — :5;xx I = 0 converge to positive constants, while the largest p — r

eigenvalues diverge at rate Op (T). It then follows that 13 can be given the representation

(S (0' S) 1 0' — 13) = (T-101:5" xx,3) 01:51=0 + Op

which gives the distribution

(S (0' S) —1 S' — 0) —13± (I Bw.13'w
)-1 
(fBwdlYz+

as required.

To show the final result of the theorem, first note that

= /3xt - -6) = tut + op (T_1/2),

O'±"t = Oixt - - -/3' (S. —6) t = zt + Op (T_1/2).

It then follows that

014 = 1t - Aw(Sc-c10 + op (1) ,

0'4 = zt - ClzwRi,w1 wt + op (1) ,
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and so

and

IT_Lsi;xo

+ op (T-1) Etox,

T-1 E01±-, (zt _ c2zws2,-;wi — E
t=i t=i

(zt - C17,u,S2w-wl wt) + op (1)

I13wd13" + (Aw, - Awwat-inli,S2w,) (Awz - AwwQ.,--2Qwz)

13wdBV.

The estimator -14* can then be given the representation

(S* (0' ij*) 1 0'0 - 0) =

which gives the distribution

(-4* (0' 4*)-1 13'0 - 0)

(T-iolto_L) olsizxo + op (T-1)

-1
-01 (f bwi?w) bwdB;',

as required. •

PROOF OF THEOREM 3. (i) Under Ho we have 43 = 0, so we can write

and hence

JO* = J1(4* — fi (owl ii*)

= ()I (ij* (0'4*yl 0/0 - (0/0)-1 /$*

Tv*( ,*) 1 1373 -c1-4 -431_(.1 BwBfw) 1 I BwdB:',

by Theorem 1. We can also write

c-y1 = T-1/20±

and

J1Sy-y1J1 = 0

( 0' Syyf3 T-112 0' Syy f3±

T-112 fyi_syy0 T-iolsyy13.1.

-1

13' Syy T-112[3' Syy,31.) 
( 

0
T-1I2 J1131.)

T-1I2 fis'iSyy,3 T/3 S/31 11-112131.11
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under 1/0, so

TJ1c-y1 1 (f .13„,BL) 
-1

The long run covariance matrix estimator ktz satisfies

of (*F) 1 rz:z 4*) 1 01 ___P_' crzz = 0
lizwatirtloC2wz 7

since 4* (0, 4*)-1 0,0 0. Note that Qz*z is the variance of .13;r. It then follows that

:51

where

Ttrfrz-z-1 Ji (.11,5;1J1)-1
-1 --1

trSrz;1 fdBB'w Bw13'w) 01.1.1[431(f Bw-Biw)

481 (.1 BwBL) Bwd13:1

= (vec vec Z,

- -1/2 - 1
Z = [431_ (f Bwr3'w) [31J1] .1101(f Bw13'w) BwdV' ,

V is an r dimensional standard Brownian motion independent of Bw, and thus Z is a

(p - s) x r random variable with the distribution

vec Z N (0, Ip-s Ir) •

Hence :si is asymptotically xr2(p_s) under the null.

Under the alternative, /3'J, 0. From the consistency of 13* we have

and hence

4* = (/3F/3)1 /3' 4* + op (7-1)

444Ji= 444 (owl ov1+ op (-).
That is, ij*Vi is Op (1) under the alternative. We also have

13 S y y T-112 of syy0.1

T/2 
/3S/3 T'/3S/31

yy

J73 (13/ 40)-1 OVi + op (1) .
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Therefore each term inside the trace is Op (1) under the alternative, and hence

Op (T).

Parts (ii) and (iii) follow in exactly the same way as part (i). •

PROOF OF THEOREM 4. (i) To prove this result we will show that

Ti310_1_ (4_1'13±) 1 4:1!Sy—yi It (MI) 1 /3101_ 13113± (I BuOw) 1  (43)

Ti54113± (4r131) 4*11/2 —01131 (I Bi„Biu,) 1 I Bwdgii, (44)

(21-1H it-÷ C2H117 (45)

where

B H = H3 (i31 0)-1 ,

is an ri dimensional Brownian motion with covariance matrix

C2I H = (0113)-1 *.zz (01 0)-1 01 H2-

We note that the test statistic :92 is invariant to the replacement of 41 by 41

so we can then apply (43)—(45) to :92 to find

--1
.̂52 tr 

f
dUW' WW1) f WdEr,

(vec Z)' (vec Z) ,

:51 is

(31161)131/31,

where U and W are independent r1 and p — r dimensional standard Brownian motions,

and
z = (f ww,) —1/2 f wdu,

is a p — r) x Tel dimensional random variable with distribution

vec Z N (0, Ip—r in) -

Thus :92 has an asymptotic 4p_or1 distribution under the null.

To show (44), we note that iI satisfies

4414* =0.
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We can decompose ,61` as

= 0'0)-1 014i + (0101)-1 0141,

so multiplying by '73' gives

4*10 (0'0)-1 0I4*1 + S*Ii31 (0101)-1 014'1 = 0,

and

(0, i3)-1 01 - "0"131-1 •S*Fol (131,31)-1 olij:
- ('413)-1 - (1313)-1 /34;6.1 ;t_

- (13113)1 (4* (o'ij*) o1,3 - 13)I.

Since 41 - (0113_0-1 014i = ,3 (310)-1 /39I we can write
- "Ijr_131 0311o1) -1 = -1oT (4* (131S*) -1 13113 - 0) (0'13)-1 01,

and hence

131,31_ it -131 = 010 (13i) 4'1(4* (01-1 01 - 0) (13'13y1 13'

= 01(4* (0' 4*)-1 01 - 0) 0)-1 
131k Op (2-1) .

Under the null hypothesis, 13IH2 = 0, so

0101 (4.*Z0.1.) 4r.H2 = 131 (s* (0' 41 1 0113 - 13) (13113)1 13' H2+ op (T-'),

and using the asymptotic distribution of 4* from Theorem 1 gives (44).

To show (43) we write

=13 T/2131

Then

[311 40

T-11201syy,3

T-11213' Syy131_)-1

T- 1 /31 Syyfil

T131131( 4.113 1)-1 4 5;1 13.1(0.1.41)-1 0113i=

13'Syy0 Op (T-1/2) -1 0
( 131131 ) p

( Op (71 -1 /2) T-1)31Syyi3±) ( [3101) 
+ o (T-1)
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—
since 131 (01,a')

1
 01,81 = ± Op (T-1) and /31Syy0 = Op (1). Letting T oo gives

(43).

To show (45), note that 12HH is invariant to the replacement of* by 4* (t*)
 —1

0' =
+ op (T'), so that

f2HH HP (0'0)-1 Ozz (0'0)-10'1/2,

which completes this part of the proof.

Under the alternative we have HP_L 0, so that (44) is replaced by

)31/31 (16V31) 1  H2 -= 131H2 ± op (p—').

Equations (43) and (45) are unchanged under the alternative, so we find that g2 =

op (T2).

Parts (ii) and (iii) follow in the same way.

PROOF OF LEMMA 2. (i) This follows similar steps to the proof of Theorem 3(i).

Under HAT: J113 = T-1 Ai,

TJO* ($ *)1 073 = TJi (4* (01 41-1 073 — 0) +7'43

—1
+ Ai,

while

TJIS;y1J1 - J1/31 (f Bw-B'w) 
—1

as in Theorem 3(i). Thus

where

z1=

--1
trErz;"1 (Ac. — d13:.13:„ (f .13,0„,) /31J1)[43±(f 13,„gu,

(A.1 — Bwgwil 
I
Bwc113;`)

(vec Zi)' vec ,

—1
131.11

—1

—1 —1/2
(f BIDBL) /31J1] — .40± (I Bw131w) —1 I .73dB:1) S2;;1/2.
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Now
-1 -1/2

vec = vec [43i_ (f BwBw' Olth] 
Alak-1/2zz vec Z,

where Z was defined in the proof of Theorem 3(1). Since vec Z N 0 In), it

follows that, conditional on Bw,

—1 —1/2

vec N (vec [J1131_ (I Bw-BL) /31./1] AiC2:;1/2, Ip-s Ir)

and hence (vec Z1)' vec Zi has a conditional non-central xr2(p_s) distribution with non-

centrality parameter

—1 —1

tr Sisz̀,.71Ac [43± Bwg„) /61Ji] Ai.

(ii) We proceed in a similar way to the proof of Lemma 2(i). Under HAT 112131 =

T-1A2, (44) becomes

T (41(0141)-1 01i31) H2 = T112 ±T (SI (j)1 0/1/31 01) H2

A2 ± T (i.* 
(,$*) 

1 0/0 — 0) (0/0)-1 0/H2

-1

A2 — /3/101 (f Bwgw) Bwd.BiH,

while (43) and (45) are unchanged. Thus

:§2

—1—
tr Sri — (f Bwgw)

1 
0/113.1.)[010± BlvErw) 1 lisli3dHH 2 X

(A2 — 
—1 

go31_ (f Bwgw) BwcIgH)

= (vec Z2)' vec Z2,

where

-1 --1
z2 = [0113.1. (1. Bwgw) 1310d

-1/2 

(A2 — 0101 (I BwB/w) I BwdB111) 1.;.12*

Then
I -1 -1/2_

vec Z2 = vec [0,03, (I BwB)wi 010 j_ A 2Q-H11112 vec Z,
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where Z was defined in the proof of Lemma 2(i). Since vec Z N (0,4, 0 In)) We

find

—1 —1/2

vec Z2 e'd N (vec [31/31 (f BwB,c) /31131.1 A2C/i/1A2, 1.19-7- Iri)

conditional on B. Thus (vec Z2)' vec Z2 has a non-central X2ikp-r) distribution withr 

non-centrality parameter

tr frii1HA/2 [31/31. .13w13:,,) g±

PROOF OF THEOREM 5. (i) We first write

A2.

slfrz;isit= kt (0' s*)-1 0' p',3 (40) 1 fezz ($*) 1 0/01 1 0'0 ($*',3) 1 s't,
which demonstrates the invariance of the test statistic to the normalisation of 0. Then

and

0'0 0*/01-1 T-112 [2-s,

Thus

and

/373 (itj*,13) (0,4*) 0,0 p

_ [Ts]
_ 0,0 (4o) 1T'2 Eij*,yatic

t=i
[Ts, , [Ts]

= T-1/2 E o'y;' + T (4)" (0' 4*)-1 0' — T-3/2 E
t=i t=i

—1 s
13; (s) — I dB:13'w 13wBL) f13w (r) dr

= B: (s) — dB:M W2M)-1 fs W2 (r) dr.

T-1/2 [13' (4*1 0)-1 frzz (Of 4*) 1 Of Or / 2 131 (4*i 
0) 

—1 S[Ts]

—1 s

cj-+ (S) — dWiM W2W0 
I 
0 W2 (r) dr = V (s)

T-2 E :5dC2* —1:5' d
t zz t -4

t=1
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as required.

Parts (ii) and (iii) follow in the same way with Bw, W2 and V replaced by Bw, W2

and 1-7 respectively in part (ii), and 13- v -1/i72 and fi in part (iii).

(iv) Under the alternative there are s (< r) cointegrating vectors, so we can partition

as

OA* = Or—s
(pxs) (px(r—s)) 

, 

so that 4; provides a consistent estimator of the p x s matrix of cointegrating vectors
0, while 47t:_s asymptotically lies only in the space spanned by 01. Therefore, when we
partition 2 as

the first s components are asymptotically I (0), while the remaining r — s components

are asymptotically I (1). Therefore, T'/2St is Op (7'1/2), and (2z*z is Op (mT) when

applied to I (1) time series (see Phillips (1991b)). Combining these results gives that a

is Op(TIm) under the alternative. That E and E are also Op (Tim) follows in the same

way. •
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