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“HOMOGENEITY OF VARIANCE TEST” FOR THE
COMPARISON OF TWO OR MORE SPECTRA
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Monash University '
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ABSTRACT

Let {Z;; : j=1,2..k, t=0 £1, +2,...... } be kindependent stationary
processes, with spectral density functions Sz;(w) ,j=1.2....k. In many real world
situations there is a need to compare two or more spectra. Tests to compare spectra
already exist in the literature. In this paper we propose a test, based on Bartlett’s
modification of the likelihood ratio criterion, for comparing two or more spectra .
‘Simulation studies show that for k=2 this test is comparable and in some cases
better than existing test procedures. The performance of this test for k=3 is also
assessed.

1. INTRODUCTION

In many applications there is a need to compare two or more stationary processes. In
the frequency domain, one way of comparing these processes is to compare their
spectra. Given a stationary process Z,, the spectral density function is defined by

1 [e o] _: k
Szw) = = Ty(k)e™V - (1.1)

TCk=_OO

where y(k) is the covariance function of Z, and w, the frequency, is in the range (0, 7).
Hence the spectrum is the Fourier transform of the covariance function. Since y(k) is
an even function (1.1) is often written in the equivalent form

Sz(w) = % [7(0) +2§ v(k) cos(wk)} (1.2)

Tests of hypotheses for the comparison of spectré have been proposed by various
authors including Jones et al. (1972), De Souza and Thompson (1982), Shumway
(1982), Swanepoel and Van Wyk (1986), Coates and Diggle (1986), Diggle and Fisher

(1991). In this paper we propose a new test statistic based on the Bartlett’s
modification of the likelihood ratio criterion.




Given k independent stationary processes, the hypotheses to be tested are:
Hoiszl(W)=Szz(W)= = O<w<mw
H,: At least two spectra are significantly different from each other.

Using Monte Carlo simulations, we will show that for k=2, this test’s performance,
based-on our proposed test statistic, in terms of size and power is comparable and in
some cases better than other existing tests in the literature. Again using Monte Carlo
simulations, it will also be shown that the test based on our test statistic performs
reasonably well for k= 3.

In section 2 we summarise the basic theory for estimating Sz(w). In section 3 we
briefly discuss some existing procedures for comparing spectra. In section 4 we
present our test and in section 5 we discuss the results of Monte Carlo simulations and
compare some of these results with results obtained by Coates and Diggle (1988) and

" Diggle and Fisher (1991). In section 6 we discuss some applications to real data.

ESTIMATORS AND ASSOCIATED DISTRIBUTIONS

z, be a stationary series and let A, be a data window such that it slopes
down to zero on both sides. Then the spectral ordinates may be calculated for each
21 p

T

§Z(wp) = l(xoco + Zékkck cos(wpk)) . (2.1)

where M is called the truncation point. It is known that applying an appropriate data
window A, converts Sz(wp) in (2.1) into a consistent estimator of Sz(w,). Jenkins

Véz(wp) . 2 4. . . .
(1963) has shown that ——* approximately follows a ¥~ distribution with v

S2(Ws)

degrees of freedom, where v is given by

In order to use (2.1) a suitable truncation point M < n must be chosen.




Another consistent estimate as discussed in Swanepoel and Van Wyk (1986) can be
obtained by averaging the spectral ordinates computed from m partitions each of length
L For each partition the power spectra are computed using (2.1) with M replaced by

n-1. Let éZ,- (wp) be the spectral ordinate at frequency w, of the j th partition,
j=1,2,...m. Then the consistent estimator of Sz(wp) for each

‘ _2mp L]

= -

where L is even, is given by

w

(2.3)

Hence v approximately follows a ’distribution with v degrees of freedom

where v is calculated from (2.2) with M replaced by n-1.

If the observations come froni a linear process then under fairly general conditions, it
has been shown by several authors including Anderson (1971), Brillinger and
Rosenblatt (1967), Hannan and Quinn (1970), Lomnicki and Zaremba (1957), that

gz, (wp) follows asymptotically a normal distribution with

E[S,(w,)] = Sz(w,) | (2.4)

n-l ;
2 M
W )k=—(n—l)

(2.5)
n

From (2.4 and (2.5) it can be seen that the asymptotic mean and variance are
proportional to Sz(w,) and S ; (wp) respectively. Hence this suggests that a

logarithmic transformation will, perhaps, stabilise the variance. It has been shown in
Priestly (1981) that

E[lnéz(wp)] ~ lnS(wp)

n-,l

> M
Var[lngz(Wp)] i kg-(nlz;)




From (2.2) and (2,7) it follows that
Var[ln é(wp)]' ~ 2lv

which is independent of w,, p=0,1,.....n.

SOME EXISTING TESTS FOR THE COMPARISON OF POWER
SPECTRA

A conventional parametric method of testing for the equality of two spectra as
discussed in Swanepoel and Van Wyk (1986) is as follows:

Let there be two stationary series z,,,2,,
generating processes have spectral densities S, (w) and S, (w) respectively. The
test of hypotheses is ‘

Hy: Sz (w) = Sz (W)
vs
H,: Szl(w) # Sz,(W)

Let §z|(w) and § 7, (W) be the estimators of S, (w) and S, (w) respectively as

defined in (2.3). Since ln§Zi (w) (i=1,2) follows approximately a normal distribution

§z, (w)

with mean InS, (w) and variance 2/v;, it follows that ln{S ( )} is approximately
' z w

1 1
normally distributed with mean 0 and variance Z(v—+v—j Hence it follows that
1 2

eofz,2) @ bl

Movel |, (w)

L
follows ax® distribution with m= [5]-4- 1 degrees of freedom.




In his discussion on discriminant analysis of time series, Shumway (1982) uses as a test
statistic to test for pattern differences between spectra of two groups, the ratio of
spectral estimators at each frequency in the range (0, ©t), from the two groups. Under
the null hypothesis of no difference, the test statistic follows an F-distribution with
2Ln,; and 2Ln; degrees of freedom. n;+1 and n,+1 are the number of times series in
each of the groups and L is the number of frequencies over which smoothingis
introduced in order to obtain consistent estimators of the spectra.

To test (3.1), Swanepoel and Van Wyk (1986) have suggested three non parametric
tests based on a Kolmogorov-Smirnov type statistic, a % statistic and a Kullback
Leibler type statistic, respectively, for comparing two spectra . The bootstrap method
is applied to obtain estimates of size and power. They have shown that estimates of
size are consistent with the stated significance level and that the bootstrap procedure
has higher power for all their test statistics than when the conventional procedure
based on (3.2) is used .

To test (3.1), Coates and Diggle (1986) consider non parametric tests analogous to the
maximum periodogram ordinate and cumulative periodogram tests for white noise, and
a parametric test which is a likelihood ratio test based on a postulated linear model and
a postulated quadratic model for the log spectral ratio. They show that the parametric
approach gives a test that is at least as powerful and sometimes considerably more
powerful than the non parametric tests. However the parametric test based on the
quadratic model has higher power that that based on the linear model.

To test (3.1), Diggle and Fisher (1991) consider two nonparametric tests based on the
Kolmogorov-Smirnov and Cramer-von Mises statistics, respectively. Estimates of size
reveal that the test based on the Cramer-von Mises statistic is generally more
conservative than that based on the Kolmogorov-Smirnov statistic. Estimates of power
reveal that the test based on the Kolmogorov-Smirnov statistic has generally better
power than the nonparametric and parametric tests considered by Coates and Dingle

- (1986).




“HOMOGENEITY OF VARIANCE TEST” FOR THE EQUALITY OF
- TWO OR MORE SPECTRA

In this section, we consider the Bartlett modification of the likelihood ratio test for
homogeneity of variance and we obtain a test statistic based on smoothed averaged
spectral estimators. :

Let {z, j=1,2,...k., t = 1,2,....n} be k independent stationary time series and let Z,,
Zy,...,.Zy be their respective generating processes and Sz (w),Sz, (w),, .Sz, (W)

be their corresponding spectra. We wish to test

I'_Io3szl (w)= Sz, (w)=

Vs 4.1
H, : At least two spectra are significantly different from each other.

Assume that each series has the same number of observations. Partition each series into
an equal number of parts, say m, each with length L.

Let S Z; (vs;p) denote the estimate of the spectrum S z; (w p) of the 1 th partition of the

j(wP) = ﬁl—iséij(wp)

i=1

is a consistent estimator of SZj (wp) . ]

It fpllows that under H,

where v is defined as in. (2.2).




where vi=v; =

Then by the likelihood ratio criterion and using Bartlett’s result

[ ko]
Qv = c:"tkvlns2 ~vX InS; J | (4.6)
| =

is distributed approximately as chi square with (k-1) degrees of freedom, where

k1]
C= +|.v_kv_|
T 3(k-))

5]
Q=2QY ~ x,

p=0

2

where n= ([1/2] +1)(k— 1.




Now

’ k
kvinS? - inln s?
L

Hence the test statistic in (4.8) becomes

5 7

K K 1
Q= 2.c7Y vki %Zﬁzj(wp)}—vzln(ézj(Wp))J

p=0 | =1 =

where C is defined as in (4.7).

S. SIMULATION STUDY

5.1 Qutline
For k=2, series of lengths n = 64, 256, 1024 were simulated from AR(1) processes
X=X +a
and MA(1) processes
Xe=a - Oan
where in each case a, is a Gaussian white noise process. The series were partitioned
into m = 2, 3, 4 parts for length 64, m = 4, 8, 16 parts for length 256 and m = 16, 20,
24 parts for length 1024. The series length n was adjusted as necessary to ensure that
n/m became a whole number.




Distributional properties of the proposed test, based on Q defined by equation (4.9),
were checked by obtaining estimates of the mean, variance and skewness. Estimates of
size were obtained by applying the test to simultaneous pairs of AR(1) processes for
$=0,0.1,0.5, 0.9
and MA(1) processes for
_ 6=0.1,0.5,0.9
This was done for the various values of n and m.

For the various values of m, estimates of power were obtained by applying the test to
simultaneous of pairs of AR(1) processes,

for n= 64
é=0 wvs 0.2,04,0.6,0.8
$=0.5vs 0.1,0.3,0.7,0.9;

for n =256
¢$=0 wvs 0.1,0.2,0.3,0.4, 0.5, 0.6
$=0.5vs 0.1,0.2, 0.3,0.4,0.6,0.7,0.8, 0.9;

for n= 1024,
$=0 vs 0.050,10.150.20.25
¢=0.5vs 0.35,0.4,0.45, 0.55, 0.6, 0.65.

For comparison purposes estimates of power and size were also obtained for the test
based on the statistic X defined in equation (3.2 ). Some of the results of the test based °
on Q were also compared to results, for the corresponding sample sizes, obtained by
Coates and Diggle (1986) and Diggle and Fisher (1991).

Based on the estimates of size, a criterion was obtained to determine a range of
suitable values of m for a particular value of n. Using this criterion, a value of m was
selected for series of length 198 and 492 for k = 2, and for series of length 252 for

k =3. Estimates of mean, variance, skewness, size and power were obtained.

Each Monte Carlo test used 1000 randomizations. The choice of n and the AR and
MA parameters were made for easy comparison with the results of Coates and Diggle
(1986) and Diggle and Fisher (1991). In all cases a Parzen window was used for
smoothing.




5.2 Distributional Properties

Theoretical means, variances and measures of skewness for the corresponding degrees
of freedom are shown in table 1. Estimates of mean, variance and a measure of
skewness for the various values of m and n for the test based on Q are shown in tables
2 (a) to (c). In most cases the means are slightly underestimated but reasonably close
to the theoretical means. However the variances tend to be overestimated especially for
very strong autoregressive dependence. Most of the estimated measures of skewness

~ are slightly larger than the corresponding theoretical measures.

5.3 Size Estimates

Estimates of size for 10%, 5% and 1% significance levels together with their 95%
confidence intervals for tests bases on Q and X are shown in tables 3 (a) to (c). The
first line in each cell of these tables are the estimates of size and the second and third
lines are the lower and upper 95% confidence interval estimates, respectively. For the
test based on Q, for n=64, 256 and 1024 reasonably good estimates of size are
achieved for m=2,3 partitions, m= 6,8 partitions and m=20,24 partitions respectively.
However in all cases, size was overestimated as the AR(1) and MA(1) parameters
tended to their upper limits. In all cases estimates of size for the test based on X are
larger that those for the test based on Q since X is always larger than Q. The estimates
of size based on Q compare favourably with those based of the two non-parametric
tests shown in table 1 of Diggle and Fisher (1991). When prewhitening of the spectra
was attempted to try and improve size estimates for series with strong autocorrelation
dependence, it turned out in all cases that size was considerably underestimated.
Hence no further attempts were made to improve the size estimates.

5.4 Power Estimates

Estimates of power for the test based on Q and on X , for the 10%, 5% and 1%
significance levels for n=64, m=2,3, for n= 252, m=6,8 and for n=1024, m=20,24 are
shown in tables 5 (a) to (f). In all cases the test based on X has slightly higher
probability of rejecting H o when H, is true. This is due to the fact that X is always
larger than Q and hence always has larger size associated with it than that the test
based on Q. By comparison with results for corresponding parameter values and series
lengths, in tables 2 and 3 in Diggle and Fisher (1991), the test based on Q has in most
cases comparable power. In some cases the test based on Q, has slightly higher power
and in some cases slightly lower power than the tests in Diggle and Fisher (1991). By
comparison with the results in tables 2a, 2c, 3a and 3c, the test based on Q tends to
generally perform much better than those non parametric tests and parametric tests in
Coates and Diggle (1986). For example for n=64, AR(1)$=0.5, AR(1)$=0.9,
10% significance level, the power of the parametric test in Coates and Diggle (1986)
for the linear and quadratic models are both 0.48, whereas the power of the test based
on Q is 0.75 for 2 partitions and 0.83 for 3 partitions.




5.5 Criteria for Selecting suitable values of m

As mentioned in 5.3, for the values of n below, reasonably good estimates of size were
obtained for the values of corresponding values of m . The corresponding degrees of
freedom are obtained by [((n/2m)+1)(k-1)]. '

n m degrees of freedom

64 2 3 17 11
256 6 8 22 17
1024 20 24 26 22

Based on the fact that there are between 4 and 6 degrees of freedom between the
lower and upper limits for these values of n, the following criteria were developed and
can be used as a guide to select suitable values of m.

+ 5(n - 64) <D 6 5(n - 64) ’
(256 - 64) 2m (256 - 64)

64 <n <256

L S(n-25) _ n _ .. 5(n-256)

< < , 256<n<1024
(1024-256) ~ 2m (1024 — 256)

Since the square roots of the 64, 256, and 1024 are multiples of 8, these criteria can
easily be extended for larger values of n if necessary. Also, since the degrees of
freedom is a function of (k-1), these criteria can also be used as a guide to select m for
values of k > 2. :

For k = 2, the test based on Q and X were applied to series of lengths 198 and 492.
Using the above criteria the range of suitable m values was found to be between 5 and
- 7 forn=198, and between 11 and 14 for n = 492. Value of m=6 for n=198 and m=12
for n =492 were selected to obtain the estimates of the mean, variance, measure of
skewness, size and power. These estimates are shown in tables 2(d), 2(e), 3(d), 3(e),
5(g) to 5(j). For the test based on Q, as before , in most cases the means were slightly
underestimated but reasonably close to the theoretical means. However the variances
tend to be overestimated especially for very strong autoregressive dependence. Most
of the estimated measures of skewness were slightly larger than the corresponding
theoretical measures. Reasonably good estimates of size were obtained were obtained
for both Q and X except for when the AR(1) and MA(1) parameters tended to their
upper limits. Reasonably good estimates of power were obtained.




For k = 3, the test based on Q was applied to series of length 252. Using the above
criteria the range of suitable m values was found to be between 6 and 8. The number of
partitions m= 6 was selected to obtain estimates of the mean, variance, measure of
skewness size and power. These estimates are shown in tables 2(f), 4 and 6. In all cases
the means were slightly overestimated but reasonably close to the theoretical means.
However the variances tend to be overestimated and more so for very strong '
autoregressive dependence. Again most of the estimated measures of skewness were
slightly larger than the corresponding theoretical measures. Reasonably good

estimates of size were obtained except for when the AR(1) and MA(1) parameters
tended to their upper limits. Reasonably good estimates of power were obtained.

6. APPLICATIONS

6.1 Tree Ring Data

In order to reconstruct climates from information from trees, one type of measurement
that climatologists use are distances between the consecutive rings of trees. Figures 1,
2 and 3 show tree ring data for 3 separate sites about 10 km. apart at about the same
altitude on Mount Egmont on the North Island of New Zealand. Each data set consists
of standardised distances between rings, averaged over a number of trees in a
particular site. Standardisation allows samples with large differences in growth rates to
be combined and can be used to remove any undesired growth trends present. It is
expected that there is no significant difference between growth as influenced by climate
in the three different sites. Each series consisted of n=352 observations. After filtering
the series, checks revealed no significant cross correlations between the series. The
number of partitions to smooth the spectra i.e. the value of m, was chosen to be 8.
This was done by using the selection criteria from section 5 as a guide. Figure 4 shows
the smoothed spectra of the three sites and it is clear that they are quite similar. The
test of hypotheses of no significant differences based on Q was applied and could not
be rejected as can be seen from the results below.

Length of Each Time Series 352
Number of Partitions 8

Q Test Statistic 40.5355
Degrees of Freedom 46
p-value 0.6997

6.2  Earthquake and Explosion Data

It is clear from an examination of earthquake and nuclear explosion waveforms, that
there are distinct differences in their patterns. It is therefore expected that there will be
differences in their spectra as well. Figures 5 and 6 show the standardised waveforms
of a nuclear explosion detonated in China in August 1995 and an earthquake which
took place in the Solomon Islands in September 1995. The two events which were of
similar strength were recorded at the same seismological station. Each series consists




of 600 observations recorded over a 30 second interval. Even though the series are not
quite stationary and no transformation could be found to make them stationary, the test
for no significant difference in underlying spectra was nevertheless carried out. Using
the criteria from section 5 as a guide, each series was partitioned into m=15 partitions
and smoothed spectra were obtained. Figure 7 shows the smoothed spectra and it is
clear that there are differences in the spectra. The test based on Q was applied to the
spectra and was strongly rejected as can be seen from the results below.

Length of Each Time Series 600
Number of Partitions 15
Q Test Statistic 367.9952
Degrees of Freedom 21
p-value 0

7 CONCLUDING REMARKS

The results show that, even though the variation in Q is large for the various values of
n and m, the distributional approximations to the chi-square distribution are reasonably
adequate. The estimates of size and power of the test based of Q compare favourably
with some existing tests and in some cases the test based on Q displayed superior
power. Estimates of size tend to be smaller than the nominal size for a small number of
partitions and larger than the nominal size for a large number of partitions.

Results for n=198 and 492 for k=2 and for n=252 for k=3 show that the criteria for the
selection of m, i.e. the amount of smoothing, are a reasonably good guide for the
choice of m. However it is clear that this idea needs more exploration before it can be
firmly established what the optimum value of m should be.

We believe that the advantage the test based on Q has over existing tests in the
literature is the ease with which it can be extended to the case for k >2. This is
revealed in the results for n=252 for k=3. The results of the application of the test to
real data in section 6 further strengthen our claim the Q is a reasonably good statistic
for testing for significant differences between spectra.
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APPENDIX

TABLE 1

SOME PARAMETERS OF THE CHI-SQUARE DISTRIBUTION

Degrees of
freedom

Mean

Variance

Median

Measure of
Skewness

9
11
17
21
22
26
33

44

9
11
17
21
22
26
33
44

52

18
22
34
42
44

66
38

8.34
10.34
16.34
20.34
21.34
25.34
32.34
43.34

0.1556
0.1407
0.1132
0.1018
0.0995
0.0915
0.0812
0.0704

(a) n=64 k=2

TABLE 2
ESTIMATES OF MEAN, VARIANCE AND A MEASURE OF SKEWNESS OF
- THE TEST STATISTIC Q

Process m

df

Mean

Variance

Skewness

AR(1)
6=0

17
11
9

14.8368
10.0446
9.1488

43.1865
27.7782
32.7989

0.1268
0.1785
0.2057

$=0.1

17
11
9

15.0836
10.1252
9.2593

44.1320
29.0984
34.7796

0.1404
0.2320
0.2117

17
11
9

10.0235
9.3061

14.7278

41.0457
29.0237
33.4233

0.1404
0.1957
0.1809

B WA WA WA WD

17
11
9

15.6479
12.2232
9.3707

66.1720
70.6033
123.5592

0.1879
0.2427
0.3111

17
11
9

9.2421

14.8842
9.8477

44.4456
27.0925
33.8558

0.1576
0.1783
0.2580

17
11
9

14.4105
9.7336
8.9426

37.8799
27.4211
29.4933

0.1433
10.2305
0.1696

H WA WNDIAWND

17
11
9

15.0960
10.6215
9.6598

43.9517
38.9845
37.5366

0.1848
0.1988
0.2266




(b) n=256 k=2

Process

Mean

Variance

Skewness

AR(1)
6=0

27.8413
19.8779
15.7344

73.3146
58.4140
49.5152

0.1001
0.1277
0.2206

1¢=01

28.1639
19.7541
15.8571

69.8812
56.7707
48.0303

0.0921
0.1714
0.1535

27.9340
19.1332
15.7881

72.8203
52.9281
46.0487

0.1226
0.1627
0.1763

0 O A0 N Al OV B[O OV B

27.2947
20.4012
15.2492

73.6094
73.3735
77.8392

0.1492
0.1858
0.2156

27.9358
19.6131
15.5301

76.6844
53.7048
46.0897

0.1131
0.1504
0.1692

27.5872
19.2987
15.4537

71.0168
58.6445
46.0844

0.1448
0.1606
0.1798

R O hjco OV ANjoo OV N

28.8987
20.4674
15.2842

90.3192
66.1798
58.6626

0.1796
0.1686
0.1884




(c) n=1024 k=2

Process

m

Mean

Variance

Skewness

AR(1)
$=0

16
20
24

29.0872
22.9297
20.3582

80.6456
58.0265
61.3481

0.1306
0.1394
0.1432

16
20
24

28.9167
23.3438
20.4902

81.3104
66.7120
59.5425

0.1665
0.1250
0.1344

16
20
24

28.7496
23.3963
19.9210

79.3148
68.9871
52.5393

0.1122
0.1371
0.1473

16
20
24

28.5661
23.3746
21.8382

90.2629
83.9922
103.8434

0.1476 -
0.1748
0.2017

16
20
24

29.0508
23.5952
20.1073

78.3870
63.9143
60.2599

0.1097
0.1095
0.1755

16
20
24

28.8179
23.5177
20.2712

78.1336
69.0848
61.2867

0.0957
0.1579
0.1597

16
20
24

29.8176
24.7555
22.2550

105.4583
102.4055
93.0493

0.1227
0.1827
0.1931

(d) n=198 k =2

Process

m

Mean

Variance

Skewness

AR(1)
$=0

6=0.1
$=0.5
$=0.9

15.3510
15.2287
14.8209
16.4668

43.7239
42.3803
43.2554
79.6309

0.1990
0.1651
0.1759
0.2041

MA(1)
0=0.1
0=0.5
6=0.9

15.3501
15.1381
16.0646

41.1880
41.3125
51.0467

0.1638
0.1492
0.1710




(e) n=492 k =2

Process

m

Mean

Variance

Skewness

AR(1)
6=0
$=0.1
$=0.5
$=0.9

12
12
12
12

19.2862
19.2904
19.2143
20.1103

57.4521
52.3785
55.1553
97.8701

0.1790
0.1716
0.1128
0.1934

MA(1)
6=0.1
6=0.5
6=09

12
12
12

19.4690
19.6596
19.8027

56.0665
56.8382
79.2542

0.1532
0.1533
0.1998

() n=252 k=3

Process

m

Mean

Variance

Skewness

AR(1)
$=0
$=0.1
$=0.5
$=0.9

39.2105
39.6558
38.8824
38.7496

117.7417
114.0331
113.3108
179.0240

0.1933
0.0687
0.0951
0.1951

MA(1)
6=0.1
6=0.5
6=0.9

39.1330
38.6913
42.3929

102.4321
100.0431
141.2486

0.1038
0.0939

0.1249




(a) n=64

TABLE 3
ESTIMATES OF SIZE WITH 95% CONFIDENCE INTERVALS FOR TEST
STATISTICS Q AND X for k=2

Process

10%

Q
5%

1%

10%

X
5%

1%

AR(1)
6=0

0.0740*

0.0550
0.0930

0.0490

0.0352 -

0.0628

0.0130
0.0067
0.0193

0.1330*
0.1140
0.1520

0.0920*
0.0782
0.1058

0.0420*
0.0357
0.0483

0.0950
0.0760
0.1140

0.0500
0.0362
0.0638

0.0130
0.0067
0.0193

0.1310*
0.1120
0.1500

0.0860*
0.0722
0.0998

0.0360*
0.0297
0.0423

0.1350*
0.1160
0.1540

0.0910*

10.0772

0.1048

0.0320*
0.0257
0.0383

0.1670*
0.1480
0.1860

0.1160*
0.1022
0.1298

0.0470*
0.0407
0.0533

0.0840 .
0.0650
0.1030

0.0540
0.0402

0.0678

0.0160
0.0097
0.0223

0.1450*
0.1260
0.1640

0.1050*
0.0912
0.1188

0.0450*
0.0387
0.0513

0.0940
0.0750
0.1130

0.0570
0.0432
0.0708

0.0180*
0.0117
0.0243

0.1470*

0.1280 -

0.1660

0.0780*
0.0642
0.0918

0.0320*
0.0257
0.0383

0.1570*
0.1380
0.1760

0.1000*
0.0862
0.1138

0.0380*
0.0317
0.0443

0.1870*
0.1680
0.2050

0.1310*
0.1170
0.1448

0.0560*
0.0497
0.0623

0.0710*
0.0520
0.0900

0.0380
0.0242
0.0815

0.0100
0.0037
0.0163

0.1310*
0.1120
0.1500

0.0830*
0.0692
0.0968

0.0300*
0.0237
0.0363

0.0980
0.0790
0.1170

0.0550
0.0412
0.0688

0.0210*
0.0147
0.0273

0.1390*
0.1200
0.1579

0.0830*
0.0692
0.0968

0.0310*
0.0247
0.0373

0.1420*
0.1230
0.1610

0.0860*
0.0722
0.0998

0.0290*
0.0227
0.0353

0.1760*
0.1570
0.1950

0.1150*
0.1012
0.1288

0.0430*
0.0367
0.0493

0.1140
0.0950
0.1130

0.0710*
0.0572
0.0847

0.0230*
0.0167
0.0293

0.1910*
0.1720
0.2100

0.1370*
0.1232
0.1508

0.0610*
0.0547
0.0673

0.1870*
0.1680
0.2060

0.1390*
0.1252
0.1528

0.0780*
0.0717
0.0843

0.2350*
0.2160
0.2540

0.1770*
0.1632
0.1908

0.0990*
0.0927
0.1053

0.3070*
0.2880
0.3260

0.2380*
0.2242
0.2518

0.1520*
0.1457
0.1583

0.3340*
0.3150
0.3530

0.2640*
0.2502
0.2778

0.1720*
0.1657
0.1783

* Significant at the 5% level




Process

10%

Q

- 5%

1%

10%

X
5%

1%

MA(1)
9=0.1

0.0840
0.0650
0.1029

0.0520
0.0380
0.0658

0.0110

0.0047
0.0173

0.1540*
0.1350
0.1729

0.1010*

- 0.0872

0.1148

0.0450*
0.0387
0.0513

0.0860
0.0670
0.1050

0.0580
0.0442
0.0718

0.0090
0.0027
0.0153

0.1270*
0.1080
0.1460

0.0790*
0.0652
0.0928

0.0270*
0.0207
0.0333

0.1490*
0.1300
0.1680

0.1040*
0.0902
0.1179

0.0390*
0.0327
0.0453

0.1910*
0.1720
0.2100

0.1310*
0.1172
0.1448

0.0520*
0.0457
0.0583

0.0520*
0.0330
0.0710

0.0290*
0.0152
0.0428

0.0110
0.0047
0.0173

0.1190
0.1000
0.1380

0.0720*
0.0583
0.0858

0.0270*
0.0207
0.0333

0.0780*

0.0590 .

0.0970

0.0510
0.0372
0.0648

0.0150
0.0087
0.0213

0.1220*
0.1030
0.1410

0.0740*
0.0602
0.0878

0.0260*
0.0197
0.0323

0.1120*
0.1030
0.1410

0.0780*

0.0642
0.0918

0.0320*
0.0257
0.0383

0.1530*
0.1340

0.1720 .

0.1020*
0.0882
0.1158

0.0430
0.0367
0.0493

0.0880*
0.0690
0.1070

0.0420*
0.0282
0.0558

0.0130
0.0067
0.0193

0.1590*
0.1400
0.1780

0.1070*
0.0932
0.1208

0.0330*
0.0267
0.0393

0.1230*
0.1040
0.1420

0.0880*
0.0742
0.1028

0.0370*
0.0307
0.0433

0.1460*
0.1270
0.1650

0.1160*
0.1022
0.1298

0.0540*
0.0477
0.0603

0.1670*
0.1480
0.1860

0.1070*
0.0932
0.1208

0.0520*
0.0457
0.0583

0.1980*
0.1790
0.2170

0.1350*
0.1212
0.1488

0.0690*
0.0627
0.0753

* Significant at the 5% level




(b) n=256

Process

10%

Q
5%

1%

10%

X
5%

1%

AR(1)
=0

0.0400*
0.0210
0.0590

0.0170*
0.0032
0.0308

0.0050
-0.0013
0.0113

0.0730*
0.0540
0.0920

0.0340*
0.0252

~ 0.0528

0.0120
0.0057
0.0183

0.0840
0.0650
0.1030

0.0540
0.0402
0.0678

0.0160
0.0097
0.0223

0.1080
0.0890
0.1270

0.0680*
0.0542
0.0818

0.0220*
0.0157
0.0283

0.1140
0.0950
0.1330

0.0650*
0.0512
0.0788

0.0240*
0.0177
0.0303

0.1300*
0.1110
0.1490

0.0820*
0.0682
0.0958

0.0320*
0.0257
0.0383

.| 0.0310*

0.0121
0.0500

0.0200*
0.0062
0.0338

0.0050
-0.0013
0.0113

0.0660*
0.0470
0.0850

0.0310*
0.0172
0.0448

0.0110
0.0047
0.0173

0.0880
0.0690
0.1070

0.0430
0.0292
0.0568

0.0110
0.0047
0.0173

0.1160
0.0970
0.1350

0.0660*
0.0522
0.0798

0.0170*
0.0107
0.0233

0.0870
0.0680
0.1060

0.0480
0.0342
0.0618

0.0180*
0.0117
0.0243

0.1070
0.0880
0.1260

0.0570
0.0432
0.0708

0.0220*
0.0157
0.0283

0.0540*
0.0350
0.0730

0.0310*
0.0172
0.0448

0.0080
0.0017
0.0142

0.0830
0.0640
0.1020

0.0570
0.0432
0.0708

0.0210*
0.0147 -
0.0273

0.0720*
0.0530
0.0910

0.0330*
0.0192
0.0468

0.0120
0.0057
0.0183

0.0930
0.0740
0.1120

0.0550
0.0412
0.0688

0.0150
0.0087
0.0213

0.0950
0.0760
0.1140

0.0570
0.0430
0.0708

0.0220*
0.0157
0.0283

0.1140
0.0950
0.1330

0.0690*
0.0552
0.0828

0.0270*
0.0207
0.0333

0.0420*
0.0230
0.0610

0.0220*
0.0082
0.0358

0.0050
-0.0013
0.0113

0.0660*
0.0470
0.0850

0.0410*
0.0272
0.0548

0.0120
0.0057
0.0183

0.1070
0.0880
0.1260

0.0690*
0.0552
0.0828

0.0260*
0.0197
0.0323

0.1320*
0.1130
0.1510

0.0850*
0.0712
0.0988

0.0370*
0.0307
0.0433

0.1560*
0.1370
0.1749

0.1070*
0.0932
0.1208

0.0490*
0.0427
0.0553

0.1780*
0.1590
0.1970

0.1200*
0.1062
0.1338

0.0580*
0.0517
0.0643

* Significant at the 5% level




Process

10%

Q
5%

1%

“10%

X
5%

1%

MA(1)
8=0.1

0.0580*
0.0390
0.0770

0.0300*
0.0162
0.0438

0.0040
-0.0023
0.0103

0.0870
0.0680
0.1060

0.0570
0.0382
0.0658

0.0140
0.0077
0.0203

0.0810
0.0620
0.1000

0.0400
0.0262
0.0538

0.0150
0.0087
0.0213

0.1070
0.0880
0.1260

0.0600

0.0462
0.0738

0.0210*
0.1047
0.0273

0.1020
0.0830
0.1210

0.0570
0.0432
0.0708

0.0150
0.0087
0.0213

0.1200*
0.1010
0.1390

0.0730*
0.0592
0.0868

0.0200*
0.0137
0.0263

0.0430*
0.0240
0.0620

0.0180*
0.0042
0.0318

0.0030
-0.0033
0.0093

0.0800*
0.0610
0.0990

0.0420%
0.0282
0.0558

0.0130*
0.0067
0.0193

0.0790
0.0600
0.0980

0.0510
0.0372
0.0648

0.0130
0.0067
0.0193

0.1100
0.0910
0.1290

0.0640*
0.0502
0.0778

0.0250*
0.0187
0.0313

0.0940
0.0750
0.1130

0.0600
0.0462
0.0738

0.0170*
0.0107
0.0233

0.1050
0.0860
0.1240

0.0700*
0.0562
0.0838

0.0200*
0.0137
0.0263

0.0760
0.0570
0.0950

0.0420
0.0282
0.0558

0.0110
0.0047
0.0173

0.1170
0.0980
0.1360

0.0730*
0.0592
0.0868

0.0230*
0.0167
0.0292

0.1110
0.0920
0.1300

0.0700*
0.0562
0.0838

0.0210*
0.0147
0.0273

0.1400*
0.1210
0.1590

0.0950*
0.0812
0.1088

0.0360*
0.0297
0.0423

0.1350*
0.1160
0.1540

0.0870*
0.0732
0.1008

0.0350*
0.0287
0.0413

0.1510*
0.1320
0.1700

0.1020*
0.0882
0.1159

0.0470*
0.0407
0.0532

* Significant at the 5% level




(c) n=1024

Process |m Q X .
10% 5% 1% 10% 5% 1%

AR(1)
$=0 0.0620* 0.0290* 0.0090 |0.0690*  0.0350% 0.0120
0.0430  0.0152 0.0027 |0.0560  0.0212 0.0057
0.0810  0.0428  0.0153 |0.0880  0.0488 0.0183
0.0720* 0.0330  0.0060 | 0.0740*  0.0380* 0.0070
0.0530 0.0192 -0.0003 |0.0350  0.0242 0.0007
0.0910  0.0468  0.0468 |0.0930  0.0518 0.0133
0.0870 0.0560 0.0210* | 0.0920 _ 0.0600 0.0210*
0.0680 0.0422 00147 |0.0730 00462 0.0147
0.1060  0.0698 0.0273 |0.1110  0.0738 0.0273
0.0680* 0.0370 0.0110 |0.0750*  0.0450* 0.0140
0.0490 0.0232 0.0047 |0.0560  0.0312 0.0077
0.0870  0.0508  0.0173 ] 0.0940 00558 0.0203
0.0770* 0.0350* 0.0090 |0.0910  0.0420 0.0100
0.0580 0.0212 0.0027 |0.0720  0.0282 0.0037
0.0960  0.0488  0.0153 |0.1100  0.0558 0.0163
0.0980 0.0590 0.0150 |0.1050  0.0640* 0.0180*
0.0790 0.0452  0.0087 |0.0860  0.0502 0.0117
0.1170 00728 0.0213 |0.1240  0.0778 0.0243
0.0610* 0.0340* 0.0110* | 0.0640*  0.0380 0.0120
0.0420 0.0202 0.0047 |[0.0450  0.0242 0.0058
0.0800  0.0478  0.0073 |0.0830 00518 00183
0.0820 0.0490 00160 |0.0890  0.0550 0.0200*
0.0630  0.0353  0.0097 |0.0700 00412 0.0138
0.1010  0.0628  0.0223 |0.1080  0.0688 0.0263
0.0800 0.0370 0.0070 |0.0860  0.0480 0.0080
0.0610  0.0232 0.0007 |0.0670  0.0342 0.0017
0.0990  0.0508 0.0133 [0.1049 00618 0.0143
0.0600* 0.0390  0.0090 | 0.0670* 0.0460 0.0130
0.0410  0.0252 0.0027 [0.0480  0.0322 0.0067
0.0790 _ 0.0528  0.0153 |0.0860  0.0600 0.0193
0.0960  0.0600  0.0290* | 0.1030 _ 0.0660* 0.0310*
0.0770  0.0462 00227 [0.0840  0.0522 0.0247
0.1150 _ 0.0738  0.0353 [0.1220  0.0798 0.0373
0.1600* 0.1060% 0.0520* [ 0.1700*  0.1140* 0.0560*
0.1410 00922 00457 [0.1510 0.1002 0.0498
0.1790  0.1110 0.0583 [0.1890  0.1278 0.0623

* Significant at the 5% level




Process

10%

Q
5%

1%

10%

X
5%

1%

MA(1)
6=0.1

0.0520*
0.0330
0.0710

0.0330*
0.0192
0.0468

0.0110
0.0047
0.0173

0.0630*
0.0440
0.0820

0.0370
0.0232
0.0508

0.0130
0.0067
0.0193

0.0720*
0.0530
0.0910

0.0370
0.0232
0.0508

0.0110
0.0047
0.0129

0.0800*
0.0610
0.0990

0.0450
0.0312
0.0588

0.0150
0.0087
0.0213

0.0950
0.0760
0.1140

0.0530
0.0392
0.0668

0.0190*
0.0127
0.0253

0.1040
0.0850
0.1230

0.0570
0.0432
0.0708

0.0190*
0.0127
0.0253

0.0540*
0.0360
0.0730

0.0260*
0.0122
0.0398

0.0060
-0.0003
0.0123

0.0640*
0.0452
0.0830

0.0340*
0.0202
0.0478

0.0100
0.0037
0.0163

0.0910
0.0720
0.1099

0.0470
0.0332
0.0608

0.0130
0.0067
0.0193

0.1040
0.0850
0.1230

0.0600
0.0462
0.0738

0.0130
0.0067
0.0193

0.1090
0.0900
0.1280

0.0660*
0.0522
0.0798

0.0180*
0.0117
0.0243

0.1150
0.0960
0.1340

0.0680*
0.0542
0.0818

0.0190%*
0.0127
0.0253

0.0870
0.0680
0.1060

0.0550
0.0412
0.0688

0.0210*
0.0147
0.0273

0.0970
0.0780
0.1160

0.0630
0.0492
0.0768

0.0240*
0.0177
0.0303

0.1180
0.0990
0.1370

0.0820*
0.0682
0.0960

0.0430*
0.0367
0.0493

0.1260*
0.1070
0.1450

0.0870*
0.0732
0.1008

0.0480*
0.0447
0.0543

0.1640*
0.1450
0.1830

0.1210*
0.1072
0.1347

0.0490*
0.0427
0.0553

0.1720*
0.1530
0.1910

0.1260*
0.1122
0.1397

0.0540*
0.0477
0.0603

* Significant at the 5% level




(d) n=198

Process

10%

Q
5%

1%

10%

X
5%

1%

AR(1)
$=0

0.0910
0.0720
0.1100

0.0520
0.0382
0.0658

10.0170*

0.0107
0.0233

0.1140
0.0950
0.1330

-0.0700*

0.0562
0.0838

0.0250*
0.0187
0.0313

0.0810
0.0620
0.1000

0.0450
0.0312
0.0588

0.0170*
0.0107
0.0233

0.1090
0.0900
0.1280

0.0620
0.0482
0.0758

0.0230*
0.0167
0.0293

0.0860

0.0670
0.1050

0.0420*
0.0282
0.0558

0.0160
0.0097
0.0223

0.1050
0.0860
0.1240

0.0610
0.0472
0.0748

0.0230*
0.0167
0.0293

0.1240*
0.1050
0.1430

0.0900*
0.0762
0.1038

0.0410*
0.0347
0.0473

0.1440*
0.1250
0.1630

0.1060*
0.0922
0.1198

0.0530*
0.0467
0.0593

0.0810
0.0620
0.1000

0.0410
0.0272
0.0548

0.0100
0.0037
0.0163

0.0960
0.0770
0.1150

0.0520
0.0382
0.0658

0.0140
0.0077
0.0203

0.0820
0.0630
0.1010

0.0530
0.0392
0.0668

0.0110

0.0047
0.0173

0.0950 .

0.0760
0.1140

0.0720*
0.0582
0.0858

0.0160
0.0097
0.0223

0.1200*
0.1010
0.1390

0.0670*
0.0532
0.0808

0.0250*
0.0187
0.0313

0.1390*
0.1200
0.1580

0.0940*
0.0802
0.1078

0.0300*
0.0237
0.0363

* Significant at the 5% level




(¢) n=492

Process

10%

Q
5%

1%

10%

X
5%

1%

AR(1)
6=0

0.1070
0.0880
0.1260

0.0600
0.0462
0.0738

10.0150

0.0087
0.0213

0.1200*
0.1010
0.1390

~0.0660*

0.0522
0.0798

0.0170*
0.0107
0.0233

¢=0.1

0.0930
0.0740
0.1120

0.0570
0.0432
0.0708

0.0160
0.0097
0.0223

0.0970
0.0780
0.0116

0.0640*
0.0502
0.0778

0.0180*
0.0117
0.0243

0.0930
0.0740
0.1120

0.0520
0.0382
0.0658

0.0140
0.0077
0.0203

0.1050
0.0860
0.1240

0.0620
0.0482
0.0758

0.0160
0.0097
0.0223

0.1360*
0.1170
0.1550

0.0910*
0.0772
0.1048

0.0480*
0.0417
0.0543

0.1480*
0.1290 .
0.1670

0.1010*
0.0872
0.1148

0.0510*
0.0447
0.0573

0.0930
0.0740
0.1120

0.0560

0.0422
0.0698

0.0180*
0.0117
0.0243

0.1010
0.0820
0.1200

0.0630
0.0492
0.0768

0.0230*
0.0167
0.0293

0.1070
0.0880
0.1260

0.0610
0.0472
0.0748

0.0210*
0.0147
0.0273

0.1210 -

0.1020
0.1400

0.0720*
0.0582
0.0858

0.0230*
0.0167
0.0293

0.1240*
0.1050
0.1430

0.0880*
0.0742
0.1018

0.0370*
0.0307
0.0433

0.1330*
0.1140

0.0930*
0.0792
0.1068

0.0440*
0.0377
0.0503

* Significant at the 5% level
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ESTIMATES OF SIZE WITH 95% CONFIDENCE INTERVALS OF THE TEST

TABLE 4

STATISTICS Q FOR k=3 and n=252

Process

df

10%

5%

1%

AR(1)

1$=0

44

0.0830
0.0640
0.1020

0.0550
0.0412
0.0688

0.0150
0.0087
0.0213

0.1000
0.0810
0.1190

0.0520
0.0382
0.0658

0.0130
0.0067
0.0193

0.0810
0.0620
0.1000

0.0470
0.0332
0.0608

0.0190*
0.0127
0.0253

0.1600*
0.1410
0.1790

0.1040*
0.0902
0.1178

0.0560*
0.0497
0.0623

0.0890
0.0700
0.1080

0.0440
0.0302
0.0579

0.0090
0.0027
0.0153

0.0760*
0.0570
0.0950

0.0320*
0.0182
0.0458

0.0070
0.0007
0.0133

0.1600*
0.1410
0.1790

0.1030*
0.0892
0.1168

0.0360*
0.0297
0.0423

* Significant at the 5% level




.. TABLE 5
ESTIMATES OF POWER OF THE TEST STATISTICS Q AND X FOR
: FOR k=2

(a)AR(1) b =0vs ¢ > 0 n=64
) |m | df Q v X

10% 5%
0.0 2 17 | 0.0740 0.0920
0.2 0.1470 0.1620
0.4 0.3880 0.4210
0.6 0.7700 0.7960
0.8 0.9780 0.9820
0.0 0.0950 0.0860
0.2 0.1970 0.1850
0.4 0.5080 0.4900
0.6 0.8730 0.8560
0.8 0.9910 0.9880
0.0 0.1350 0.1160
0.2 0.2440 0.2100
0.4 0.6000 0.5560
0.6 0.9080 0.8990
0.8 0.9930 0.9940

(b)AR(1) ¢ = 0.5 vs ¢ # 0.5 n=64

) m |df Q
10% 5% 1%

0.1 2 |17 (04100 03080 0.1540
0.3 0.1630  0.1060  0.0390
0.5 0.0710 0.0380  0.0100
0.7 0.1930 0.1180  0.0470
0.9 0.7470  0.6710 0.4700
0.1 0.5120 0.4150  0.2670
0.3 0.2270  0.1610  0.0720
0.5 0.0980 0.0550  0.0210
0.7 0.2930 0.2140  0.0970
0.9 0.8300 0.7720  0.6420
0.1 0.6130 0.5170  0.3440
0.3 0.2900 02160 0.1100
0.5 10.1420 0.0860  0.0290
0.7 ' 0.3400 0.2680  0.1680
0.9 0.8810 0.8440  0.7680




(c) AR(1) ¢ =0 vs ¢ >0 n=256
b m |df Q
10%
0.0 4 33 10.0400
0.1 0.0890
0.2 0.2760
0.3 0.5770
0.4 0.8750
0.5. 0.9820
0.6 0.9990
0.0 0.0840
0.1 0.1420
0.2 0.3990
0.3 0.7300
0.4 0.9480
0.5 0.9960
0.6 1.0000
0.0 0.1140
0.1 ) 0.1880
0.2 0.4780
0.3 - 10.7920
0.4 0.9620
0.5 0.9980
0.6 1.0000




(d) AR(1) ¢ = 0.5 vs ¢ # 0.5 n=256

¢

m

df

10%

Q
5%

0.1
0.2
0.3
0.4
0.5
0.6

0.7

0.8
0.9

4

33

0.9090
0.6290
0.3110
0.0950
0.0540
0.1240
0.4080
0.1872
0.9980

0.8610
0.5370
0.2180
0.0570
0.0310
0.0790
0.3150
0.8150
0.9960

0.1
0.2
03
0.4
0.5
0.6
0.7
0.8
0.9

0.9630
0.7820
0.4440
0.1520
0.0720
0.1670
0.5560
0.9490
1.0000

0.9430
0.7010
0.3450
0.0900
0.0330
0.1130

- 0.4530

0.9270
1.0000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.9870
0.8500
0.5100
0.2000
0.0950
0.2480
0.6680
0.9630
1.0000

0.9650
0.7910
0.4270
0.1420
0.0570
0.1830
0.5770
0.9430
1.0000




() AR(1) ¢ = 0 vs ¢ > 0 n=1024

) m |df Q

' 10% = 5%
0.00 16 |33 ]0.0620 0.0290
0.05 0.1240  0.0860
0.10 0.3110  0.2180
0.15 0.6400  0.5440
0.20- 0.9070  0.8620
0.25 - 0.9860  0.9710
0.00 ' 0.0720  0.0330
0.05 0.1330  0.0840
0.10 0.3630  0.2730
0.15 0.7190  0.6080
0.20 0.9470  0.9120
0.25 0.9920 0.9860
10.00 0.0870  0.0560
0.05 0.1680 0.1090
0.10 - . 1 0.4410 - 0.3550
0.15 0.7440  0.6700
0.20 0.9420 0.9060
0.25 0.9980 0.9920
(H) AR(1) d=0.5 vs ¢ # 0.5 n=1024

6 m | df Q
10% 5%
0.35 16 |33 |0.7810 0.6790
0.40 0.3800 0.2910
0.45 0.1190  0.0800
0.50 0.0540  0.0260
0.55 0.1390  0.0860
0.60 0.4260  0.3260
0.65 0.8200  0.7580
0.35 0.8020 0.7280
0.40 0.4520  0.3460
0.45 0.1500 0.0940
0.50 0.0910 0.0470
0.55 0.1420  0.0850
0.60 0.4150 0.3310
0.65 0.7980  0.7320
0.35 0.8340 0.7670
0.40 0.5140 0.4210
0.45 0.2190  0.1500
0.50 0.0800 0.0370
0.55 0.2280 0.1510
0.60 0.5660  0.4850
0.65 0.9120 0.8770




(g) AR(1) =0vs ¢ >0 n=198

¢

m

df

10%

Q
5%

0.0
0.1
0.2
0.3
04 -
0.5
0.6

6

17

0.0910
0.1340
0.3200
0.6740
0.8950
0.9870

0.9980

0.0520
0.0830
0.2300
0.5660
0.8610
0.9750
0.9970

(h) AR(

0.5vsd=#0.5

n=198

¢

df

10%

Q
5%

0.1
102
0.3
0.4
0.5
0.6
0.7
0.8
0.9

17

0.9340
0.7240
0.4020

0.0860
0.1810
0.5260
0.9040

0.9980

0.1640 -

0.9660
0.6500
03130
0.0980
0.0420
0.1340
0.4270
0.8550
0.9950

(i) AR(l)¢_=0vs¢>On=492

¢

m

df

10%

Q
5%

0.0
0.1
0.2
0.3

12

21

0.1070
0.2290
0.7010
0.9640
1.0000

0.0600
0.1630
0.6110
0.9500
1.0000

¢ # 0.5 n=492

10%

Q
5%

1.0000
0.9820
0.7560
0.2580
0.0930
0.2580
0.8710
0.9970

1.0000

1.0000
0.9860
0.6700
0.1980
0.0520
0.1950
0.8220
0.9950
1.0000




TABLE6
ESTIMATES OF POWER OF THE TEST STATISTIC Q
: FOR n=252 k=3

(AR d=0vsp>0

o m df
0.0 6 44
0.1
0.2
0.3
0.4
0.5

(b)AR(1)d=0.5vsp#0.5
m df

0.1 6 44

0.2 '
0.3
0.4
0.5
0.6
0.7
0.8
0.9
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FIGURE 5

Standardised Wave Form of Nuclear Explosion (1995)
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FIGURE 7 (a)

Smoothed Spectra of Nuclear Explosion and Earthquake
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