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Abstract

This paper investigates the problem of testing for structural change for
diagnostic purposes. We propose a modified form of the fluctuation test
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1. Introduction

This paper considers the problem of testing for structural change for diagnostic

purposes. The most famous test for this purpose is probably the CUSUM test of

Brown, Durbin and Evans (1975). However, the results of Ploberger and Kramer

(1989) and Hansen (1991) show that the CUSUM test only has trivial local power

against certain types of structural change. As an alternative, Ploberger, Kramer and

Kontrus (1989) (henceforth PKK) propose a formal test called the fluctuation test

which has non-trivial local power irrespective of time and type of structural change.

The finite sample behaviour of the fluctuation test has been investigated by Sonberger

and Kramer (1986), Kramer, Ploberger and Kontrus (1989) among others and

intensively applied in empirical research (see Sonberger and Kramer (1986)).

On the other hand, a number of test statistics developed to test against various

specified alternatives have also demonstrated the same desirable local power property

as the fluctuation test. See, for example, Hansen (1990), Andrews (1993), Andrews

and Ploberger (1992) among others. In particular, the supF test of Andrews (1993)

seems of special interest. Although designed to detect a one-time discrete jump, it

was also recommended by Andrews for use as a diagnostic test.

This paper considers a modified form of the fluctuation test. Following the

same idea of the fluctuation test but employing a different choice of weighting matrix

and a more careful consideration of the partial sample estimation, we derive a new test

called the modified fluctuation test. The asymptotic distribution of the modified

fluctuation test is found to be free of nuisance parameters. We also investigate the

relationship between the supF test and the modified fluctuation test. It is found that,

although both tests stem from different classes of test procedures, they are actually

based on the same ingredients. A Monte Carlo experiment is then conducted to

compare the finite sample performance of the modified fluctuation test with the

fluctuation test and supF test. The results show that the modified fluctuation test can

be significantly more powerful than the fluctuation test in small samples. It is also

preferred to the supF test in some cases, although neither dominates the other

uniformly in finite samples.
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The structure of this paper is as follows. In the next section we take a close

look at the fluctuation test and propose our new test,. the modified fluctuation test.

The asymptotic distribution of the modified fluctuation test is also derived. Section 3

examines the relationship between the supF test and the modified fluctuation test.

Section 4 discusses the experimental design of the Monte Carlo study and its results.

Some conclusions are made in section 5.

2. A Modified Fluctuation Test

Consider the linear regression model

Y, = x13, + Ut (1)

where yt is the dependent variable, xt is a (kxl) vector of observations on the

independent variables, Pt is a (kxl) vector of unknown regression coefficients, and ut

is an unobservable disturbance term. The null hypothesis is that 13t = 130 for all time

periods t = 1,...,T.

We impose the following assumptions which are standard in this literature:

(A.1) The regressors xt are non-stochastic.

1 T
(A.2) limsup —E11,112+5 <co for some 8 > 0 (II-II is the Euclidean norm).

T—+co T

n 
T+n

(A.3) lim —Extxi — Exoet R ,
T.-+co T min(T,n)---÷co T t=n+1t=1

for some non-singular, non-stochastic (lock) matrix R.

(A.4) The disturbances ut are iid(0,a2).

In fact, assumptions A.1 and A.4 can be weakened to allow, for example, for

dynamic models; see PKIC for details. Denote Xt = (x1, x2,...,xt)', Yt = (y1, y2,...,yt)'.

The test proposed by PKK (1989) examines successive OLS parameter estimates
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f3t = (X`' XeYt for t = k+1,...,T and rejects the null hypothesis whenever these

estimates .fluctuate too much. Their test statistic is

s(r) = max t ii(xrx-r)invit
00 5

t=k,...,T 6-T

where III, denote the maximum norm; specifically, for any kxl vectors El' and 62

lelmax
i=1,...,k

"*2

(2)

(3)

& is a consistent estimate of the standard deviation of the disturbances. PKK (1989)

. suggest estimating a by

=[Tk1 (y \ 2

— 

The test statistic S(7) can be written as

S(T) = sup jiB(T) (OIL ,

(4)

(5)

where BW(r) = (XrXTY2(11t(r) —111), t(r) is the largest integer less than or equal
6T

to k+r(T-k). 13(1)(r) is a k-dimensional stochastic process whose trajectories are right

continuous at each r E [0,1] and possess left-hand limits. Using the general result on

the convergence in distribution of random elements, PICK (1989) showed that under

Ho

13T(r) B(r) = W(r) - rW(1), (6)

where denotes covergence in distribution as T --> oo, W(r) is a k vector of

independent Brownian Motion on (0,1). B(r) is thus a process known as "tied-down

Brownian Motion". This process has well known boundary crossing probabilities. In

particular, P[supo,,,111B(r)11... x] is well known (Billingsley (1968, P.85)).
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In the .fluctuation test, the choice of (Xr Xi-)/2 as the weighting matrix is

somewhat arbitrary. The motive behind this is to standardize the differences 11

as well as to facilitate the evaluation of the limiting distribution. Let [.] denote

"integer part". Notice that

_ 13T (x[TrYx[Tr] 
I [Tr]

so we can show that

var(
l[Tr] fiT) a 2 [(x[TrY x[Tr] -1 _ (XTXTyI.1

Compared with (XT'XT)Y2, another, and perhaps a better, choice of weighting

matrix is (x[Trli x[Trj, Y2) which varies consistently with the partial sample estimate

We thus define the first modified fluctuation test statistic BT:

= sup II (r) laD

pc Rd' x[Tri )Y2 al [Tr] _ T ).where f" (r) =

(7)

From (7), it is clear that fm(r) is based on the difference between fliT, the full

sample estimate of 0., and 13[Trl, the partial sample estimate of 13 which uses the first

[Tr] observations. As r approaches 1 this test is likely to have poor power as p[Tr]

approaches 13-T. An alternative test which would not suffer from this problem would

be one which uses the last T-[Tr] observations to get another partial sample estimate

of p. We denote pT-[Tr] as the partial sample estimator of 13 which uses the last T-[Tr]

observations. We define the second modified fluctuation test statistic BV):
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B T ) = sup II fT(r) (8)

r
• where fr (r) = (xT-pri, xT-[Tr1)1/2 (IiT-[Tr] 1ST).

6"

NT) and 13(27 contain the different information concerning possible structural

change in the regression model. NT) is likely to have low power for structural change

near the end of the sample, and I3(2T) will suffer power loss near the start of the

sample. We can thus form a new test which combines the information provided

individually by 13;T) and BT. Define the modified fluctuation test statistic BM

B(T) = sup { cli flm(r) + (1- c)Jlfr(r)11.
(3$1

(9)

where c is any constant which satisfies 0 c 1. If we choose c = 0, then

B(T) =13;T). If we choose c = 1, then BM = 13(2T). Thus BT and BST) are included as

special cases of 13(1). The,choice of c will be considered in section 4.

The asymptotic distribution of BM is an immediate consequence of the

following results, which are of some interest in their own right.

Lemma 1. Under Ho and the assumptions (A.1)-(A.4)

T 1 [Trr [Tr] y - dR (r)= —(X X ) 2(P
[Tr 

I — 13o)

— 1 rT I dRT(r) = —(X[ ri XL r0/2(13 PO) V-17 W(l),

where W(r) is a k vector of independent Brownian Motion on (0,1).

Proof. Define a k-dimensional random vector

et = xtut •
•

Under our assumptions, et obviously satisfies the conditions set out by Phillips

and Durlauf (1986, p.475). Then following their Theorem 2.1, we have
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[Tr]
1 2 -y- ( R) 2(E XiUi )! W(r) where R = plim —

1 
xix;.

1

On the other hand,

1_a (x x)Y2 (x[TrP x[Tr] 
I(r) i ri[Tr1 Milxiui

RT(r)

[Tr]= 1  p2(x[Tr]' x[Tri Tr]' 2 Exiui.

(x.[Triix[Tr] xrxT)-1E

- i• T
a= ---f----- [ (X

T 
X ) / 

Trimurrx[Tri)

Since (XrxT)/ R,(xurryxual) / Tr -› R, and the Lemma follows.

Lemma 2. Under Ho and the same assumptions as Lemma 1,

sT(r) = 
(x-r_urp xT-[Tr] )1/2 (fIT-[Tr] /30)d  1  cw(1) _

- r •

ST(r) = 
1 (xT-RryxT-Frr1/2(3AT 

- )d fi 
W(1)

where W(r) is the same k-dimensional Brownian Motion as in Lemma 1.

Proof. Notice that

6
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ST(r) _1 (x-r-frdixT-Erri

1 ^ 2

xT—[TrlixT—[Tr])-1 Exiui
[Tr1+1

[Tr]
2 ExT_,Tri,x-r-irri), To — r)] ( xiui — xiui).

— (xT—[Try xT—Fr1)Y2 f-crT'-vT)-1 TT(r)S = — i‘

 [pc T—[Trii xT—[Tr
]) / T(1— r)][8.(XTiXT)/

Again by Theorem 2.1 of Phillips and Durlauf notice that the RT(r),

RT(r), ST(r) and ST(r) are based on the same innovations xiui(i = 1, 2,...,T), so

Lemma 2 follows in a similar way to Lemma 1.

Theorem 1: *Under Ho and given assumptions (A.1)-(A.4), the statistic 13(T)(r)

has a well defined limiting distribution as T --> co with distribution function

F(x) = 0 x < 0,

co

= [1 + 2 EHY exp(-2ix2)]k x > O. (10)
i=1

Proof. Since firn(r) = -Ii[RT(r)— RT(r)], ffr)(r) =11-2-T [ST(r)— ST(r)].

Thus by Lemmas 1, 2 and the continuous mapping theorem of Billingsley (1968), we
have

BT (r) = sup { cli firn(r)1103+ ( - 011 ff)(r) II.

= sup RT(r)] I I.+ (1- c)111117 [ST(r)—ST(r)]
0<r<1

sup ell W(r) - rW(1)11+(1 c) II—(W(r) — rW(1))
05..r<1

= sup 1113(r)lico .
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The distribution of sup I B(r)11„,, is well known and given by (10). (See

Billingsley (1968, P.85)). This completes the proof of the theorem.

Theorem 1 shows that the modified fluctuation test has exactly the same

asymptotic null distribution as the fluctuation test statistic advocated by PKK. The

critical values of the modified fluctuation test for various number of regressors can

thus be found in PKK.

3. A COMPARISON WITH THE supF TEST

Although the supF test was originally developed as a test against a one-time

discrete jump, it has been recommended by Andrews (1993) for use as a diagnostic

test. Since both the supF test and the modified fluctuation test are based on the same

norm, it would be worthwhile to further investigate their relationship.

The supF test statistic of Andrews (1993) is given by

- / k)
sup F = sup F(r), with F(r) =

rEn ii'ii/(T-2k)

where CI is the vector of OLS residuals from fitting the model (1) under the null

hypothesis of no structural change, if is the vector of OLS residuals from fitting the

model (1) under the alternative hypothesis of a one-time discrete jump with jump

point [Tr]. In other words, ii = ri-rr , ii i."[Tr]'T is the vector of OLS residuals from

fitting the model

[Tr] ) (xRd 0 ) (pi ) 

4-

(u[Tr]

y = YT-[Tr] = T-
(Y 0 X [Tr1 P2 

uT[Tr] ) '
(12)
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Denote Z =
(x[Tr]

0 xT-[hr] ' = ((Pi , 1312)'. Then (12) can be written as

y = + u. As shown by Johnston (1984, p.20'7), the F(r) test statistic (11) can be

equivalently expressed as

F(r.)= (i*—
c)i(Z'Z)(i*— c')/ k
ii'ii/(T-2k)

where T' y = [Trr fiT-[Tr]' y

Evaluating (13), we have

F(r),_ ei;*—Di(Z1Z)(i;*— )/k 

ii'ii/(T-2k)

Observe that

(13)

T_ 2k rIT x [Trr x[TrJ fp' 'Fr] )
0

kurii [IT _ i1T-[Tr] 0 • XT[ h1]' T- [Tr] (IT 1 T-[Tr]

T- 2k 
[(P

T [Tr]) , [Trr x [Tr] )01 T _ f-3 [Tr])

(11 -
T T-[Tr] ),(xT-[Trr xT-[Trr _ [Tr] )]

P

fi(T)(r)_ (x[Tr] x[Tr])1/2(ii [Tr] _

ff)(r).  (xT1rrrxT-[Tr1)1/2(f3T-Errl _

Therefore

^ 2T— 2k 6.2 (TV (T) a (Ty (T)F(r) =  [—fi‘ • (r)fr -(r)+ f2- (r)fi •(r)]
r 1—r (14)
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11111/ ( (T - 2k) fln(r)

( 1 
\

- 1k 0 (fi(T)(r)r

o k
1 f(r)(r)

i 2
1 — r

_^2
u 

[fi
(T)'

(r)fi
(T)

(r) / r + f2(T)'(r)fIT)(r) / (1— r)].ka2 (15)

Comparing (15) with (9), we see that the supF test can essentially be expressed

as a weighted average of the two squared components of the modified fluctuation test,

except that the supF test uses a variance estimate obtained under the alternative

instead of the null. In other words, the two tests differ primarily in how they use the

information in the vectors fr)(r) and f2M(r) . The supF test takes sums of squares

of these elements, while the modified fluctuation test looks for the element which is

largest in absolute terms.

We see then that despite the fact that the supF test and the modified fluctuation

test are developed from different classes of test procedures, they are based on the

same components. The different principles lead to the construction of similar test

statistics. This confirms the claim that the supF test can be used quite effectively in a

data analytic fashion.

Since the asymptotic distribution of the modified fluctuation test is valid for

r E (0, 1), its asymptotic critical value is thus determined only by k, the number of

regressors. On the other hand, the asymptotic distribution of the supF test is jointly

decided by k and 11, a pre-specified subset of (0, 1) whose closure lies in (0, 1).

Therefore, in addition to k, the number of regressors, the critical values of the supF

test are also dependent on the choice of This shortcoming can cause some

inconvenience to the application of the supF test.
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4. SOME MONTE CARLO EVIDENCE

A Monte Carlo study was conducted to investigate and compare the size and

• power properties of the fluctuation test, the modified fluctuation test and the supF test.

The X matrix used in the comparison is

xt = [1, sint]'

which is the same as that is used by Kramer, Ploberger and Schulter (1992).

Three sample sizes were used, small (T = 30), medium (T = 60) and large

• (T = 120). To compare the power properties, we consider both a one-time discrete

jump and a random walk in 0. Against a one-time discrete jump, a structural change
in 1 is given by

Pt = Po +AP, when t > T*

643 = b1 / TI/2 (cos, sin)' .

On the other hand, against the random walk alternative, a structural change in 13

is given by

Pt = Po +Tit, when t T

= b2 T
1/2
(V1t COS4),V2t sin 4)'

where 4) is the angle between the mean regressor which is given by

T
c= llin 1 x =[l,

T-4.0 T t.,

and the change vector b1 (b2). (I) takes the value 0°, 30° 60° and 90°. v1t, va are

independent N(0,1). We set Po = (0, 0)' initially. 131 = 8.6 and b2 = 2.0. The b1 and

b2 are selected so that the tests have reasonable power under the alternative

hypothesis.
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Under the alternative hypothesis, the structural change occurs at T* =

Against the one-time discrete jump alternative, A, = 0.15, 0.3, 0.5, 0.7, 0.85. Against

the random walk alternative, we let A, = 0, 0.2, 0.5 and 0.8. Obviously k = 0 implies a

random walk at the beginning of the sample. For any combinations of

4), T, X, N = 1000 replications were performed to investigate the actual size

performance of the tests.

For the fluctuation test and the modified fluctuation test, critical values only

depend on the number of regressors. For the supF test, however, the critical values

used in the experiment depend on the range of 11 through the choice of r. We let

r = 0.1, 0.05 and 0.025, respectively for T = 30, 60 and 120. Befoie the modified

fluctuation test can be computed, a c value in (9) has to be chosen. A few c values are

used in the experiments; the results for the modified fluctuation test reported in this

chapter correspond to a c value of 0.5. Results seem largely insensitive to reasonable

c values.

Observe that the fluctuation test and the modified fluctuation test estimate G2

under the null hypothesis while the supF test estimates G2 under the alternative of a

one-time discrete jump. For a fair comparison, we also estimate G2 under such an

alternative for both of the fluctuation test and the modified fluctuation test. Obviously

this would not change their asymptotic distribution under the null while it may

improve their power under the one-time discrete jump alternative. For convenience,

we use M-Fluctuation to represent the modified fluctuation test.

Table 1 reports the rejection frequencies of the three tests using the asymptotic

1%, 5% and 10% significance levels. We observe that these tests tend to over-reject

the true null hypothesis when sample size is small. Among them, the fluctuation test

has the worst size distortion while the M-fluctuation test has much better

performance. The supF test is somewhat between the fluctuation test and the M-

fluctuation test. However, when sample size becomes larger, their size behavior

improves quickly.

Tables 2 to 4 report size-corrected powers of the three tests. These tables

eliminate the power distortions that arise due to under- or over-rejection under the null

12



when asymptotic critical values are used. The estimated powers of all the tests clearly

depend on the angle between mean regressor and the shift vector as well as the

location of structural change, particularly when the alternative is random walk.

It is easy to observe that the M-fluctuation test consistently dominates the

fluctuation test when sample size is small. Their power difference is reasonably large,

exceeding 0.1 in most cases considered. When sample size becomes larger, the power

advantage of the M-Fluctuation test gradually disappears. It is only slightly more

powerful than the fluctuation test when T is 60. There is essentially no difference

between the tests when T is increased to 120.

A comparison between the M-fluctuation test and the supF test shows that

against a one-time discrete jump, the M-fluctuation test tends to have better power

around the sample mid-point while the supF test is more powerful against an early or

late structural change. Sometimes the power gain for the supF test over the M-

fluctuation test is large. This is not surprising if we notice that unlike the supF test,

the M-fluctuation test is unequally weighted across different values of r with

asymptotic variance being equal to r(1-r). This variance attains its maximum at

r = 0.5. Overall, it seems that the supF test is slightly preferred to the M-fluctuation

test.

In terms of the random walk alternative, the M-fluctuation test typically

outperforms the supF test by a small margin when the random walk occurs early or

from the beginning of the sample. On the other hand, the supF test is slightly

preferred against the random walk which occurs late in the sample. Against the

random walk which occurs in the middle of the sample, the M-fluctuation test seems

more powerful that the supF test with small and medium sample sizes, while the supF

test looks better with large sample sizes.

In concluding, the M-fluctuation test seems to be a good alternative to the

fluctuation test and a potential competitor to the supF test. It significantly improves

the power performance of the fluctuation test and outperforms the supF test in certain

cases. It also has better size behavior than both the fluctuation test and the supF test
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in small samples. Hao (1994) has provided further Monte Carlo evidence in support

of the M-fluctuation test.

5. CONCLUSIONS

An important feature of the fluctuation test is that it has nontrivial local power

irrespective of the particular type of structural change. This property makes it more

attractive than other diagnostic tests such as the CUSUM test. In this paper we

suggested a modified form of the fluctuation test through the employment of a

different weighting matrix and a more careful consideration of 'partial sample

estimation.

A comparison of the modified fluctuation test with the supF test of Andrews

(1993) showed that although the two tests are proposed in different classes of test

procedures, they are in fact based on the same ingredients. Both tests could thus be

expected to have similar power performance whether as a particular test against

discrete jump or a diagnostic test against a more general alternative hypothesis.

The size and power properties of the fluctuation test, the modified fluctuation

test and the supF test were investigated through a Monte Carlo simulation. The

modified fluctuation test has demonstrated the best size performance and is

significantly more powerful than the fluctuation test in small samples. It is also

preferred to the supF test in some cases, although none of them dominates the other

uniformly in finite samples.
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Table 1

Estimated null rejection frequency

Test 10% 5% 1%

T = 30 Fluctuation 0.178 0.111 0.042
M-Fluctuation 0.105 0.062 0.020

SupF 0.116 0.069 0.023

T =60 Fluctuation 0.100 0.049 0.012 ,
M-Fluctuation 0.093 0.047 0.012

SupF 0.092 0.050 0.014

T = 120 Fluctuation . 0.082 0.038 0.008
M-Fluctuation 0.082 0.040 0.008

SupF 0.080 0.043 0.010
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Table 2
Estimated size-adjusted powers at 5% nominal level (T = 30)

/ b 0° 30° 60° 90°

One Time Discrete Jump
Fluctuation

.15 8.6 .299 .222 .149 .173

.3 8.6 .691 .620 .397 .351

.5 8.6 .861 .719 .430 .488

.7 8.6 .658 .388 .182 .320

.85 8.6 .231 . . .151
M-Fluctuation

.15 8.6 .394 . . .244

.3 8.6 .805 .791 .605 .463

.5 8.6 .926 .856 .631 .620

.7 8.6 .781 .577 .343 .440

.85 8..6 .375 .346 .266 .228
supF

.15 8.6 .501 .476 .379 .302

.3 8.6 .737 .751 .604 .408

.5 8.6 .850 .799 .604 .476

.7 8.6 .727 .594 .430 .387

.85 8.6 .514 .472 .385 . .276
Random Walk

Fluctuation
rw 2.0 .051 .047 .139 .281
.2 2.0 .316 .245 .449 .688
.5 2.0 .564 .489 .190 .055
-.8 2.0 .033 .032 .033 .030

M-Fluctuation
rw 2.0 .100 .108 .254 .407
.2 2.0 .465 .332 .572 .819
.5 2.0 .705 .621 .304 .082
.8 2.0 .058 .042 .032 .035

supF
rw 2.0 .139 .102 • .176 .290
.2 2.0 .389 .265 .481 .718
.5 2.0 .623 .583 .317 .097
.8 2.0 .103 .067 .034 .030
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Table 3
Estimated size-adjusted powers at 5% nominal level (T = 60)

/ b 300 60° 90°

One Time Discrete Jump
Fluctuation

.15 8.6 .384 .385 .273 .186

.3 8.6 .858 .762 .511 .490

.5 8.6 .953 .899 .678 .636

.7 8.6 .874 .769 .506 .452

.85 8.6 .332 . . .139
M-Fluctuation

.15 8.6 .384 .399 .299 .201

.3 8.6 .873 .776 .541 .523

.5 8.6 .957 .908 .711 .669

.7 8.6 .884 .784 .528 .492

.85 8.6 .355 .302 .198 .162
supF

.15 8.6 .509 .533 .431 .273

.3 8.6 .807 .768 .587 .449

.5 8.6 .892 .857 .673 .528

.7 8.6 .807 .749 .568 .418

.85 8.6 .507 .506 .351 .233
Random Walk

Fluctuation
rw 2.0 .971 .916 .427 .060
.2 9.0 .998 .984 .675 .066
.5 2.0 .852 .730 .299 .060
.8 2.0 .125 .108 .082 .070

M-Fluctuation
rw 2.0 .977 .918 .437 .067
.2 2.0 .998 .986 .693 .076
.5 2.0 .857 .746 .316 .072
.8 2.0 .136 .121 .101 .085.

supF
rw 2.0 .950 .864 .405 .085
.2 2.0 .995 .972 .601 .073
.5 2.0 .772 .660 .243 .054
.8 2.0 .163 .155 .112 .076

•
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Table 4
. Estimated size-adjusted powers at 5% nominal level (1= 120)

0° 30° 60° 90°

One Time Discrete Jump
Fluctuation

.15 8.6 .392 .299 .177 .193

.3 8.6 .862 .762 .523 .512

.5 8.6 .937 .866 .670 .671
• .7 8.6 .853 .726 .483 .508 •

.85 8.6 .363 . . .156
M-Fluctuation

.15 8.6 .378 .303 .179 .191

.3 8.6 .859 .763 .534 .506

.5 . 8.6 .934 .871 .677 .667

.7 8.6 • .846 .719 .484 .508

.85 8.6 .363 .247 .147 .156
supF

.15 8.6 .529 . .453 .334 .259

.3 8.6 .804 .729 .556 .448

.5 8.6 .857 .809 .639 .527

.7 8.6 .788 .703 .531 .429

.85 8.6 .514 .405 .280 .227
Random Walk

Fluctuation
rw 2.0 .892 .768 .392 .371
.2 2.0 .960 .900 .914 .977
.5 2.0 .464 .660 .982 .996
.8 2.0 .662 .517 .190 .129

M-Fluctuation
rw 2.0 .888 .758 .381 .376
.2 2.0 .954 .897 .914 .979
.5 2.0 .454 .656 .981 .995
.8 2.0 .650 .508 .194 .133

supF
rw 2.0 .756 .596 .340 .319
.2 2.0 .964 .923 .857 .938
.5 2.0 .493 .820 .987 .996
.8 2.0 .697 .600 .274 .137
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