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Abstract

The concept of fractional cointegration, whereby deviations from

an equilibrium relationship are allowed to follow a fractionally inte-

grated process, has attracted some attention in the literature of late.

The long memory aspect of the fractional process is seen as an appro-

priate characterization of slow reversion to an equilibrium relation-

ship. This paper presents a Bayesian method for conducting inference

within the context of a fractional cointegration model. The analysis

is based on an approximate likelihood function, which is motivated

by the need both to solve a fundamental identification problem and

to produce a posterior density with a relatively simple algebraic form.

Inferences are based on the associated marginal posterior densities,

estimated by a hybrid of the Gibbs and Metropolis Markov Chain

Monte Carlo methods.

*I would like to thank Brett Inder and Vance Martin for helpful comments during the

preparation of this paper.
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1. Introduction

The concept of cointegration applied in the literature is almost exclusively that of sets of

1(1) variables producing 1(0) linear combinations, with emphasis given as a consequence

to the stationarity of the cointegrating errors. There has been some work, for example

Stock and Watson (1993), Kitamura (1995) and Johansen (1995), in which variables of

higher integration orders are incorporated in cointegration models. However, all variables

are assumed to have integer orders of integration and the error processes an integration order

of zero.

Recently, certain authors have extended the definition of cointegration to allow for non-

integer orders of integration. Cheung and Lai (1993) reassess the doctrine of purchasing

power parity (PPP) by applying the Geweke and Porter-Hudak (GPH) test for fractional

integrationl to the residuals of an estimated PPP relationship.2 Silvapulle (1995) develops

a score test for seasonal fractional cointegration, again applied to the residuals of an estimated

model. Dueker and Startz (1993) apply a Generalized Method of Moments procedure to a

model which allows both the variables and the error term to be fractionally integrated. Their

method produces simultaneous estimates of all (fractional) orders of integration, in additional

to estimates of the cointegrating parameters.

One important outcome of the extension of cointegration to incorporate fractionally in-

tegrated error processes is the highlighting of the mean reversion aspect of cointegration.

Specifically, the idea that an equilibrium relationship holds in the long run can implicitly be

1 See Geweke and Porter-Hudak (1983).
2 Related work by Diebold, Husted and Rush (1991) examines the PPP issue via a univariate fractional
integration approach, whereby the regression coefficient in the PPP relationship is assigned a value of one,
rather than estimated.
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equated with the tendency of the error term to ultimately revert to its mean after a shock

to the relatioriship. The stationarity of the error process is of secondary importance. Rather

than imposing both mean reversion and stationarity by equating cointegration with an 1(0)

error process, the allowance of a fractional value for the relevant differencing parameter en-

ables a conclusion in favour of cointegration to be reached on the basis of a finding of mean

reversion alone. The hope is that the existence of a long-run economic relation is more easily

discerned via this more appropriate characterization of the relation.

The present paper presents a Bayesian approach to inference in a model which allows for

fractional cointegration. It outlines a hybrid Markov Chain Monte Carlo (MCMC) numer-

ical strategy for estimating marginal posterior densities for both the parameter controlling

the presence of fractional cointegration and the parameter(s) of the cointegrating relation.

Inferences concerning these aspects of the model are then based on the estimated densities.

We show that the exact likelihood function for the assumed cointegration model is prob-

lematic in two ways. First, it renders the regression parameter(s) unidentified when there

is a lack of cointegration. Second, it is a highly complicated function of the parameters. In

contrast, a simple approximation to the exact likelihood produces a form for which the asso-

ciated identification problem is solvable via a judicious specification of a so-called Jeffreys'

prior density. In addition, the parameters enter the resultant joint posterior in such a way

that the relevant marginals are easily estimated via a combination of Gibbs and Metropolis

MCMC algorithms.

We also demonstrate that when the fractionally cointegrated error term is allowed a

short-run autoregressive (AR) component, inferences become ambiguous. In particular, the

marginal density for the fractional differencing parameter can be bimodal, with the second

mode reflecting the parameter which summarizes the long-term memory of the AR compo-

nent. Whether this ambiguity is truly specific to our parameterization and/or inferential

method, or is a manifestation of a more fundamental problem associated with the estimation
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of short-run dynamics in conjunction with a long-memory fractional component, is unclear

at this stage.

The paper is organized as follows. Section 2 provides an outline of .the concepts of frac-

tional integration and cointegration, including the correspondence between a certain range

of values for the fractional differencing parameter and mean reversion. Section 3 begins by

deriving the exact likelihood for the fractional cointegration model, and demonstrating its

attendant difficulties. The approximate likelihood, along with the solution of its associated

identification problem via a Jeffreys' prior, is then presented. Some instances of the pos-

terior bimodality mentioned above are presented. The proposed hybrid Gibbs/Metropolis

sampling method is described very briefly in Section 4. In Section 5 we provide the results

of a Monte Carlo study, in which the Bayesian inferences are compared with a variety of

Classical alternatives, including Maximum Likelihood applied to the residuals of the esti-

mated cointegrating equation. Although preliminary, these results tend to suggest that, at

least for a parameterization which avoids the short-run/long-run problem mentioned above,

the Bayesian method provides a very viable alternative to the Classical procedures. Section

6 describes the application of the Bayesian method to the problem of both testing for and

estimating PPP relations for various countries. Some comparison is made with Classical

inferences. Once again with the qualification made as to the allowable parameterization, the

results produce fairly convincing evidence that PPP exists, but with reversion to parity after

a shock being very slow. The paper gives some conclusions in Section 7.

2. Fractional Cointegration and Mean Reversion

Consider the following bivariate model for the generation, at time t, of observations on the

variables y and x respectively:

Yt = i@xt uit,

xt = xt-i 1L2t-

4
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We assume that tilt is an autoregressive fractionally integrated moving average (ARFIMA)

(p, d, 0) process represented by:

43(4(1 — L)duit = eit, (3)

where (I)(L) is a p-dimensional polynomial in the lag operator L, denoted by (1)(L) = 1

— 02L2 — • • • —Li, all roots of 43(4 lie outside the unit circle and eit is as defined

below. Crucially, d is allowed to assume any real number value greater than —1. The error

term in (2) is assumed to be an AR(q) process of the form a

e(L)u2 = €26 (4)

where the roots of the polynomial e(L)=1-01L-02L2 -- • •-0qLq also lie in the stationary

region. It is assumed that et = (eit, 620' has a bivariate Normal distribution of the form:

.eit 1
NID(

e2t o 

0 E an 012 ),

021 (722
012 = (721. (5)

The allowance of a non-zero value for cr12 allows for the endogeneity of Xt.

It is the interaction between eb(L) and (1 — L)" which leads to the inferential problems

regarding d alluded to earlier. We shall demonstrate our inferential procedure with 43(4

incorporated, including examples of its impact on the marginal density of d. The reason

for omitting moving average (MA) components in the assumed processes for uit and u2t is

that their incorporation leads to an added complication for the MCMC numerical procedure,

which we have chosen to avoid in the present paper.3 We have assumed that the use of an

MA rather than an AR representation for the short-run component in (3) is not sufficient to

avoid the inferential problems regarding d. However, this deserves further attention.

Given the /(1) nature of the regressor, (1) potentially represents a cointegrating rela-

tionship between two /(1) variables. It is of interest both to test for this possibility and to

2 See below.
3 See Chib and Greenburg (1994) for an example of the application of an MCMC method to a regression
model with ARMA errors.
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estimate the value of 13 in the event that the latter is concluded to be the parameter of a

cointegrating relationship. The existence of cointegration depends upon the value assumed

by d.

The fractional differencing operator (1 — L)d in (3) is defined through the binomial ex-

pansion:

where:

00

(1— L)d =E
J=0

F(j-
dj =  j = 04,2,•••,

and ro denotes the gamma function, which is, in turn, defined by:

F(z)

f000 sz-i -e 'cis if z> 0,

oo if z = 0,

r(z + 1)/z if z < O.

(6)

The expansion given by (6) is valid for any value of d, but has declining coefficients if and

only if d> —1. The coefficients are square summable if and only if d> —0.5.4

Three further ranges of values for d need to be distinguished for our purposes:

1. For values of d < 0.5, uit is a covariance stationary process with a valid Wold rep-

resentation. However, for d 0, both the coefficients of the infinite moving average

representation and the autocorrelations of uit decline at a hyperbolic rate, in contrast

to the faster exponential rate of decay associated with the stationary AR process cor-

responding to d = 0. (See Hosking (1981)). For d < 0.5, but not equal to zero then, uit

is said to be a long-memory stationary process.

2. For 0.5 <d < 1, the coefficients of the moving average representation are no longer

square summable and uit is nonstationary as a consequence. However, the individual

4 See Hamilton (1994, pp.448-52) for a demonstration of the relationship between the value of d and the
Coefficients in (6). By square summable, it is meant that the di decline at a fast enough rate so that

E.& <co..7 3
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coefficients still decline to zero with an increase in the lag length. In such a situation,

the long-run impact of an innovation on uit is zero and the error process is still mean

reverting. In the language of Diebold, Husted and Rush (1991) and Cheung and Lai

(1993), amongst others, the infinite cumulative impulse response is zero.

3. For d > 1, uit is both nonstationary and non mean reverting, with the infinite cumula-

tive impulse response being finite and non-zero for d = 1, and infinite for d> 1.

Our proposition is that mean reversion in uit is the crucial condition for (1) to represent

a cointegrating regression, rather than uit having to be both mean reverting and stationary.

As such, we are interested in calculating the posterior probability that d < 1. It is also

important to produce posterior point estimates of d, in order to estimate the rate at which

mean reversion occurs.

Conditional on d < 1, f3 is the parameter of a cointegrating relationship. Inferences

regarding are to be based on an estimate of its marginal posterior density. Since the

essence of the method used to produce inferences remains the same when is a vector of

parameters, we are justified in simplifying the exposition by concentrating on the bivariate

mode1.5

3. An Approximate Likelihood

3.1 Motivation for the Approximation

The Bayesian approach to inference requires specification of both a likelihood and prior

density function. As already alluded to, the exact likelihood function associated with the

assumed model does not appear to be a sensible basis for inference. It is of interest to view

the form of this likelihood in order to fully motivate our approximation to it.

For a univariate fractionally integrated process as described in (3), with d explicitly

5 As noted in previous work (see Martin (1995)), the inclusion of a constant term in the model has a non-
trivial impact on the convergence of the Gibbs Sampler. We demonstrate our procedure without a constant
term, applying it to de-meaned data in Section 6, in order to indirectly allow for a non-zero intercept.
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constrained to the range: —0.5 < d < 0.5, Sowell (1992) has specified the full matrix of

autocovariances for the n-dimensional vector ui = (un, u12, , uin as having a Toeplitz

form:

annii =-- 0-11{7(k)} for k, 0, 1, 2, . . . , n — 1,

where the 7(k) are given by:

7(k) = E CiCi(d,P —
J=1

- with the pi representing the p roots of 43(4 and the cj and Ci given respectively by:

Ci = [Pi 114 H (p;i=1 mOi

and:

Ci(d, p — k, pi)
2p

1

= Jr(Pr[(1-pP e-iA)- (i_p--. e-a)]
3

x (1 — e-jA)_d(1 — eiA)_de-jA(P-OdA.

If an MA component were assumed to appear in the uit process, in addition to the AR

component, then the parameters of the former would further complicate the form of the

7(k). If uit were assumed to be fractional white noise, (i.e. p = 0 above), then the form of

the autocovariances would simplify to:

F(1 - 2d)r(d k) 
7(k) = F(d)T(1 - - d — k)• (7)

In the case of our cointegration model, we need to specify the covariance matrix for

\
U = (Up U

/
2) where u2 denotes the n-dimensional vector (u21, u22, , u2,-,)'. We denote this

matrix by n and partition it as follows:

= 1 [ anon 0-12‘212

012E2'12 7221

It can be shown that the off-diagonal matrix is given by:
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where:

012E212 = 0.12

00

wk = E Cej
j=k

oo

WO W1 W2 • Wn-1

61 WO L4)1 W2

62 Si •

Sn —1

62 • W1

. .•Si coo

k= 0,1,2,...,n— 1,

sk Oiaj-k k = 1, 2, . . . n — 1,
j=k

and the /pi and aj are the coefficients of the infinite MA representations of uit and u2t

respectively. The aj are given by the expansion of e(L)-1 and are thus indirect functions

of the Oi via the roots of e(L), whilst the //)j are functions of d and the roots of 130(L). For

p =0, the /Pi simplify to:

+ d) 
1Pj = + i)r(d) •

Hosking (1981) gives the form of the ipj when 43(4 is a first order polynomial in L.

In total then, the exact likelihood function for the entire parameter set is given by:

L(070.117 U121(7227 d, c5 ely, oc 101-1/2expfu'Crlub (8)

where = (6T 17 6 21 • • • 1007 = (01,02,. , 0q)' and y and x denote the observation vectors

for yt and xt respectively. If the true value of d were deemed to lie in the nonstationary region

of the parameter space, then uit would need to be differenced prior to basing inferences on

(8). Cointegration would then be associated with that part of the parameter space in which

d —1 = d*(say)< 0, and a lack of cointegration with d* > 0.

It is obvious that the truncation of the parameter space at ±0.5 may well impact on the

relative probabilities of cointegration/non-cointegration as calculated from (8). However,
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there is an even more fundamental problem associated with the use of the latter. In the

subspace of the parameter space in which d* = 0, .1.(L) =1 and 0(L) =1, is unidentified.

To see this, we need to note that, when evaluated at these parameter .values, the matrices

ii and 112 equal the identity matrix In, in which case (8) (as applied to Ault and u2t) is

proportional to:

IE0Iry2 exp{(Auc, u12)(E-1 0 /)(Au', u12)'1,

which can, in turn, be expressed as:

Er/2exp{-1/2trE-15},

(9)

(10)

where S =•EtKAYt — 0Axt), Axtlq(Ayt — f3Axt), Axt]. Decomposing (10) into the product

of conditional and marginal likelihoods as follows:

'711.2

lErn/2exp{1/2trE-15}

=
-n/2 r N-• HAN opxt)expt  e 20.22 t2a 11.2 i-at L‘ 

- 421*(72-2n/2 Pat}2}1

a

a22

where o-11.2 = — 42/c-22, we see that enters the likelihood via the sum + (cr12/a22)

and, as such, cannot be individually identified. Any fiat prior Bayesian inference based on

(9) would be invalid, since the posterior density would be improper.

We argue below that, within a Bayesian context, any exact identification problem can po-

tentially be eliminated via a redefinition of the likelihood/posterior as an equivalent (almost

everywhere with respect to Lebesque measure) density in which the identification problem is

eliminated. However, previous work (see Kleibergen and Van Dijk (1994a and b) and Martin

(1995) ) has highlighted the fact that a near lack of identification in the surrounding region

can cause sufficient distortion to preclude sensible inferences. Since, in this case, the region

in question is that which incorporates the cointegration/non-cointegration dichotomy, such

distortion would be a significant problem.

In all three studies, it was found that an appropriately defined Jeffreys' prior was suf-

ficient to offset both the exact and near identification problem. In the present context, we
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have been unable to derive such a prior, with the likelihood as defined in (8). However, the

approximation to (8) which we present in the following section enables an easy derivation of

the requisite prior.6

Just as important, with regard to the application of a Gibbs-based MCMC strategy, even

if an appropriate identifying prior could be found for (8), the resultant posterior must also be

such that the induced conditional posteriors are, at least in the main, of a form from which

simulation is both possible (i.e. the conditional densities have a known form) and efficient

(i.e. the parameters can be handled in 'sets). Given the very complicated way in which the

parameters enter (8), it is unlikely that it and any prior would combine in such a way to

satisfy either of these requirements. In contrast, the approximate likelihood below produces

( in combination with the Jeffreys' prior to be defined) a posterior which is amenable to an

efficient MCMC algorithm.

3.2 The Approximation

The approximation we use is based on the truncation of the infinite expansion of:

(1 — L)duit

to a finite expansion, denoted by:

d2Uit-2uit +... + = D(L)uit. (12)

The dj are defined as in (6) and are thus different polynomial functions of the single parameter

d. We reiterate that the coefficients of the infinite expansion which (1 — L)d represents,

approach zero as the lag length increases for any d> —1. As such, the truncation of the

expansion is valid for any d> —1.7

6 we note that Maximum Likelihood applied to (8) would be fraught with convergence problems if the

likelihood had a large amount of mass in the region of near lack of identification.
7 The truncation in (12) has been used in previous Classical work. For example, Chung and Baillie (1993)

propose a conditional sum of squares estimator based on this form of truncation as an alternative to the more

computationally burdensome exact MLE method of Sowell for the univariate ARFIMA case.
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Implementing the truncation in (12), the likelihood function is now proportional to

1E1 n/2 exP{-1/2 ELI ((L)D(L)u1 , e(L)u2t)E-1 (c1)(L)D(L)u1t, (L)u2tY }

= I Ern/2 exp{-1/2trE-1S},

where S is now defined in terms of the data as:

(13)

S =E (4)(L)D(L)(yt - oxt), e(L)AxtY(cD(L)D(Lxyt - oxt), e(L)z). (14)

The contemporaneous covariance parameters now enter the likelihood via E, separately from

the parameters controlling the dynamics, which enter via S. Moreover, if we expand the

exponent in (13) as

—1/2 *1E1-1 (.722 E[crip(nuid2 + 0-11 E[ecou2t12 - 2(712 E[(1.(L)D(nuite(L)u2t1),

we see that each set of time series parameters essentially enters separately from the others.

These features of the approximate likelihood function are readily exploited by the MCMC

method to be outlined in Section 4.

However, the approximate likelihood in (13) still contains an identification problem. De--

composing the full likelihood in (13) as:

cr117‘2- exP{-1/(20'11.2) El(CL)D(L)Yt — /34(L)D(L)x) — (0.12/722)e(L)Axt121-
(15)

0cn/2 exp{ —1/ (2u22) E[e(L)Axt122 }7

is seen to be unidentified by the approximate likelihood when 10(4 = 0 (L) = 1 and d =

which corresponds once again to the subspace in which there is an lack of cointegration

between xt and yt. In contrast to the identification problem in the exact likelihood, however,

the present problem is solvable via the specification of a particular Jeffreys' prior.

3.3 A Jeffreys' Prior.

In order to motivate the required form for the prior, we need to look a little more closely at the

way in which the identification problem manifests itself in the joint posterior density based
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on (13). Let us concentrate, for ease of exposition, on the case where (1)(L) = e(L) = 1

is specified from the outset, in which case the parameter set is simply (0, E, d). We shall

assume prior independence between E and the remaining parameters, thereby decomposing

the joint prior for all parameters as:

1303, E, P(E)-10, (16)

For E we shall utilize the noninformative Jeffreys' prior, I/E11/2 oc 1E1-3/2 , where IE denotes

the submatrix of the information matrix which relates to the elements of E, =

E(-a2 in LiaEaE'). For the time being, we shall allow the second component in (16) to

be a uniform density. The resultant joint prior enables standard Bayesian analysis to be

performed, and the precise nature of the identification problem highlighted.8

Given the approximate likelihood function given by (13) and the prior function given by

(16), the form of the joint posterior density is:

p(0, E, oc 1E1--(n+3)12 . exp{-1/2tr(E-1S)}, (17)

with (0, E, d) defined on D = R1 x SP" x R1 (> —1), where SP" denotes the space of (2 x 2)

positive definite symmetric matrices and R1(> —1) denotes the real number line beyond —1.

Standard techniques enable integration with respect to E, yielding the following form for

the joint density of 3 and d:

where:

p(13, dl y, x) cc {Ci + C2/32 — 2C30}-51.1 (16

= E[D(L)Yt]2 E[AXt]2 [E D(L)YtAXt]21

C2 = [D(L)Xt]2 pAXt12 D(L)XtAXt121

C3 = > D(L)ytD(L)xt[Axt12 —E D(L)ytAxt D(L)xtAxt

.8 See Box and Tiao (1973, Chp.2) for an accessible discussion of the sense in which a JefEreys' prior is

"noninformative".
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and we further define:

C4 = - C3/ C2 .

It is easy to show that when d = 1, and D(L) = 1 — L as a consequence, both C2 and

= 0. This in turn implies that the joint density for .0 and d is a constant function of and,

hence, fails to identify f3 in this region of the parameter space. The integral, with respect to

0, of this slice of the joint density at d = 1, being unbounded, ascribes an infinite value to

the marginal density of d at the point d = 1.

- For d 1, standard integration techniques can again be used to produce respectively the

conditional and marginal densities:

and:

POP, 3', x) cc [4-112{1 + — 1)s2pirni2

-4-(n- ,
Adly,x) C;--

1/2c 1)/2

where -13 = C3/C2 and (n — 1).s2,3 = C4/C2 •

If the impact of the lack of identification of at d = 1 were to be felt only at that

single point, then the solution would be to simply redefine the joint density function as (17)

with support D* = D n {(0, d, E); d 1}. This amounts to finding a joint density which

is equivalent almost everywhere (with respect to Lebesque measure) to the original density,

but which does not incorporate the identification problem. Our inferences regarding both

and d would be unaffected by such a change in the definition of the joint posterior.

However, as found in the previously cited work, the impact of a "near" lack of identifica-

tion can be significant for a wide range of d values around 1, depending on the nature of the

true underlying data generating process (dgp). Figures la and lb provide examples of the

marginal density of d when the data has been generated from processes with true values of

0.2 and 0.8 respectively for d. As is quite evident, when the bulk of the density is situated

14



well below d = 1, as in Figure la, the density appears to be a well-behaved function of d,

centred neat: the true value. In the case of Figure lb however, the density has a distorted

appearance, with an artificial global mode being produced at a point arbitrarily close to 1,

despite the true d being well into the mean reversion region. This distortion is typical of

densities produced from dgp's with high d values.9

lo. OGP: d 0.2

Mod. 0.28

-0.2 -.0 0.2 0.6 0.6 0.8

1b. DGP: d = 0.8

d Mod* 1.00

0.2 0.4 0.6 0.8 1.0

Figures la and lb. Marginal posterior of d. (Flat joint prior for 3 and d)

We can shed more light on the impact of this near lack of identification on the marginal

density of d specifically, by analyzing more closely the two quantities C2 and C4, of which

p(dly, x) is comprised. Graphical analysis suggests that, in the range of interest (i.e. for

—1 <d < 1.5), C2 behaves like a quadratic function of d which assumes a minimum value

of zero at d = 1, irrespective of the true value of d in the underlying dgp. The only data

9 Numerical integration was used to produce these densities and those in Figures 2, 3 and 4. The MCMC

algorithm is not applied until Section 6. The value d =1 has been eliminated from the support of the density

for the purpose of producing the graphs. The values for 0, 012, an and cr22 in the dgp underlying these and
all other graphs produced in Sections 3 and 5 are 3, 0.5, 1 and 1 respectively.
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dependent aspect of C2 (and, hence q-1/2 ) is the degree of concentration of the function

around its minimum (maximum) value, and that is, in turn, affected by x only. C4 on

the other hand, behaves like a quadratic function of d whose minimum value appears to be

appropriately influenced by the true value of d.

In summary, the marginal density of d is the product of an apparently well-behaved

function of d,(n-1)/2, which seems to possess sensible inferential content regarding d, and

-
a function, C 1"2, which possesses no such content. The latter, moreover, serves to dominate

the former function, for certain dgp's, producing a density with a large amount of probability

content around d = 1, even when the true d is well into the cointegration region. It would

-
appear to be desirable, therefore, to somehow offset the c

1/2
2 factor, in order to produce

sensible inferences.

As has been mentioned several times now, the elimination of the impact of the identifica-

-
tion problem, of which the distortion induced by 

1/2 
is the manifestation, may be achieved

via the use of a particular Jeffreys' prior. The latter is proportional to the determinant of

the information matrix and, hence, related to the inverse of the covariance matrix of the

relevant posterior density. In the case of potentially unidentified parameters, it should tend

to offset the infinite conditional variances which occur at the points at which the parame-

ters become unidentified, as well as eliminating any associated irregularity in the marginal

densities in regions of a near lack of identification. As pointed out by Kleibergen and Van

Dijk, the success of the Jeffreys' prior in this regard depends crucially on the way in which

the expectations within it are evaluated.

In order to derive the appropriate form of the Jeffreys' prior, it is necessary to allow the

identification problem to reveal itself in the full likelihood function. That is, the relevant

parameter must fail to be identified by the full likelihood function in order for the Jeffreys'

prior, as derived from that function, to be operational in terms of offsetting the lack of

identification. In our case then, we need to view the likelihood in terms of the decomposed
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form in (15), reproduced here for the case where 43(L) = e(L) =1:

L(,8, E, dly, oc I Ern/2 exp 1/2trE-1S1

-n/2 r
0'11.2 • expl-1/(2an.2) E[CD(L)Y OD(L)x) —

t

or -2r1/2 exp{-1/(2c722) E[Axt]2},

(0-12/0-22)1xd21.

(21)

Maintaining the assumption of prior independence of E and the remaining parameters, the

first line of (21) can be used to derive the Jeffreys' prior for E, namely, 1E1-3/2. With this
•

independence assumed, the element (712/(722 appearing in the second line of (21) can be

replaced by the artificial parameter a, and the Jeffreys' prior for )3 and a conditional on d

derived from this first part of the decomposition, being the only part of (21) in which these

parameters appear.

We need therefore to derive the determinant of the (2x 2) information matrix:

10,a = E
_2 L/832 —ainLiapaa[

—82 ln Liaaap —a2 ln Li8a2
, —821n Loma= a2 in Llaaa 1(3,

where it is implicit that all differentiation is conditional on d. The elements of this matrix

reduce to:

E(-82 ln L/502) = (1/0-11.2)EE[D(L)42 = (1/(711.2)E(X*IX*),

E(-82 in LOP%) = (1/cr11.2)E D(L)xtAxt = (11(711.2)gx*ix**) and

E(-02 In L/8a2) = (1/a11.2)E E[Axt]2 = (1/0-11.2)E(x**1x**),

where x* and x** are the observation vectors for D(L)x and Axt respectively. As such, the

Jeffreys' prior, which is proportional to the square root of the determinant, is defined by:

litl,a11/2
I CC {gx*ix*).E(x**1x**) — [E(x*ix**)]211/2. (22)

Given that a is only an artificial parameter introduced for the purposes of the derivation,

we can effectively view (22) as the prior for conditional on d.
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The source of the distortion in the d density, namely the quantity C 1/2 is equivalent

to the inverse of (22) , so long as the expectations of the functions of xt which appear are

replaced by their realized values. Since no expectation with respect to the xt process is a

function of either of the parameters of interest, namely 8 and d, this form of evaluation of

the expectations implies no loss of information with regard to these parameters. As such,

we are justified in using this particular version of the Jeffreys' prior which serves to exactly

offset the impact of the identification problem.

Figures 2a and 2b present the "smoothed" versions of the densities in Figures la and lb

— 
respectively. As would be anticipated, given the small impact of the C

1/ 
22 factor on the d

density given in Figure la, the eradication of it in Figure 2a affects the density only slightly.

The difference between the d densities in Figures lb and 2b, however, is much more marked,

with the latter displaying nothing of the irregularity present in the former, and having a

modal value very close to the true value.

2o. DGP: d 0.2

4.4o4• .• 0.22

-0.2 -0.0 0.2 0.4 0.4 0.4

2b. 10GP: d 0.8

d Mode 0.81

0.2 0.4 0.6 0.4 1.0 1.2 1.4

Figures 2a and 2b. Marginal posterior of d. (Jeffreys' prior for 13 conditional on d)
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It is of interest at this point to also present the marginal densities of 3 produced by the

same dgp and conditional prior as in Figures 2a and 2b respectively. As is evident in Figure

3a, when the degree of fractional cointegration is low, the marginal density of 13 provides an

accurate basis for inference. When the degree of fractional cointegration is high, however, as

in Figure 3b, the density of 3 is highly dispersed, with the modal estimate rather inaccurate.

The tail behaviour of the density is such that moments may well not exist. Since this density

is typical of those resulting from a high underlying d value, we are wary of using the mean

to estimate 0. In Sections 5 and 6, we use the mode of the density as the point estimator of

Figures 3a and 3b. Marginal posterior of [3. (Jeffreys' prior for f3 conditional on d)

In total then, our prior specification is:

E, oc 1E1-3/2 .{(zerx*).(x**ix**) _ (c*ix**)211/2.p(d).

19
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For general (Li) and (3(L), we simply redefine x* and x** appropriately and specify the full

prior as:

p1:13, E, d, q5, 0) oc lEr
3/2 .{(x*ix*).(x**ix**) (xox**)211/2.p(d, 0, 0). (24)

To limit the scope of the paper, we shall leave the third component of (24) as a uniform

prior.1° The resultant joint posterior is thus given by:

p(0, E, d, 01 y, OC lEr(n+3)/2 exp{(-1/2)trE-1S}.

{(X*IX*).(x**ix**) (x*Ix**)211/2.
(25)

It is this density from which the marginal densities of 13 and d are to be derived via the

MCMC procedure to be outlined in Section 4..11

3.4 Bimodality in the marginal posterior for d.

Although the incorporation general 4'(L) and 0(L) polynomials in the model will be shown

to be easily catered for by the proposed MCMC algorithm, the inclusion of 43(4 specifically

leads to confusing inferences regarding d. In Figures 4a b and c respectively, we present

examples of marginal d densities for the following three parameter settings in an artificial

dgp:

1. d = 0.4, 01 = 0.0,

2. d = 0.4, q5 =0.9 and

3. d = 0.4, 01 = 0.4.

loSee Martin (1995) for some discussion of the appropriate marginal prior for time series parameters in this
type of model.
"We note that (25) can be used for inference in any part of the parameter space for d beyond —1. In
practice, this lower bound is unlikely to exert any influence on inferences. Most importantly, the station-
ary/nonstationary division of the space of d is irrelevant to inference based on (25). In applying the formal
convergence criteria from Markov chain theory, it shall be convenient for us to eliminate from the support
the sub-space on which the joint posterior density is rendered equal to zero by the conditional Jeffreys'
prior. As such, from this point on we shall define the almost everywhere (with respect to Lebesgue mea-
sure) equivalent joint posterior as (25) defined on the support Ds = D fl {(0,d, 4,0, E); x* x**}, where
D = R1 x R1 (> —1) x RP xlikg x SPda .
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Figures 4a, 4b and 4c. Marginal posterior of d. (Jeffreys' conditional prior for given d and ch.)



In all settings cki = 0, j = 2,3, ...p, and e(L) = 1. In the parameterization of the model,

we allow for the same parameterization as in the dgp; i.e. a one-dimensional polynomial (L)

and Ct(p) = 1.

As is evident in Figures 4a and b, the bimodal d density places one mode in a position

which corresponds reasonably closely to the true value of d. However a second mode occurs

in either the low or high region of the d parameter space, according to whether the true

value of cki is low or high. For p-dimensional (XL), the position of the second mode appears

to be determined by the true value of the sum of the Oi coefficients, which represents the

long-term memory aspect of 4)(4. Most importantly, depending on the particular data set,

the higher mode is not necessarily the one pinpointing the underlying true d. Obviously, with

such a density, no measure of central tendency, including the higher mode, is an accurate

point estimate of d.. Further, the relative sizes of Pr(d < 1) and Pr(d > 1) will be distorted by

the second mode, leading to inaccurate probabilities of cointegration and non-cointegration

respectively. In Figure 4c, in which the true d and 01 have the same value, we see the

antimode in the d density being the most accurate estimate of that value.

It would appear that, as it stands, the Bayesian method is unable to discriminate between

the long-memory fractional component and the long-memory part of the stationary compo-

nent 43(L). It may be that the problem can be offset by some form of prior specification. Or

it may be that the Bayesian posterior bimodality is simply a manifestation of a more general

problem associated with the fractional integration/cointegration inference when short-run

and long-run dynamics enter simultaneously.

4. The Gibbs/Metropolis MCMC Algorithm

In this section we provide a very brief explanation of the hybrid MCMC algorithm used

to estimate the marginals of interest. The algorithm is very similar to that used in Martin

(1995). As such, we refer readers to that paper for a more detailed description of the method,
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including discussion of the required convergence conditions. For recent papers discussing

both the theory and implementation of MCMC procedures in general see Tierney (1991),

Smith and Roberts (1993) and Roberts and Smith (1994). The book by Tanner (1994)

also provides informative and comprehensive discussion of the methods within the broader

context of Bayesian computational .methods.

4.1 The Gibbs Sampling Algorithm

As applied in a Bayesian context, Gibbs. sampling involves sampling from the joint posterior

density indirectly via an iterative generation of random drawings from all of the conditional

(posterior) densities induced by the joint density. Demonstrating the procedure for the case

of our specific parameter groupings: 3, d, g5, 0 and E, the steps of the algorithm are as

follows:12

Step 1 Specify initial values for d, q5, 0 and E, d(°), 0(0), OM and E(°).

Step 2 Cycle iteratively through the five conditional densities, drawing respectively:

1. 0(i) from 7)1 (OW I 1) , 5(i-1), , y x)

2. ci(i) from p2(c/(i) ip(i), 0(i--1), y, x),

3• ow from p3 (OW IOW , cl(i) E(i, 1) , y,

4. 0) from p4(0(010(i), 0(2), 0-1)y,x) and

5. E(i) from p5(E(i)10(i), d(2), 0(i), 19(i), y, x) until i = M.

Given the satisfaction of certain convergence conditions, the realized values, viewed as

random variables, converge in distribution to the joint posterior distribution as M ---+ oo.

Alternatively, with M being large enough for convergence to have occurred, the continued ap-

plication of the algorithm for a further N iterations produces both a sample of N ([3,d,0,0, E)

values from the joint posterior density and a sample of N values of any individual parameter

12We demonstrate the MCMC method with 413(L) incorporated, despite the demonstrated difficulty it causes
for inference.

23



(parameter set) from its marginal (joint) density.

• Obviously, in order for the Gibbs Sampler to be operational, one needs to be able to

sample from the conditional densities. The conditionals induced by (25) are given by:

1.

pi(/31d, q5, 0, E, y, x) oc exp{ (0 —
2V (f3)ar 

where T3 = 1311B V ar(0) = cr11.2B2-1 B1 = Et(x;[y; (0.12/1722)Xr])) B2 Et(XI 2

yiK = (I)(L)D(L)yt and xi" = e(L)Axt.

2.

.P2(43, 0, 0, E, y, cc exp{(-1/2) 1E1' (022 E[4(L)D(L)uitl2

+a11 E[o(L)u2d2 — 2012 E[113(L)D(L)uite(L)u2d)}-

{Et(D(L)xt 0'4-1)2- Et(xr)2 [Et(D(L)xt — ext_i)(xr)1
211/2,

where xt+ denotes the p-dimensional vector (D(L)xt_i, D(L)x_2,... , D(L)xt_pY and d,

the argument of interest, enters the function via the polynomial functions of d which the

coefficients of.D(L) represent.

3.

1 
p3(010 , d, 0, E, y, cc exp{  (45 — O)' (U1 U1)(0 —zo-11.2

{E(xif Oixt+-1)2. E(xr)2 - - oixt+ ixxr)1211/2,

where = (UlUi) 1 (Ul[uif — (0'12/(722)x**1), U1 = (1116, , utn_1)', uif denotes the

n—dimensional vector with elements 4 = D(L)u1, 4 denotes the p—dimensional vector

= D(L)x and x** is the observation vector for the xr.

4.

p4(0113,d, q5, cc exp{-1/(20'22.1) (0 -01 (U2U 2)(0 — O)}.

{Et(xn2 .Et(Axt — Axt--1)2 [Et(x)(Axt — 0' 
)]2}1/2,
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where -6 = (UU2)-1(U[u2 — lu;f1),cri2,/ „,, U2 = (12011121, • . • 7 112n-1)11 112t denotes the

q-dimensional vector (u2t-1, u2t-2, ,u2t-q)' and o-22.1 = 0.22 — 42/crii•

5.

p5(Ei3, d, g5, 0) cc I Er(n+3)/2 eXP(-1/2trE-1S).

The densities of 13 and E are Normal and Inverted Wishart respectively. As such they

can be simulated from directly, via any Normal variate generator.13 The way in which the

parameter d enters the coefficients of the D(L) polynomial and, in turn, the joint posterior,

is such that its conditional density of d is very non-standard in form. However, d is a one-

dimensional parameter. As such, simulation from its conditional density is easily performed

via a numerical approximation to its inverse cumulative density; i.e. via so-called Griddy

Gibbs.14

4.2 The Metropolis Algorithm

The presence of the conditional Jeffreys' prior for # given d, q5 and 0 also renders the condi-

tional densities of the parameter vectors q5 and 0 non-standard in form, both densities being

proportional to the product of a Normal kernel and the prior density viewed as a function of

and 0 respectively. Since we wish to allow these parameter vectors to be multidimensional,

a grid-based simulation method is not a desirable option. Several other options are available.

in such a circumstance, all of which are variants on the idea of drawing from the unattain-

able (multidimensional) distributions indirectly, via another distribution. We choose to use

another Markov chain algorithm, the so-called Metropolis algorithm.

3.3To generate values from the Normal density we use the GAUSS command RNDN. Generation of values

from the Inverted Wishart density is achieved by taking the inverse of matrix values generated from the

associated (non-inverted) Wishart density. The latter simulation is performed by generating (via RNDN) n

two-dimensional normal deviates zi = (zii, z12)', with mean zero and variance covariance matrix S-1. The

random matrix E-1 = Etz1z1 then represents a realization of a Wishart variable with degrees of freedom n

and covariance matrix S 1. The inverse of this realization is the required realization of E.
14See Tanner (1994).
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The basic thrust of the Metropolis algorithm is to simulate a value of çb (0) indirectly,

via a so-called candidate density q3 (q4), with the latter having the properties of being both

a good match for p3 (pa) and easy to simulate from. Having a non-standard form, the

integrating constant of p3 (p4) is obviously unknown. .Fortunately, the Metropolis algorithm

uses p3 (p4) in its unnormalized form only. We have argued previously (see Martin (1995)),

that as a consequence of fact that this form of identification problem does not impact at

the level of the full conditional densities, that part of p3 (p4) which would be present if no

adjustment were made for the identification problem, namely the multivariate Normal kernel,

represents a good approximation to the overall conditional density. As such, the relevant

Normal kernel is used a candidate density in Metropolis generations of 0(i) and 0(i), within

the Gibbs Sampler.15

Once the simulated values have been produced via the hybrid algorithm, estimates of

the marginal densities of interest need to be produced for the purpose of inference. Via a

Rao-Blackwell type orpiment, (see Gelfand and Smith (1990) for discussion on this point),

it can be shown that the most accurate estimate of either marginal posterior of interest,

p(Ply, x) or p(dly,x), is a finite mixture density estimate. Demonstrated for the 8 marginal,

this estimate is given by:

p(13iy) = (1/N) pi(Old(i), 00, 0(i), y, x), (26)

where N is the number of simulated sets of parameter values. (26) is, of course, simply the

sample estimate of the expectation implicit in the relationship between a conditional and a

marginal density.16

15See Martin (1995) for a more detailed discussion of the use of the Metropolis algorithm in this type of
context, including a description of the algorithm itself.
isSince the conditional density for [3 is Normal in form, the component densities to be used in the mixture
density estimate are known in their entirety, ie. including their integrating constant. In the case of d however,
the relevant conditional density has a non-standard form. As a consequence, one-dimensional numerical
integration needs to be performed on each of the N components in the mixture density estimate. This
requirement obviously has implications for the speed with which results can be produced. However, the
impact does not appear to be burdensome.
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4.3 Convergence of the Markov Chain

There are two points to consider in relation to the question of convergence of the hybrid

Markov chain to the joint posterior distribution. First, the structure of the Markov chain

must be such that this joint posterior represents the so-called stationary or invariant distri-

bution of the chain. Second, the structure of the chain must also be such that convergence

towards the invariant distribution does indeed occur; i.e. that the chain is ergodic. If a

straight Gibbs sampler were being used, then we would just need to consider these two

points as they pertain to it alone. However, with a Metropolis algorithm embedded within

the Gibbs Sampler at two points, we need to also ensure convergence to the relevant con-

ditional distributions, so that the overall algorithm converges to the joint distribution. In

Martin (1995), it was argued that the nature of the application was such that the Metropolis

subchains were uniformly ergodic for the relevant conditional posteriors, whilst the overall

outer Gibbs chain was simply ergodic for the joint posterior. The application considered

in the present paper is sufficiently similar for us to draw the same conclusions regarding

convergence.

5. A Monte Carlo Experiment

In this section we present the results of some Monte Carlo simulations in which the repeated

sampling performance of the Bayesian inferences are compared with that of various Classical

methods. Such a comparison is, of course, irrelevant to a "pure" Bayesian adhering to

the likelihood principle. We feel, however, that whatever its inherent advantages, for any

Bayesian method to be used in practice, the method must be seen to be acceptable according

to standard Classical criteria.

The model underlying the simulations is the simplest version of that discussed in the

paper, whereby 4)(4 = 0(4 = 1. Since we know that any inference regarding d is prob-

lematic when eb(L) is incorporated in the model, there seems to be little point in assessing
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the repeated sampling performance of the Bayesian estimator in that context. Omitting

0(L) as well means that the marginal posterior of d can be produced via one-dimensional

numerical normalization of (20) multiplied by the conditional Jeffreys' .prior C"2, which is a

function of d only. The marginal density of can be produced via two- and one-dimensional

integration respectively applied to. (18), also multiplied by the prior factor CP. Since very

low-dimensional numerical integration is faster than the MCMC method, its use has enabled

us to produce repeated sampling results based on a reasonable number of replications. The

disadvantage is that we cannot draw any conclusions from these results regarding the impact

on inferences about d and of the short-run dynamics in the xt process.

In all simulations, the. true value of fi in (1) is 3, whilst the true value of both variance

parameters an and a22 in (5) is 1. The latter values mean that the value of 0.5 for an quoted

at the top of each table, represents the correlation between the underlying error terms eit

and e2t. The number of replications underlying each result is 500, and results for sample sizes.

of both 50 and 100 are reproduced.17

The results reported fall into four categories:

1. The Bias and Root Mean Square Error (RMSE) of the modal estimator of f3 compared

with that of the OLS estimator and the Fully Modified OLS (FMOLS) estimator of

Phillips and Hansen (see Phillips and Hansen (1990)). (Table 1)

2. The Bias and RMSE of the modal estimator of d compared with that of the exact Max-

imum Likelihood estimator (MLE) applied to the OLS residuals from the augmented

regression equation yt = 13xt + Aix t + nit. (Table 2)

3. The power of the Dickey Fuller (DF), augmented Dickey Puller (ADF) and MLE-based

17The fractional white noise process for uit was generated via the finite truncation given in (12), with the
truncation made at 30 lags. This method was used for time saving purposes only. The fractionally integrated
process can be generated exactly via a Cholesky decomposition of the exact covariance matrix, previously
denoted by annii. The finite expansion D(L)u1 t which enters the algebraic expressions for the various
densities used in the Bayesian procedure was also truncated at 30 lags. Some experimentation indicated very
little change in the results as a result of changing either lag length.
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tests against fractional alternatives. (Table 3)

4. The average probability • in repeated samples of fractional cointegration, as calculated

from the marginal posterior of d. (Table 4)

With reference to Classical estimation of 13 in the presence of a fractionally integrated

error term, Cheung and Lai (1993) prove that the OLS estimator is consistent of 0(b), with

b denoting the reduction in the order of xt and yt which the cointegration effects. This result

nests the original Stock (1987) convergence result, which applies for b = 1. However, with no

account taken of either endogeneity or the autocorrelation in the error, the performance of

the OLS estimator is expected to be deficient in comparison with an explicit cointegration

estimator. The results in Table 1 confirm this expectation to some extent, especially for the

larger sample size.

The FMOLS results in Table 1 are based on an estimated long-run variance with a

lag length of 10. We conjecture that the number of estimated autocorrelations required to

sufficiently account for the long memory error process would adversely affect the small sample

performance of the FMOLS procedure, so we have chosen 10 as a compromise value.18 For

the larger sample size, for all values of d in the dgp, the cointegration estimator performs

better than (or equivalent to) OLS in terms of bias. However, as d increases, its RMSE

exceeds that of OLS. For the smaller sample size, FMOLS is superior to OLS only for small

values of d. Neither method provides accurate inference, in terms of either bias or RMSE,

for values of d close to 1, for either sample size. The results for d = 1 reflect the sort of

imprecision which we would anticipate for .estimators of a non-cointegrated regression. (See

Phillips (1986)).

isThe results are virtually identical to those based on a lag length of 5, which were not reproduced here as a
consequence.
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Table 1. The Bias and RMSE of 3 estimates

,(3 = 3; (1 - L)duit = eu; 0r12 = 0.5.

Estimator 0.2 0.4 0.8 0.9 1.0

n = 50 Bias mode 0.006 0.015 0.146 0.286

FMOLS 0.013 0.037 0.260 0.421

OLS 0.023 0.048 0.258 0.406

RMSE mode. 0.051 0.098 0.362 0.519

FMOLS 0.053 0.112 0.648 1.061

OLS 0.057 0.109 0.572 0.930

0.426

0.675

0.640

0.634

1.755

1.532

n = 100 Bias # mode 0.003 0.010 0.096 0.234

FMOLS 0.007 0.024 0.199 0.332

OLS 0.016 0.035 0.208 0.337

RMSE 3 mode 0.028 0.055 0.251 0.418

FMOLS 0.029 0.067 0.446 0.765

OLS 0.035 0.071 0.426 0.726

0.472

0.548

0.548

0.616

1.334

1.262

The modal estimator of 13 has a uniformly superior performance compared with the

Classical estimators. Being a parametric estimator, it has a comparative advantage over a

non-parametric method such as FMOLS when the dgp tallies with the assumed parameteri-

zation. However, it is still encouraging to see such good repeated sampling behaviour for the
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Bayesian estimator, at least for small d. As d moves into the non-stationary, but mean revert-

ing region, the Bayesian estimator, whilst still maintaining its relative superiority, exhibits

large bias and RMSE in the same way that the Classical estimators do.

Table 2. The Bias and RMSE of d estimates

/3=3; (1 - L)duit = eit; 0-12 = 0.5.

Estimator 0.2 0.4 0.8 0.9 1.0

n = 50 Bias d mode -0.055 -0.055 -0.051 -0.049

MLE -0.083 -0.099. -0.001 -0.004

RMSE d mode 0.136 0.139 0.146 0.145

MLE 0.152 0.145 0.146 0.156

-0.045

-0.019

0.142

0.170

n = 100 Bias d mode -0.031 -0.032 -0.031 -0.030

MLE -0.042 -0.050 -0.010 -0.016

RMSE d Mode 0.082 0.085 0.089 0.088

MLE 0.092 0.085 0.103 0.124

-0.028

-0.032

0.085

0.156

In Table 2, the MLE figures result from the maximization of the exact likelihood function

for a univariate fractionally integrated process; i.e.:

L(d, sii) a sigiiir1/2 exp&nrilril,

where ri denotes the (n x 1) vector of residuals from estimation of the augmented regression

described earlier and Su the variance of the assumed underlying white noise process.19 The

Wrhe augmentation of the cointegrating regression with the regressor Azt occurs in order to purge the error

term uit .of its correlation with u2t = Axt-
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parameter d in the likelihood function is restricted to lie within the range: .-0.5 <d < 0.5.

When the value of d in the true dgp is greater than 0.5, the exact likelihood is applied to the

first differences of the residuals, and the value of d estimated indirectly via d* = d — 1. The

restriction: —0.5 <d* <0.5 implies the restriction 0.5 <d < 1.5.

The Bayesian modal estimator of d is seen to be less biased than the MLE in the stationary

region, but more biased (in all but one case) in the non-stationary region. It would appear

that the downward bias likely to be present in the sampling distribution of the MLE is offset

by the truncation at d = 0.5, which comes into effect when the true d exceeds 0.5. Since

we have observed, for the simulation size of 500, a tendency for the empirical distribution

of the MLE, given a non-stationary dgp, to become more, negatively skewed as the sample

size increases, the deterioration in the bias of the MLE as the sample size increases is to be

anticipated. Whether this is a feature of the theoretical distribution is unknown.

The Bayesian estimator has consistent bias over different d values, an improvement in

bias with an increase in n and a RMSE which is less than (or equal to) that of the MLE for

all settings of d and n. That the Bayesian estimator mimics the MLE in having a negative

bias is to be expected, given that, with the flat marginal prior on d, the posterior mode is

closely linked to an MLE.2°

In Table 3 we present results on the power of the MLE-based test in testing d =1 against

d < 1. The test statistic is simply the ratio of the MLE to the asymptotic Hessian-based

standard error as produced by the Gauss Maximum Likelihood routine.21 The MLE-based

test is seen to largely mimic the power performance of the DF test across the parameter

201n Martin (1995) it is shown that a marginal Jeffreys' prior on a time series parameter can alleviate this
negative bias to some extent. In the present case, however, the marginal Jeffreys' prior for d is a constant

function of d, no matter how the relevant expectations within the prior are evaluated, and, as such, can play

no such role.
2iThe critical values used are those associated with an empirical size of 5%, given respectively by —2.551

(n = 50) and —3.653 (n = 100). The procedure was too time consuming to allow for a more accurate estimate
of the true 5% critical value. The 5% critical values for the DF and ADF tests were generated from 10,000
replications of the null model. They are given by: n = 50: —2.908 (DF); —2.710 (ADF, 5 lags); —2.537 (ADF,

10 lags); n = 100: —2.822 (DF); —2.748 (ADF, 5 lags); —2.663 (ADF, 10 lags).
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space. Both this fact, plus the fact that the power of the latter is better for large values of d,

is very surprising, given the fact that the Maximum Likelihood method is expressly designed

to cater for fractional as opposed to /(0) alternatives. Both tests are able to discern the

presence of a stationary fractionally cointegrated equation. However, neither seems able to

detect mean reversion alone in the error. The behaviour of the ADF tests illustrates the

analytical result in Hassler and Wolters (1994), whereby an increase in the number of lags

in an ADF test is shown to cause a decrease in the power of the test against fractional

alternatives.

Whilst the DF and ADF tests exhibit appropriate behaviour as the sample size increases,

the MLE-based test shows signs of inconsistency for high d values. We are reluctant to

comment further on this since, as implied earlier, it may be that 500 replications is not

enough to produce an accurate estimate of the true sampling distribution.

Given the apparent weakness of the Classical methods to discriminate between /(1) and

slow mean reverting error processes, it is of interest to note the accuracy of the correspond-

ing Bayesian inferences. Table 4 gives the average probabilities (over the 500 replications) of

mean reversion, as calculated from the marginal posterior of d. As is quite evident, for both

sample sizes, high average probabilities obtain even for large values of d. The average prob-

ability, of no cointegration, when the true d equals 1 is also high. Note that this probability

would be higher, the further is the true d beyond 1.
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Table 3. The power of ADF and MLE tests for

Cointegration against Fractional Alternatives.

Size = 0.05

3;. (1 - L)duit = eit; 0-12 = 0.5

Test 0.2 0.4 0.8 0.9

n = 50 DF 0.998 0.960 0.158 0.078

ADF (5) 0.448 0.262 0.076 0.036

ADF(10) 0.138 0.090 0.060 0.058

MLE 1.000 1.000 0.210 0.078

n = 100 DF 1.000 1.000 0.282 0.130

ADF (5) 0.918 0.560 0.110 0.078

ADF (10) 0.462 0.250 0.078 0.062

MLE 1.000 1.000 0.184 0.068

The average Bayesian probabilities are, of course, not directly comparable with the Clas-

sical powers. However, as a summary measure of the ability of the procedure to pinpoint the

nature of the generating process, they suggest an accuracy that the Classical tests, whose

abilities are summarized in the power measurements, lack.
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Table 4. The Average Probability of Drawing

the Correct Bayesian Inference

About Cointegration

= 3; (1 — L)duit = eit; 0-12 = 0.5

0.2 0.4 0.8 0.9 1.0

n = 50 Pr(d < 1) 1.000 1.000 0.911 0.801

Pr(d > 1) 0.508

n = 100 Pr(d < 1) 1.000 1.000 0.976 0.890

Pr(d > 1) 0.531

6. Testing for Long-run PPP

In this section we use the Bayesian procedure to assess the validity of the PPP doctrine for

certain countries. We have obtained data for the same time period and for three of the same

countries as did Cheung and Lai (1993), in order to allow for some comparison between our

Bayesian inferences and their Classical results. The comparison is, however, limited by the

fact that 1) our data derives from a different source than does theirs for some of the sample

period; and 2) our sample size is reduced to 50 compared with their sample size of 76 as a

result of our using 26 lags in the approximation of (1— L)d. We supplement our results with

FMOLS estimates of the cointegrating. parameter, estimates of d based on the Maximum

Likelihood procedure described in Section 5, and DF and MLE-based unit root tests applied

to the OLS residuals.22

22We do not apply any ADF tests as a result of their apparent lack of power to detect fractional alternatives.
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Specifically, we consider the PPP relation linking the price levels of three countries,

France, Japan and the United Kingdom, to the price level of the United States. For each

country, we estimate the relationship:

fPt = OPt uit

where ft denotes the log of the foreign price index (CPI) measured in U.S. currency and

Pt is the log of the U.S. price index (CPI). These variables correspond to yt and xt in our

previous notation, with their joint determination assumed to be described by the general

fractional cointegration model given by (1) to (5) in Section 2, but with 43(4 set to 1. As in

the previous section, we have decided to avoid the problems associated with the incorporation

of 43(4 in the model. We present results based on values of 0, 2 and 4 respectively for the

degree, q, of the e(L) polynomial. A more exhaustive study would choose q via some sort of

model selection criterion. It is worth reiterating at this point that the MCMC method copes

well with large q (and indeed p) values, where such values may well be necessary if an MA

component were to be captured.23

The exchange rate and CPI data used in the analysis is annual data for the period

1914-1989. The data for the period 1949 —1989 is taken from the Reserve Bank International

Supplement, and is extended back to 1914 via the data published in Lee (1978).

We begin by presenting in Table .5, modal estimates of d, along with the associated

probabilities of mean reversion in the error. The latter probabilities, all exceeding 80%

as they do, are very supportive of the existence of PPP between the U.S. and all countries

considered. However, the high modal estimates of d suggest that the rate of reversion to parity

23Prior to conducting the cointegration analysis, xt and all five yt variables were accepted as unit root processes
by ADF tests with 5 lags. Also, all data was demeaned in order to cater for the lack of intercept term. The
MCMC density estimates are produced using the following iteration strategy. After a "burn-out" period of
M, we take into the sample the output of every rth iteration, the intermittent sampling of the chain aimed at
speeding up convergence via a breaking of the Markovian dependence. With N denoting the final number of
sample values from which density estimates are constructed, the MCMC densities are produced from a total
of (r + [N + (M/r)]) — M iterations for the outer Gibbs chain. For all examples, we use N = 1000, M = 300
-and r = 10. In all instances, we perform 20 iterations of the Metropolis sub-chain before taking a value as a
realization from the relevant conditional density.
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is very slow. Cumulative impulse responses based on these modal estimates are presented

in Table 6.24 The column for the U.K., for example, indicates that a one-unit shock to

the parity relation, although having zero effect in the infinite future, still has an impact of

almost 0.5 units after 50 years.

Table 5. Modal Estimates of d and the

Probability of Fractional Cointegration

Country

France Japan U.K.

d Mode q = 0. 0.601 0.640 0.840

q = 2 0.601 0.640 0.800

q = 4 0.561 0.561 0.760

Pr(d<l) q = 0 0.988 0.970 0.860

q = 2 0.988 0.985 0.887

= 4 0.992 0.987 0.911

Given the negative bias exhibited by the modal estimator in the Monte Carlo experiments,

we could view our estimates as underestimating the true value of d, and, as a consequence,

the sluggishness of the mean reversion. However, this fact should be counterbalanced by the

fact that the d estimate is being forced to soak up all of the dynamic behaviour in uit, and

may assume a larger value as a consequence. We note that the impact on inferences about

d of an increase in the degree of autocorrelation in u2t (i.e. q), is not very large.

24The impulse responses are calculated from the formula: uit = (1— L)_deit, which is appropriate given the
specification of (I) (L) = 1. The value of d in the formula is replaced by the modal estimate, based on q =0.
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Table 6. Impulse Responses

Based on the Modal

Estimates of d

Country

France Japan U.K.

10 Years 0.265 0.307 0.612

30 Years 0.172 0.209 0.516

50 Years 0.141 0.174 0.476

oo 0.000 0.000 0.000

The Maximum Likelihood estimates of d presented in Table 7 are of a similar magnitude

to the Bayesian modes. On the basis of such high estimates, however, the MLE-based test is

able to reject the null of a unit root in the error in one case only, and then only at the 10%

level. The DF test on the other hand rejects at the 5% level in favour of a stationary error

in all three cases.25

Table 8 provides modal point estimates and 95% HPD interval estimates of 0, based on

the three assumed models.26 The point estimates for France and the U.K. are reasonably

close to the value of 1 which would obtain if the homogeneity condition were imposed. The

estimates for Japan, however, are well in excess of 1, indicating that an assessment of PPP

based on the real exchange rate may be inappropriate. For France and Japan, in particular,

the impact on the modal estimates of # of an increase in q is very small. However, for all

three countries, it is evident from the HPD estimates that allowance for higher degrees of

autocorrelation in the xt process produces correspondingly more concentrated marginals.

25The critical values used for the DF and MLE-based tests are the n =50 critical values produced numerically
for the Monte Carlo experiments.
26A 95% HPD (Highest Probability Density) estimate is an interval with 95% probability coverage, whose

inner density ordinates are not exceeded by any density ordinates outside the interval.
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Table 7. Classical Inference

Regarding

Fractional Cointegration

(* (**) denotes rejection at the 10% (5%) level)

Country

Prance Japan U.K.

ML Estimate 0.667 0.715 0.839

ML t Stat. -1.982* -1.773 -0.944

DF t Stat. -3.528** -2.924** -3.041**

Figure 5. Marginal d and /3 densities for the French/U.S. relation.
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Table 8. Estimates of 15'

Country

Prance Japan U.K.

Mode q = 0 . 0.980 1.280 1.070

q = 2 1.060 1.410 1.070 •

q = 4 1.070 1.460 1.080

95% HPD q = 0

q = 2

q=4

(-0.27,1.68) (-0.45,2.04) (-0.46,2.37)

(0.50,1.39) (0.53,1.84) (0.46,1.36)

(0.54,1.38) (0.74,1.88) (0.56,1.38)

FMOLS 1.092 1.537 1.135

(s.e.) (0.045) (0.092) (0.034)

The French densities reproduced in Figure 5 illustrate this fact. The d densities, on the other

hand, illustrate the afore-mentioned relative lack of impact of q on the d marginals.

The FMOLS estimates tally most closely with the modal estimates based on q = 4.

Asymptotically, the associated t ratios are Standard Normal. Based on the standard errors

quoted, the 95% confidence intervals are much more narrow than the corresponding Bayesian

interval estimates. However, since the former intervals have asymptotic justification only,

they may be very misleading for a sample size of 50.

Finally, our results are roughly in accordance with those of Cheung and Lai. Their GPH

estimates of d for the three countries we have considered all fall within the range 4.5 — 6.0.

Since their sample is larger than ours, we would anticipate these smaller d estimates, since

the longer data span allows more time for mean reversion to occur. Interestingly, in the light

of our comments about the lack of power of the ADF test against fractional alternatives,
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their ADF tests do fail to detect cointegration in the case of both Japan and the U.K.

7. Conclusions

In this paper, we have argued that the appropriate characterization of a cointegrating relation

is one in which the error term is mean reverting. In order to model mean reversion, the

traditional procedure of equating cointegration with an /(0) error term must be extended

to one in which the error term is allowed to be fractionally integrated of order d, with

d any real number between —1 and 1. We have presented a procedure for estimating the

probability of mean reversion, or fractional cointegration, in addition to the values of the

fractional ciifferencing parameter d and the cointegrating parameter(s). Inferences are based

on marginal posterior densities, which are able to be estimated in a straight forward manner

via a combination of MCMC methods.

We have produced results which suggest that the Bayesian inferences have a repeated

sampling performance which is very competitive with that of Classical alternatives. This

finding, in conjunction with what we see as the intrinsic benefits of the Bayesian method,

namely the production of a full density function as a basis for inference, and the opportunity

of formally incorporating a prior density, lend strong support to the application of the method

in this context. The issue of prior density specification has been particularly crucial. If we

were not able to incorporate the conditional Jeffreys' prior, the identification problem, which

is fundamental to the form of fractional cointegration model used, and, therefore, relevant to

both Bayesian and Classical inference, may need to be offset via some more ad-hoc method.

Moreover, it is the Bayesian paradigm, in which analysis of posterior density functions is

valid, which has allowed the identification problem to manifest itself in such a way that the

exact prior factor required to offset it has been made evident.
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