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Abstract

This paper presents an information criteria based model selection procedure
(called FIC) for choosing the variables to be used in a linear regression. The penalty
function is based on sums of critical values from particular F-distributions which
are related to the small sample probabilities of incorrectly including additional re-
gressors. Results from a Monte Carlo simulation study demonstrate that the per-
formance of this new procedure is competitive with other asymptotically motivated
procedures, while providing the practitioner with controls over the desired small
sample probabilities of correct selection. An alternative, somewhat simpler selec-
tion criterion based on an asymptotic distribution is presented and compared to the
finite sample criterion. Conditions for strong consistency of this variable selection
procedure based on an approximate penalty function are presented.

Keywords: Information criteria; F-statistic; penalty functions; critical values.

1 Introduction

Often in econometrics a set of regressor variables is available and the practitioner must
decide which subset of regressors (and possibly lagged regressors) to include in a linear

*This research was supported by an Australian Research Council grant. A previous version of this
paper was presented at the 1995 Econometrics Conference at Monash. Special thanks to Don Poskitt for
early comments and references.
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regression model based on how well the each of the models appears to fit the observed
data. In practice, several different techniques for choosing a set of regressor variables are
available, ranging from stepwise procedures to penalized likelihood methods. The choice
of the set of variables will depend crucially on the particular method of selection used.
Consequently variable selection procedures have an important role to play in econometric
modeling.

Variable selection in linear regression is a special case of the more general model
selection problem. For a recent review of model selection procedures, see Fox (1995).
The concensus in the model selection literature seems to favor information criteria (IC)
procedures in which the maximized log-likelihood values, each adjusted by subtracting a
penalty term related to the number of unknown parameters in each model, are compared
and the model with the largest adjusted log-likelihood value is selected. The question
is what the form of the penalty function should be. Many IC penalty functions have
been suggested in the literature, with AIC (Akaike 1973) and BIC (Schwartz 1978) being
two of the most widely used IC model selection procedures in practice. Discussion of
the asymptotic properties of these procedures has been one of the main directions of
this literature due partly to the fact that almost all of the IC procedures have been
derived using asymptotic justifications. See in particular Hannan and Quinn (1979),
Geweke and Meese (1981) and Sawa (1978). However, it is important that a model
selection procedure have good small sample properties as well. Improvements on existing
procedures have been proposed, see for example Sugiura (1978) and Hurvich and Tsai
(1989, 1991). These authors propose a corrected AIC procedure, denoted Alec, which is
designed to improve the small sample bias of AIC. In the hypothesis testing literature,
the probabilities of wrongly choosing the null and alternative hypotheses are controlled
and optimized, respectively, to achieve desired small sample properties. King, Forbes and
Morgan (1995) considered controlling probabilities of correct selection using Monte Carlo
techniques in the general model selection problem. Our aim in this paper is to develop
a variable selection procedure for the multiple linear regression problem that has a good
small sample justification and one that utilizes our wealth of experience with controlling
probabilities as in hypothesis testing.

For our problem, we assume for theoretical reasons that given r possible regressors, not
necessarily all 2' models need be considered. For example, the practitioner may not wish
to have higher order lagged variables included in a chosen model without the presence of
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Table 1: Penalty functions pi for model Mi
Akaike's AIC k• + 1,

Schwartz's BIC -
4.

•
2

Hannan & Quinn's HQ (k; +1) in in n,j

Theil's /12 - 722 in (n — ki)

lower order lags of the same variable. For this reason the traditional stepwise procedure
will not be an appropriate model selection approach. To define our variable selection
procedure to choose between the m possible linear regression models, we follow an IC
approach. This approach is favored because, as POtscher (1991) noted, minimizing such
an IC amounts to testing each model against all other models by means of a standard
likelihood ratio test, and selecting that model which is accepted against all other models.
The critical values of the tests are determined by the penalty function values. Let Li
denote the maximized log-likelihood function and pi the penalty associated with model
M. Then the chosen set of regressors is that set associated with model Mi such that

L; —p > Li — pi for all i j. (1)

The choice of the penalty function is the primary concern of this paper. As the penalties
are related to the critical values of a likelihood ratio test, our approach is to define them
by controlling probabilities of incorrect selection, as is done in classical hypothesis testing.
Some other suggestions from the literature for the form of the penalty function are given
in Table 1, where ki represents the number of regressors in model M.; and n is the sample
size. Note that we are following Fox (1995) in representing Theil's 112 as an IC.

The plan of the paper is as follows. In Section 2 we consider the simple nested re-
gression model selection problem and present our underlying ideas. Section 3 generalizes
this notion to the variable selection problem and compares our finite sample penalty term
to an approximate penalty. We also present a justification of this approximate penalty
function based on quasi maximum likelihood (QML) arguments and prove conditions for
strong consistency of this approximate procedure. Section 4 presents a comparison of our
asymptotically derived procedure and some existing IC selection procedures by inverting
the argument previously used to generate the penalty function. Section 5 presents the
results of a Monte Carlo simulation study of choosing regressors in three different regres-
sion designs when the model is both correctly and incorrectly specified. Some concluding
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remarks are made in Section 6.

2 A simple nested regression setting

We consider first the simpler problem of choosing between m nested regression models
C M2 C • - • C An. Here we assume that model M; is of the form

Y = xith + x2/32 + • • • xjAi U (2)

where Y is an n x 1 vector of observations on the dependent variable, xi is an n x 1 vector
of regressor variables and A is a scalar regression coefficient associated with xi. Thus
model M; contains k = j unknown regression coefficients. In addition we assume that U
is an n x 1 veUor of independent and identically distributed normal random variables with
mean zero and unknown variance a2. The maximized log-likelihood function for model
M; is

Li =
A A
U •U
3 3in in 27r -I- 11 (3)

where ii is the ordinary least squares residual vector under the assumption of model M.
In the case where models and M; alone are under consideration, the IC selection

procedure would choose model Mi over model M;_1 if

or equivalently, if

Lj — pi > — pj--17 (4)

2
  > (n ki) [exp ;(pi — pi_i) — .(11:01j) 1 (n kj) (5)

However, we know from standard econometric theory (see, for example, Greene, 1990,
p. 214) that the left hand side of (5) has an F1,n_ki distribution when model M3_1 is 'true'.
Thus, we can choose to define the relative penalty pi — pj_i by setting the probability of
incorrectly selecting model M.; when the lower dimensional model Mi_1 is 'true' to be aj.
That is, we find pj — pj....1 such that

Pmi_i(Lj — p3 > Pi-i) = a3. (6)
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Let denote the upper ath percentile of the F distribution with vi numerator and
v2 denominator degrees of freedom. Solving (5) for the relative penalty based on a fixed
ai yields

Pi — —1 = 1 ln  1 (n kj)fai,1,(n-ki) • (7)2 — 

Because our model selection procedure only depends on the differences in p; values, not
their actual values, we can set pi = 0. Equation (7) then provides a recursion formula
for the remaining m — 1 penalties p2, , pm for the nested regression model selection
problem. Notice that the values of ai need not all be equal so that, for example, the
probability of choosing M2 over M1 need not be the same as the probability of choosing
M3 over M2.

2.1 A nested regression example

To demonstrate construction of the penalty function, we present a simple nested regression
example. We consider choosing between the following five nested models

Mo =

M1 :Y Xlfil

M2 : = xith x2fi2 U

M3 :Y xif31 + x2/32 + x3/63 U

M4 :Y = 4-fTR-4-Uwir-i

where all of the xi are n x 1 vectors and n = 30. Table 2 shows the resulting penalties
and the corresponding AIC, BIC, HQ and 112 penalties, each adjusted so that the first
penalty is zero. The fourth column corresponds to all a; = .10 for j = 0, , 4, and the
seventh column corresponds to al = a2 = .10 and a3 = a4 = .05.

3 The general variable selection problem

In this section we consider the case where there are r regressors and any (although not
necessarily all) of the m = 2" models corresponding to each combination of regressors may
be under consideration. We seek to generalize the previous method for defining penalties
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Table 2: Nested regression relative penalties n = 30)

ki ai Pi - pi-i pi ce; pi - pi-i pi AIC BIC HQ R2,
0 - - 0 - - 0 0 0 0 0
1 .10 1.42 1.42 .10 1.42 1.42 1 1.70 1.22 0.51
2 .10 1.48 2.90 .10 1.48 2.90 2 3.40 2.44 1.03
3 .10 1.53 4.43 .05 2.17 5.07 3 5.10 3.67 1.58
4 .10 1.59 6.02 .05 2.26 7.33 4 6.80 4.90 2.15

in the nested regression case to this more complicated one. To do this, we first consider
the case where r = 2 so that we are comparing the m = 22 models

M2 :Y

M3 : Y

M4 :Y

=

= x2,2+ U

x1i91+ x2i32 -I- U.

In this case, each of x1 and x2 are n x 1 vectors and 161 and /32 are scalars. We are
interested in determining penalties pi, for i = 1, , 4, by generalizing our results from
the nested regression setting. To do this, we first notice that no matter whether we are
comparing models M1 with M2 or M1 with M3, the relative penalties have the same form,
namely

1 r
P2 - pi = 722- in [(n 1) Ja12,1,(n-i) 11

and

(17)

n [P3 - -2 in (n 
1 
1) fai3,1,(n....1) + 1 , (18)

so that if a12 = a13, where

aq = -p > L1 - (19)

then p2 = p3. Similarly, regardless as to whether we are comparing M2 with M4 or M3
with M4, the relative penalties

1 
P4 - P2 = "' in [(n 

-2) 

r 
a24,1,(n-2) 11

6
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and
n 

P4 
,

— = 111 
[  1 

P3
(n —2) fa34,14n-2) 

1 (21)

are again the same if a34 = a24. Thus, if n = 30 and ai; = a = .10, for all (i, j) pairs
(1,2), (1,3), (2,4) and (3,4), the resulting penalties for each model are p1 = 0, P2 = P3 =
1.42, and p4 = 2.90. Generalizing this to larger values of r, we see that the penalty for
model M.; with ki regressors is

ki
1

= —
2
E ln [(n   11• (22)

This is the penalty function we recommend for all regressor selection problems. We call
the IC procedure using the penalty function in (22) FTC as its derivation comes from F
distributions. A number of comments are in order.

First, the penalties require a decision by the user on the values of ai. These values can
be interpreted as the probability of wrongly .choosing a model that is larger in dimension
by one regressor when the true model has i — 1 regressors and only these two regressions
are under consideration. These values might be set to the same value for i = 1, , k, or
could be allowed to change with the number of regressors.

Secondly, it is clear that our proposed penalty assumes a natural build-up of the model
one dimension at a time. Of course there can easily be problems in which dimensions
change by more than one unit at a time because variables are considered in blocks. For
example, suppose that M.;_1 has 3 regressors less than model M.; which has kJ regressors.
Then one could consider choosing between penalties constructed such that

Or

n [  1  r
Pi Pj-1 = in n _ k.iai,3,(n-ki) + 1

3

k•
n

Pi — Pi-i = in 
1

—2 2-a n — 
(+ 1 .

(23)

(24)

Our approach is based on using (24) rather than (23). One of the advantages in using
this penalty function is that if suddenly there is a change in the set of models under
consideration, then all existing calculations do not need to be redone. All that is required
are the maximized log-likelihood values for the new models plus their associated penalties.
In the above example, use of our penalty function would not require any recalculations if
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Table 3: FIC,,..10 penalty functions

sample size number of regressors ic.; in model.
n 1 2 3 4 5 6 7 8 9 10
20 1.46 3.01 4.64 6.39 8.25 10.25 12.41 14.76 17.33 20.17 '
40 1.41 2.85 4.33 5.85 7.42 9.04 10.70 12.42 14.19 16.03
60 1.39 2.80 4.24 5.70 7.19 8.70 10.25 11.83 13.43 15.07
80 1.38 2.77 4.19 5.62 7.08 8.55 10.04 11.55 13.09 14.65
100 1.37 2.76 4.16 5.58 7.01 8.46 9.92 11.40 12.89 14.40
120 1.37 2.75 4.14 5.55 6.97 8.40 9.84 11.30 12.77 14.25
140 1.37 2.74 4.13 5.53 6.94 8.36 9.79 11.23 12.68 14.14
160 1.37 2.74 4.12 5.51 6.92 8.33 9.74 11.17 12.61 14.06
180 1..36 2.76 4.12 5.50 6.90 8.30 9.71 11.13 12.56 14.00
200 , 1.36 2.73 4.11 5.49 6.88 8.28 9.69 11.10 12.52 13.95
oo 1.35 2.71 4.06 5.41 6.76 8.12 9.47 10.82 12.17 13.53

an intermediate model was introduced into the set of models under consideration. This
may not be the case using penalties derived using (23) where in fact several penalties
may need to be adjusted due to the introduction of an intermediate model. In addition,
the penalties defined using (23) need not be uniquely defined. However, as a consequence
of using (24), models with the same number of parameters will have the same, uniquely
defined penalty function.

Tables 3 and 4 display the penalty function for the variable selection problem for
varying sample sizes and number of regressors. As can easily be seen, if many regressors
are in the model and the sample size is small, the penalty associated with the model is
high, so that the value of the maximized log-likelihood function would necessarily need to
be very high relative to models with a smaller number of regressors in order for that model
to be chosen. However, as the sample size increases, the relative penalties get smaller, so
that the model with the higher maximized log-likelihood is more likely to be selected.

It should be noted that others have recognized the potential of controlling probabilities
of incorrect selection in the likelihood ratio tests. In particular, Hosoya (1984) defines an
alternative procedure (also called FIC) for chosing a model based on setting probabilities
of incorrect selection. The differences appear to be in the manner in which the likelihood
ratio tests are employed (Hosoya advocates a sequential approach in a nested setting rather
than a penalized likelihood approach) and the way in which probabilities are controlled
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Table 4: FIC,,..05 penalty functions

sample size

n 1 2 3

number of regressors ki in model .

4 5 6 7 8 9 10
20 2.07 4.27 6.59 9.07 11.71 14.56 17.62 20.96 24.61 28.64
40 2.00 4.04 6.15 8.32 10.54 12.83 15.19 17.63 20.15 22.75
60 1.97 3.97 6.01 8.09 10.20 12.36 14.55 16.79 19.07 21.40
80 1.96 3.94 5.95 7.98 10.05 12.14 14.26 16.40 18.58 20.79
100 1.95 3.92 5.91 7.92 9.95 12.01 14.08 16.18 18.31 20.45
120 1.95 3.91 5.88 7.88 9.89 11.92 13.97 16.04 18.13 20.23
140 1.94 3.90 5.87 7.85 9.85 11.87 13.89 15.94 18.00 20.08
160 1.94 3.89 5.85 7.83 9.82 11.82 13.84 15.86 17.91 19.96
180 1.94 3.88 5.84 7.81 9.79 11.79 13.79 15.81 17.84 19.87
200 1.94 3.88 5.84 7.80 9.78 11.76 13.76 15.76 17.78 19.81.

, oo 1.92 3.84 5.76 7.68 9.60 11.52 13.45 15.37 17.29 19.21

(Hosoya controls marginal probablities of incorrect selection). We believe our procedure
has an advantage in that we define a single model selection procedure based on controlling
probabilities that have a simple interpretation for each model, and hence will be easier
for the practitioner to determine.

3.1 Approximate penalties

We have demonstrated the construction of an IC penalty function based on controlling
probabilities of correct selection for a fixed sample size n. The penalty function in (22)
was derived using the knowledge that

-
(n ki) [exp L;_1) -1] =   (25)

ki)

has an Fi,n-ki distribution when model Mi_1 is true and kJ - = 1. However, this
distribution only holds due to the assumption of normally distributed errors, U. In fact we
can use the same principles to derive an approximate penalty function based on asymptotic
arguments in the case when finite sample normality need not hold. We want to find the
relative penalties p; p;...1 such that

PAii_i (Lai - Lj_.1 > psi - pi-i) = ce;

9
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under less restrictive assumptions. Note that the likelihood ratio (LR) statistic 2(L; —
4_1) has an asymptotic chi-squared distribution when model M3_1 is 'true', under the
assumption of normal errors. Note also that due to the QML results, such as those given
in Gourieroux and Monfort (1993) and references therein, that even when the assumed
error distribution is not 'true', but still belongs to a broader class of distributions, the
LR statistic retains its asymptotic chi-squared distribution. What is required is that the
conditional mean vector and covariance matrix satisfy

E[Y I XJ-ij

Var(Y IXJ-1)

= xj_ip
= Var(U) = o-2I„,

respectively, where Xi_1 represents the n x kJ...1 matrix of regressors appropriate to model
and that the distribution of U belongs to the quadratic exponential family. Under

this QML setup, any quasi-likelihood function resulting from the quadratic exponential
family could be used, including that given in (3) which arises from the assumption of
normal errors. Using these QML results for the LR statistic, we can calculate approximate
critical values for any given a; desired and, assuming ki — = 1, the resulting penalty
function is defined by

1 j
pi =

i=1
where Ocx) is the upper ath quantile of the chi-squared distribution with one degree of
freedom. Note that if all ai = a, then

(27)

k •
pi = 1X

2
(a). (28)

We denote the procedure based on the penalty function above as QFIC. The final
row of Tables 3 and 4 illustrate these approximate values for all a = .10 and a = .05,
respectively. It is worthwhile noting that for moderate sample sizes and moderate numbers
of unknown regression coefficients, the small sample penalties are quite similar to the
approximate penalties. However, for smaller sample sizes, the relative penalty functions
p; — p;_i are not all equal and are increasing as ki increases, indicating there may be
something to gain from using the small sample penalties when the assumption of normal
errors can be justified. In both cases, the penalties must be compared with the value
of the maximized (quasi) log-likelihood values to determine if the difference in penalty
functions is significant.
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3.2 Strong consistency of the QFIC procedure

Much of the variable selection literature has been concerned with the consistency prop-
erties of various selection criteria. Our main view is that the user may feel comfortable
in selecting a 'significance' level for the variable selection procedure due to experience
in the particular setting. That is, the practitioner may have justification for selecting a
particular value for a, the (approximate) probability of incorrectly adding an additional
regressor. Still, it may be desirable for theoretical reasons to determine conditions under
which the QFIC variable selection procedure does have strong consistency properties. We
establish the following result.

Theorem 3.1 The QFIC procedure based on (28) with a = a(n), a function of the sample
size n, is strongly consistent if both

and

— log a(n)
(i) lim

n

lim — log a(n)
( n.00 log log n

=0

= 00

hold.

Proof: To prove the theorem we first prove the following lemma.

Lemma 3.2 For any f: IN --+ IR with limn, f(n) = oo, we have

lim  = oo 
— log a(n)

lim  = oo.
n.00 f (n) f(n)

Proof: The proof of this lemma follows along the same lines as the proof of Potscher's
(1983) Theorem 5.8 where it is established that

exp(-2x?(a(n))) a(n) exP(-4Xi(a(n)))

for large n. Simple algebra yields that, for large n,

0a(n)) < —21og a(n) < 4 (a(n)) 
1(n) f (n) — (n)

and hence if

hm = 00,
n.00 f (n)

11
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then

also. Similarly, assuming

then (29) implies that

— og a(n)
lim
n--zo f (n)

— log a(n) 
lim

f(n)

= 00

= CO,

lim 0a(n)) 
=00

f (n)

also, and the lemma is proved. 0
Now, to establish the proof of the theorem, from Nishi (1988, Theorem 4) we have

that QFIC is strongly consistent if both

lim 0a(n)) =

n--*oo

and

0

(ii') 11m xi ( a( n 
= (X)

log log n

hold. To demonstrate that (i) holds if and only if (i') holds, we refer to Potscher (1983,
Theorem 5.8), which states that for any f: IN —* IR with lim. f(n) = oo, we have

lim 
Xi(a(n)) = 0 if lira

n—000 (n)
— log a(n) 0.

n-400 (n)

Thus, taking (n) = n we have that (V) holds if and only if (i) holds. That is,

urn A(a(n)) =0 if lim 
— log 

a(n)= 0.
n.00 n n

Using our Lemma 3.2, and taking (n) = log log n, we have that (ii') holds if and only if
(ii) holds. Thus,

lim x?( a n  
= 00 if h

. m — log a(n)
 = 00,

n—ooto log log n n-+co log log n

and the theorem is proven. 0
As a final note, if our variable selection procedure was intended to choose models with

error distributions that were known and nonnormal, the above approximate penalty may
also be correct under usual regularity conditions such as those found in Godfrey (1988).
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Under these alternative assumptions, although the penalties would be the same as those
defined by (27), our theory would suggest using the maximized log-likelihood values arising
from the nonnormal distributions, rather than those arising from the assumption of normal
errors.

4 Effective probabilities for other IC methods

In the two previous Sections, we described a method of choosing relative penalties based on
controlling probabilities of correctly increasing the number of regressors. In this Section,
we invert the argument to uncover the corresponding marginal probabilities of correctly
increasing the number of regressors for other existing IC procedures.

For any IC procedure, (5) can be used to determine the a level corresponding to the
relative penalty p; — p;-i. To do this, we determine the upper ath percentile of the Fi,n-ki
distribution corresponding to the value of

fa,l,n-ki = (n — Ici) exp —
2 
(7); — pi_i) — 1 

L
(30)

Table 5 displays the effective a levels for varying sample sizes and numbers of regres-
sors included in a linear regression for the QFICa..io, QFICa=.05, AIC, BIC, HQ and fr
procedures. These effective a levels were calculated under the assumption of indepen-
dent normal errors. The effective a levels for the approximate QFICa=.10 and QFICa=.135
procedures demonstrate that for finite samples the probability of adding an unnecessary
regressor is larger than a and increasing as 1c; increases for fixed sample size n, and de-

creases to a as n increases for fixed Ic;. Thus, relative to the finite sample FTC procedure,
the QFIC procedure will be more likely to choose models with more regressors.

Note that, following the dimension consistency results from Akaike (1970), Hannan
and Quinn (1979) and Geweke and Meese (1981) among others, we expect the effective
a levels for BIC and HQ to decrease to zero, while those for AIC and fr stay bounded
above zero. Note the differences in the rates at which these effective a levels appear to
decrease, with BIC reducing to small effective a levels for very small sample sizes, whereas
the effective a levels of fr remain quite large, regardless of the sample size.

It is interesting to look closer at Theil's R2 and the effective a level relationship as

13



Table 5: Effective a values for QFICa..10, QFICa..05, AIC, BIC, HQ and fr procedures

, n 4 j

T

QFICa..-.10

effective ai

QFICa=.05 AIC BIC HQ //2

15 1 0.119 0.063 0.179 0.118 0.180 0.334

30 • 0.109 0.056 0.168 0.072 0.127 0.326

45 0.106 0.054 0.164 0.055 0.108 0.323

, 60 0.105 0.053 0.163 0.046 0.097 0.321

15. 2 0.133 0.073 0.196 0.133 0.197 0.336

30 0.116 0.061 0.176 0.077 0.134 0.326

45 0.110 0.057 0.169 0.058 0.112 0.323

, 60 0.108 0.055 0.166 0.048 0.100 0.321

15

,

3 0.150 ' 0.086 0.215 0.149 0.216

,

0.337

30 0.122 0.065 0.184 0.083 0.141 0.326

45 0.115 0.060 0.174 0.061 0.116 0.323

60 0.111 0.057 0.170 0.050 0.103 0.322

15 4 0.169 0.101 0.236 0.168 0.237 0.339

30 0.130 0.071 0.192 0.089 0.149 0.327

45 0.119 0.063 0.180 0.064 0.121 0.323

60 i 0.114 0.059 0.174 0.052 0.106 0.322

15 - 5 0.191 0.118 0.260 0.190 0.261 0.341

30 0.137 0.077 0.201 0.096 0.157 0.327

45 0.124 0.066 0.185 0.068 0.126 0.323

60

-

0.117 0.062 0.178 0.054 0.110 0.322

15 6 0.216 0.140 0.286 0.215 0.287 0.343

30 0.146 0.083 0.211 0.103 0.166 0.327

45 0.129 0.070 0.191 0.071 0.130 0.323

60 , 0.121 0.064 0.182 0.056 0.112 0.322

15 7 0.245 0.165 0.317 0.244 0.318 0.347

30 0.155 0.090 0.221 0.110 0.175 0.328

45 0.134 0.074 0.197 0.075 0.136 0.324

60 0.124 0.067 0.186 0.058 0.116 0.322

15 8 0.278 0.196 0.351 0.278 0.352 0.351

30 0.164 0.097 0.231 0.118 0.185 0.328

45 0.139 0.078 0.203 0.079 0.141 0.324

60 _ _ 0.128 0.069 0.190 0.061 0.120 0.322
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• follows. From Table 1 we know that for IP
•• Ti 

log 
(n — 

Thus, using (30),

fa,i,n-ki = (n — ki) {exp 7722, [I; log
(n —  1 11

n — ki

(31)

(32)

(33)

This corresponds to the well-known result (see Griffiths, Hill and Judge, 1993, p. 343,)
that the value of fr will increase with the inclusion of an additional regressor with coeffi-

cient i3ki if and only if the absolute value of the t—statistic for the hypothesis Ho : i3ki = 0
is greater than one. This is obviously due to the fact that if T has a t—distribution
with v degrees of freedom, then T2 has an F—distributution with one numerator and v

denominator degrees of freedom.

5 Monte Carlo study

This Section reports the results of Monte Carlo studies conducted to assess the small
sample performance of our new F-statistic based IC procedures (FTC and QFIC) under

both the correctly specified normal error distribution and also under a few misspecified

nonnormal error distributions. Our objective is to select the correct model from among

a group of plausible models and as such we calculated the Monte Carlo probabilities of

correct selection (based on N = 2000 repetitions) and compared them to those of AIC,
BIC, HQ and fr for sample sizes of n = 32,64 and 128.

Three linear regression designs were used, each with a different number of possible

regressors. We first present a brief description of the three designs used. In each case the
values of o-2 = 1.0 and /30 = 1.0 were used as the results are invariant to the values of the
scale and shift parameters.

Design I: Full model Y = fib + x2132 + x3133 + x4134 U with

Quarterly seasonally adjusted Australian disposable income beginning 1959(4)
in millions of dollars

x2 : xi lagged by one quarter
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x3: Final consumption expenditure (private) beginning 1959(4) in millions of dol-

lars

x4 : x3 lagged by one quarter.

The six possible models considered were:

M1 :Y=fio+x1131+U

M2 :Y=1304- S3/33+U

M3 : = flo x + x3/33 U

M4 = flo xith x2/32 + x3/33 U

M5 : = x /31 + x3/33 + x4/34 U

M6 : = Xlfil X2/32 + X3/33 + X.V(34 + U.

Parameter specifications:

n=32

n=64

n=128

= 9,27

= 3, 9
13i = 0.5,1.5.

Design II: Full model Y = fib 4- x1/31 + x2/32 + X3/33 + x4/34 + X505 U with

Quarterly Australian consumer price index beginning 1948(4)

x2 : x1 lagged by one quarter

x3: Seasonal dummy variable for 4th quarter

x4 : Seasonal dummy variable for 1st quarter

x5 : Seasonal dummy variable for 2nd quarter.

The four possible models considered were:

M1:Y= 180+X1/31 -FU

M2 Y = 4- sit% + x2/32 U

M3 : = flo xith + x3/33 -4- x4/34 4- x5/65 U

M4 : = igo xith + x2/32 + x3/33 + x4/34 + x5/35 + U.
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Parameter specifications:

n=32 A = 0.6,1.8

n=64 = 0.4, 1.2

n=128 = 0.2,0.6.

Design III: Full model Y = /30 xith + x2/32 + x3/33 U with

Australian household populations in 1966 and 1971 (see Williams and Sams,

1981)

X2 : Number of Australian households in 1966 and 1971

x3: Australian household headship ratios in 1966 and 1971 (proportion of people

in 'any given population category who are heads of household).

The six possible models considered were:

M1:11= /30+X1/31+U

M2:Y=i3O -FX2/32+U

M3 : Y =130 xith + x2/32

M4 = /30 xith x3iO3 U

M5:Y=130+x2132+x3133+U.

M6 = flo xith + x2/02 + x3/33 + U.

Parameter specifications:

n=32 = 1, 3

n=64

n=128 = 0.25,0.75.

In the case where the errors were misspecified, we generated the true errors according

various distributions using a uniform random number generator and a generalized four

parameter Tukey-A transformation (Ramberg et al, 1979). The transformation equation

is

R(p) = + IPA3 1 — P) A4 ] / A2, 0 <p< 1,
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where p is a uniform pseudo-random number and Ai, i = 1, . . . , 4 are four nonzero transfor-

mation parameters. This allows the generation of pseudo-random variates with specified

values of the first four moments. Table 6 reports the values of the A values used in

our study, along with the corresponding measures of skewness and kurtosis. All of the

resulting distributions have zero mean and unit variance.

5.1. Results

Tables 7, 8 and 9 contain the probabilities of correct selection for each of designs I, IT

and III, respectively, under the correctly specified normal errors model. Notice that the

probabilities of correct selection have been broken down according to each model, and

that averages over all sample sizes and model choices are given in the margins. We first

compare FTC with AIC, BIC, HQ and J 2. The results indicate that the FIC,„..io procedure
has probabilities of correct selection that fall somewhere between those of AIC and BIC,

and are quite close to those of the HQ procedure, whereas the FICc,..05 procedure more

closely resembles BIC than the others. This is not surprising due to the similarities of the

range of effective a-levels corresponding to these other procedures. Indeed, both FICa..io
and FICa..os are quite competitive with the other IC procedures for each model, and in

fact FICa..10 has a slightly higher average probability of correct selection over all of the

designs and sample sizes we considered. What distinguishes the FTC procedure from the

others is the simplicity by which it can be explained and the control that the practitioner

has over the probabilities of error made at each stage.

We have also included the procedures QFIC„,-,10 and QFIC,,..05. The penalty func-

tions for these procedures are even simpler to calculate, and we see from the Monte Carlo

simulation results that overall the procedures are quite competitive with the finite sample

FTC procedures and the other IC procedures considered. The difference between the fi-

nite sample and the approximately derived QFIC procedures appears to be that the finite

sample FTC does well more uniformly across models, regardless of the number of regres-

sors, whereas the QFIC procedures slightly favor larger models. This corresponds to the

discussion in Section 4 relating to Table 5 which shows the larger than nominal effective a

levels for the QFIC procedures. In an average over all models considered, however, QFIC

appears to do about as well as the finite sample FTC procedure.

The Monte Carlo simulations using the misspecified nonnormal errors from the Tukey-

A transformations indicated in Table 6 gave similar results to the correctly specified case

18



Table 6: Parameters for Tukey-A transformation

Ai A2 A3 A4 Skewness Kurtosis

-0.3790 -0.0562 -0.0187 -0.3880 1 6

0.0000 -0.3203 -0.1359 -0.1359 0 9

reported above and as such we have not included the tables here. The results of these

simulations are available upon request from the authors. Thus, we conclude that the FIC

and QFIC procedures of model selection are quite robust to misspecified error distributions

in the linear regression setting. For these reasons, we believe variable selection using FTC

and QFIC offer competitive tools for the practitioner, and ones that are easily understood

and implemented.

6 Concluding remarks

We have presented two related IC variable selection procedures for choosing the regressors

in a linear regression procedure. The penalties calculated allow for the practitioner to

determine the magnitude of the probability of incorrectly adding a regressor to the true

model. The resulting procedures perform competitively against existing methods, without

seeming to overly favor models with fewer or greater numbers of regressors. In addition, by

inverting the argument used to derive the finite sample FTC penalty function, some insight

is gained into the probabilities of incorrectly adding a regressor for other IC methods.

The approximate penalty function was also derived based on similar principles. The

penalty function for the QFIC is easier to calculate than the finite sample procedure and

also has a quasi-maximum likelihood justification to support it. Both procedures are easy

to implement and seem to do quite well in the Monte Carlo simulation studies conducted.

The finite sample procedure offers the practitioner more control over the probability of

incorrectly adding a regressor when the assumption of normal errors is justified, while the

approximate procedure may be more robust to nonnormal errors.
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Table 7: Monte Carlo probabilities of correct selection for Design I

M1 • M2 M3 M4 M5 M6 Average

FICa=.10 0.803 0.786 0.523 0.746 0.494 0.371 0.620

FIC„=.05 0.875 0.857 0.474 0.714 0.432 0.264 0.603

AIC 0.662 0.650 0.504 0.717 0.508 0.505 0.591

n = 32 BIC 0.830 0.817 0.505 0.737 0.480 0.355 0.621

HQ 0.740 0.723 0.521 0.728 0.511 0.450 0.612
112 0.435 0.427 0.391 0.636 0.487 0.623 0.500

QFICa,-.10 0.765 0.748 0.516 0.735 0.507 0.426 0.616

QFIC„..05 0.849 0.838 0.487 0.732 0.461 0.325 0.615,

FICa,-.10 0.839 0.822 0.682 0.719 0.356 0.318 0.622

a FIC.05 0.911 0.893 0.679 0.697 0.267 0.222 0.611

AIC 0.716 0.705 0.626 0.710 0.418 0.423 0.600

n = 64 BIC 0.912 0.894 0.675 0.695 0.264 0.224 0.611

HQ 0.835 0.818 0.676 0.720 0.362 0.329 0.623
112 0.435 0.433 0.458 0.628 0.444 0.577 0.496

QFICa,-.10 0.822 0.805 0.674 0.722 0.372 0.343 0.623

QFIC.05 0.900 0.884 0.682 0.702 0.284 0.248 0.617

FIC„,-.10 0.819 0.810 0.690 0.860 0.684 0.657 0.753

FIC,,=.05 0.897 0.889 0.685 0.876 0.639 0.574 0.760

AIC 0.711 0.708 0.636 0.806 0.676 0.725 0.710

n = 128 BIC 0.926 0.917 0.653 0.868 0.594 0.516 0.746

HQ 0.847 0.841 0.697 0.868 0.678 0.633 0.761
112 0.418 0.421 0.450 0.671 0.604 0.819 0.564

QFIC,,,-.10 0.811 0.802 0.685 0.858 0.678 0.667 0.750

QFIC,,=.05 0.890 0.883 0.688 0.877 0.644 0.586 0.761

FICa-,10 0.820 0.806 0.632 0.775 0.511 0.449 0.665

FIC.05 0.894 0.879 0.613 0.762 0.446 0.353 0.658

AIC 0.696 0.688 0.589 0.744 0.534 0.551 0.634

Average BIC 0.889 0.876 0.611 0.767 0.446 0.365 0.659

HQ 0.808 0.794 0.631 0.772 0.517 0.471 0.665
112 0.429 0.427 0.433 0.645 0.512 0.673 0.520

QFICa.d0 0.799 0.785 0.625 0.771 0.519 0.479 0.663

QFICa,..05 0.879 0.868 0.619 0.770 0.463 0.387 0.664 ,

22

•



Table 8: Monte Carlo probabilities of correct selection for Design II

. Mi. M2 M3 M4

,

Average

FIC„,_-.10 0.483 0.021 0.188 0.527 0.305

FIC.05 0.682 0.015 0.165 0.345 0.302

AIC 0.296 0.025 0.177 0.682 0.295

n = 32 BIC 0.528 0.018 0.180 0.502 0.307

HQ 0.376 0.023 0.181 0.626 0.301
fo 0.145 0.022 0.167 0.765 0.275

QFIC,.10 0.413 0.021 0.181 0.599 0.303

QFIC,,..05 0.586 0.015 0.173 0.450 0.306 ,

FICa=d0 0.489 0.023 0.194 0.513 0.305

FIC„=.05 0.659 0.019 0.166 0.352 0.299

AIC 0.335 0.026 0.189 0.636 0.297

n = .64 BIC 0.660 0.018 0.163 0.355 0.299

HQ 0.477 0.022 0.190 0.529 0.304
fo 0.158 0.022 0.178 0.745 0.275

QFIC,10 0.454 0.024 0.190 0.547 0.304

QFIC,.05 0.617 0.020 0.170 0.397 , 0.301

FICa,-.10

.

0.658 0.038 0.178 0.285 0.290

FICa,-.05 0.826 0.029 0.116 0.139 0.277

AIC 0.486 0.045 0.209 0.430 0.292

n = 128 BIC 0.898 0.020 0.078 0.075 0.268

HQ 0.716 0.036 0.158 0.236 0.286
112 0.208 0.040 0.221 0.630 0.275

QFICa..10 0.641 0.039 0.183 0.303 0.291

QFIC,,,05 0.807 0.029 0.123 0.154 0.278,

FICa=.10 0.543 0.027 0.187

,

0.442 0.300

FIC,..05 0.722 0.021 0.149 0.279 0.293

AIC 0.372 0.032 0.192 0.583 0.295

Average BIC 0.695 0.018 0.140 0.311 0.291

HQ 0.523 0.027 0.176 0.463 0.297
fo 0.170 0.028 0.188 0.713 0.275

QFICa,-.10 0.503 0.028 0.185 0.483 0.300

•_ , QFICa=.05 0.670 0.021 0.155 0.334 0.295
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Table 9: Monte Carlo probabilities of correct selection for Design III

.-M1 M2 M3 M4 Al5 M6 Average

FICa=.10 .840 0.815 0.891 0.612 0.575 0.578 0.718

FIC,.05 0.911 0.902 0.932 0.590 0.541 0.480 0.726

AIC 0.706 0.677 0.813 0.602 0.568 0.671 0.673

n = 32 BIC 0.871 0.851 0.906 0.604 0.563 0.555 0.725

HQ 0.775 0.755 0.852 0.608 0.572 0.632 0.699

/12 0.483 0.458 0.673 0.544 0.526 0.768 0.5754

QFIC„,-.10 0.804 0.777 0.869 0.608 0.574 0.611 0.707

QFIC„..05 0.887 0.881 0.922 0.597 0.551 0.531 , 0.728, ,

FIC,,=.10 0.819 0.786 0.722 0.315 0.249 0.153 0.507

FIC„,..05 0..909 0.861 0.699 0.251 0.181 0.093 0.499

AIC 0.711 0.685 0.704 0.357 0.301 0.242 0.500

n = 64 BIC 0.915 0.866 0.694 0.245 0.178 0.092 0.498

HQ 0.817 0.785 0.721 0.315 0.249 0.157 0.507
R2 0.475 0.472 0.617 0.381 0.350 0.413 0.451

QFIC,,,..10 0.803 0.769 0.720 0.323 0.257 0.168 0.507

QFIC„,-.05 0.897 0.851 0.701 0.262 0.193 0.105 , 0.501 ,

FIC,10 0.835 0.793 0.807 0.396 0.337 0.229 0.566

FIC„=.05 0.920 0.886 0.821 0.338 0.263 0.139 0.561

AIC 0.736 0.707 0.769 0.428 0.382 0.317 0.557

n = 128 BIC 0.954 0.927 0.814 0.291 0.221 0.099 0.551

HQ 0.869 0.835 0.813 0.374 0.306 0.196 0.566
11-2 0.500 0.478 0.650 0.434 0.407 0.501 0.495

QFIC„,..10 0.824 0.789 0.805 0.399 0.342 0.239 0.566

, QFIC„,-.05 0.915 0.880 0.820 0.341 0.270 0.146 . 0.562 44

FIC,10 0.831 0.798 0.806 0.441 0.387 0.320 0.597

FIC„,..05 0.913 0.883 0.817 0.393 0.328 0.237 0.595

AIC 0.718 0.690 0.762 0.462 0.417 0.410 0.576

Average BIC 0.913 0.881 0.805 0.380 0.320 0.249 0.591

HQ 0.820 0.791 0.795 0.432 0.376 0.328 0.591
ip 0.486 0.469 0.647 0.453 0.427 0.561 0.507

QFIC,,:.-_-.10 0.810 0.778 0.798 0.443 0.391 0.339 0.593

QFICa=.05 0.899 0.871 0.814 0.400 0.338 0.261 0.597
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