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Abstract

Index-futures arbitragers only enter into the market if the deviation from the arbitrage

relation is large enough to compensate for transaction costs and associated interest rate and

dividend risks. We estimate the band around the theoretical futures price within which

arbitrage is not profitable for most arbitragers, using a threshold autoregression model.

Combining these thresholds with an error correction model, we can make a distinction

between the effects of arbitragers and infrequent trading on index and futures returns.
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1. Introduction

Index and index-futures prices are approximately related by the well-known cost-

of-carry model. In practice we often see slight deviations from this no-arbitrage relation,

that are not arbitraged away immediately. This is caused by transaction costs, interest rate

risk, worst-case dividend yield policies and short-selling restrictions. The use of less than

the full basket of stocks also induces risk. Based upon these considerations we expect a

band around the arbitrage value, in which for an arbitrage position the expected (risk-

adjusted) returns do not exceed the expected costs.

In the literature (e.g. Ghosh [1993] and Wahab and Lashgari [1993]), it is

mentioned that, under certain conditions, the futures and spot price are cointegrated. This

results in an error correction model for the returns in which the futures and index returns

are explained by past futures and index returns, and the deviation from the arbitrage

relation in the previous period, which we shall call the error correction term or basis.

It has been widely documented (e.g. Kawaller, Koch and Koch [1987], Stoll and

Whaley [1990], Chan [1992] and Koch [1993]) that futures prices tend to lead index

prices. Thus, most of the time deviations from the no-arbitrage relation will occur when

the futures react to news first, only later followed by the index. This will be both reflected

by the significant impact of past futures returns on the current index return, and by the

error correction term.

One interpretation of the error correction term is that it reflects the effect of

arbitragers. If the futures price is too high relative to the index value, they will buy the

stocks underlying the index and sell the futures contract. If the futures price is too low,

they will do the reverse, i.e. sell the stocks underlying the index and buy the futures

contract. These trades drive prices back to the equilibrium, i.e. the error correction term

back towards zero. A second interpretation is the infrequent trading effect on the index.

For example Miller, Muthuswamy, and Whaley (1994) investigate the mean-reversion of

S&P 500's index basis changes, and conclude that infrequent trading causes this mean-

reversion in most cases. First the futures price adjusts to new information, only later

followed by the index since not every stock trades every short time period. In terms of the

basis, both arbitrage and infrequent trading therefore cause the same pattern when futures

lead the index: first the basis becomes nonzero due to a change in the futures price, and

then it returns stepwise towards zero provided nothing else happens. This paper disen-
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tangles these sources of mean reversion.

It is obvious that due to transaction costs arbitragers will only cause the mean-

reversion when the deviation is large. For smaller deviations the infrequent trading in the

index will be effective. Both effects make the system non-linear. The impacts of arbitrage

and infrequent trading will change, dependent on the deviation from the no-arbitrage

relation. We will, therefore, explore the existence of different arbitrage regimes. First, we

investigate the location of possible thresholds, breakpoints indicating a change in the

pattern of the basis, and possibly also in the relations between the index and futures

returns, and the error correction term. Second, we will estimate the error correction model

in each regime. By estimating transaction costs we indicate which thresholds could

indicate the band around the theoretical futures price in which arbitrage is not profitable.

This paper is organised as follows. Section 2 describes the cost-of-carry model and

infrequent trading, and their impact on the basis. Section 3 presents the methodology. The

data are described in Section 4. Section 5 elaborates upon the results of the Threshold

Autoregressive model and the Threshold Error Correction model. Finally, Section 6 will

conclude.

2. The effect of arbitrage and infrequent trading on the basis

The cost-of-carry model is often assumed to describe the relation between futures

and index prices:

Ft,T = St*exp[(rtx-qtx)(T-t)], (1)

where Fa is the futures price at time t of a futures contract maturing at T, St is the current

value of the index, ra is the risk-free interest rate on an investment for the period (t,7),

and qa is the dividend yield on the index. Following the cost-of-carry relation, we define

the basis or error correction term as

zt = InFta. - 1nSt - (rta. - qta.)(T-t). (2)

Three main reasons are given (e.g. MacKinlay and Ramaswamy [1988]) to explain

why deviations from the arbitrage relation (1) can prolong for some time. First, setting up

an arbitrage position involves transaction costs. Second, arbitrage is not risk-free. The

marking to market principle causes interest rate risk. Furthermore, the dividend yield in
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equation (1) is an estimation of future dividends until maturity. In practice worst-case

dividend policies must be taken into account. Also, arbitrage is often done by using less

than the full basket of stocks, obviously creating non-representativeness risk. These risks

are all larger when time to maturity is longer. Third, some market participants have short-

selling restrictions.

On the other hand, among others Sofianos (1993) reports that often arbitrage

positions are closed before expiration following profitable mispricing reversals. This

unwinding option adds value to the arbitrage position. Thus, market participants can set up

an arbitrage position when the costs still exceed the expected return from the deviation

from the arbitrage relation. Of course, traders must then take into account the additional

transaction costs of the early unwinding.

Equation (1) gives the long-term equilibrium between futures and spot prices. The

above considerations, however, make it likely that the movement toward the long-term

equilibrium does not always occur immediately. Only when the deviation from the

arbitrage relation exceeds a critical threshold, do expected (risk-adjusted) returns exceed

the expected costs and arbitragers will enter into the market. Thus, there is a band around

the arbitrage value within which arbitrage is not profitable.

Many stocks in the index do not trade every minute. Since the index value is based

upon the last transaction of each individual stock, the index will lag actual developments

in the financial markets. When lagging stocks eventually trade, the index will be updated.

Miller, Muthuswamy and Whaley (1994) point out that as a result of this infrequent

trading phenomenon, reported basis changes will appear to be negatively correlated. Here,

we will focus on the basis itself, which is stationary due to the cointegrating relation

between futures and spot prices. If futures prices lead spot prices, deviations will original- .

ly occur after a change in the futures price, only later followed by the index. Thus, we

expect the same pattern caused by infrequent trading as well as by arbitrage. An example

of this pattern is given in Figures la and lb.

The negative correlation between basis changes found by Miller, Muthuswamy and

Whaley indicates that the effect of a decrease (increase) after an increase (decrease) in the

basis level is larger than the subsequent movements of the basis in the same direction due

to the step-wise adjustment of the index. For the basis level we obviously will find

positive correlation, as consecutive basis observations will be most of the time either
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positive or negative. Here, however, we are interested in changes in this positive autocor-

relation pattern. If arbitragers enter into the market when the deviation from zero of the

basis is large enough, the next observations of the basis will move rapidly towards zero.

This will also happen to a lesser extent when deviations are large (but not large enough to

allow for arbitrage) and infrequent trading effects start to play a role. On the other hand,

the basis will not change very much when deviations from zero are small. Suppose the

true model for the basis is an AR(1). Then we expect this AR(1) coefficient to be close to

one when deviations are small, reflecting that consecutive basis observations do not

change very much. The AR(1) coefficient will be much smaller when deviations are large

as to reflect the mean-reversion towards zero.

The above considerations lead to the conclusion that a linear AR(p) model will not

be the correct model for the basis. The coefficients will depend on the magnitude of the

basis. For this reason we will estimate a Threshold Autoregressive (TAR) model. This

non-linear model incorporates a number of thresholds and in every regime a different AR

model will apply with increasingly smaller coefficients the further out we get. This could

also have consequences for the error correction model, which we will therefore estimate

per regime.

3. Methodology

In this section we will discuss the threshold autoregressive (TAR) model. Since

arbitragers will only enter into the market when the deviation of the basis from zero is

large, the AR coefficients will be different in different regimes. This is exactly the way

the TAR model works. It detects from the data deviations in the pattern of the basis, and

provides a method to estimate the critical thresholds from the data.

3.1. Threshold autoregressive (TAR) model

For the basis, given by (2), a TAR model will be estimated. More formally,

Zt = +
"V"‘ ,LU) (i)

0 Wi Zfri Et
ii

r. <z <r.,J-1 t-d
(3)

where j=1, k and the threshold lag d is a positive integer. The thresholds are -.0 =r0 <
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< < rk= 00, {0)} is i.i.d. (0,o'w2).

The characteristics of the basis, z„ depend on the regime the error correction term

is in. We suppose that the basis is the stationary error correction term from the cointe-

gration between the non-stationary prices in (1). This will be tested formally in Section 5.

The process can still be stationary if in the central regime the error correction term follows

a random walk. Chan, Petruccelli, Tong and Woolford (1985) derive conditions for which

the process is still stationary. This is certainly the case if in all other regimes around the

central regime the process is stationary. Even in case of a very wide band this is still true.

Tsay (1989) gives four main steps to estimate a TAR model like (3). The proce-

dure is described in detail in the Appendix. In the first step the AR order p is selected

using the Partial Autocorrelation Function (PACF) given in equation (A3). Furthermore,

the set S of possible threshold lags d has to be selected, preferably by economic theory.

• The threshold lag gives an indication of the speed within which the market reacts to

deviations from the no-arbitrage relation. In the second step arranged autoregressions for a

given p and every element d of S are estimated. The data under consideration are sorted

out from low to high based upon zt.d. Next, for the first b observations an AR(p) model is

estimated. Then the AR(p) model is estimated for the first b+1 observations, b+2 obser-

vations et cetera. Each time, the last residual is stored. Finally, these residuals are

regressed upon the same variables as in the AR(p) model (p lags of zt) (equation (AS)). In

case of linearity, the associated F-test (equation (A6)) from this last regression will be low

indicating that the lagged z's have no impact anymore on the residuals. If, however, the F-

test is (too) high, linearity is rejected. In that case a TAR model is superior to the linear

model. By comparing the F-tests for several d, the optimal delay-parameter d* is chosen

by maximising the F-statistic. In the third step, the threshold values are located using

scatterplots. The t-values from the arranged autoregressions in step two are plotted against

the threshold variable z. In the case of linearity, these t-values will converge to their

true value. In the case of non-linearity, however, at the threshold values the t-values will

deviate from their path. Thus, by using scatterplots, we can see how many threshold

values ri there are likely to be and what value they approximately have. In step four the

AR order and the threshold values are refined, if necessary, in each regime by using linear

autoregression techniques.
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3.2. Threshold error correction model (TECM)

• Balke and Fomby (1993) explore a general approach, called threshold cointegrati-

on. They apply their method to the market determined Fed Funds rate and the Discount

rate which is set by the Federal Reserve. The method divides the data into groups

according to the deviation from the arbitrage value. The thresholds for the group including

the exact arbitrage value then presumably reflect the band around the arbitrage value, in

which arbitrage is not profitable. In our case this is obviously not necessarily true. In fact,

it will probably only be the case for the outer regimes. The central regimes could also

reflect differences due to infrequent trading.

For every group we will estimate an error correction model. In this model futures

and index returns are explained by past futures and index returns, and the deviation from

the arbitrage relation in the previous period. If the threshold values are established from

the TAR model for the basis, the following error correction model for the returns will be

estimated for each regime:

L
AlnF

tT 
= CF + E 0:1) 1nFt + E 0 AlnS k + F zt1 + e, F,k -k,T F,k t-- F,t

k=1 ki=1

AlnS = c + E 0:1) AlnF + AlnS +yz +6t,T S S,k t-k,T 5,k t-k S 1-1 S,t
k-1 k=1

(4)

(5)

where Fix is the futures price at time t of a futures contract with maturity date T, S is the

value of the index at time t, and A is the difference operator, e.g.

AinFtx= inFtx -

We expect that the effect of the error correction term in the regime reflecting the

band around the arbitrage value will be much smaller than in the other regimes. Further-

more, there could be differences in the impact of arbitragers in the lower and upper

regimes, since the lower regimes involve short-selling of stocks. Finally, the lead-lag

coefficients between the futures and spot returns might be different across the regimes.
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4. Data

We give an empirical example for the S&P 500 index and index-futures contract

maturing in June and December 1993. The data set is provided by the Futures Industry

Institute Data Center in Washington. The S&P 500 index is calculated every 15 seconds

during the opening hours of the New York Stock Exchange (NYSE), i.e. 8:30 through

15:00 Chicago time. For the index-futures, traded at the Chicago Mercantile Exchange

(CME), transaction prices are available with a time stamp to the nearest second.

From these data we calculate' one-minute returns, using every minute the latest

available price. Thus, 390 prices a day are constructed unless, of course, trading started

later than 8:30 or ended before 15:00. In cases of no trading in a minute, the last available

price is used. From every day we disregard the first 10 observations, since a lot of stocks

do not trade in the very beginning of the trading. The returns are calculated as the

difference of the natural logs of the prices. We do this for every day, getting 379 (or less)

returns per day. This way, when stacking several days, overnight returns are avoided.

To calculate the basis we use the daily U.S. discount rate, the rate applied between

banks, which did not change much during this period (e.g. the 1-month rate was between

3.01 and 3.12 percent for the whole period). Since dividends are paid when the stock

market is closed, the remaining average of the basis (without dividends-adjustments) per

day should approximately reflect these dividends and we need only a daily adjustment. We

use the dividends reported in the S&P 500 Information Bulletin published by Standard and

Poors to get the basis in equation (2). This is of course an approximation since we are

using realised dividends, but it is the best estimate we have.

We will estimate the model in (4) and (5) for a whole month rather than for a

single day. Thus, we hope to detect the structural characteristics and avoid one-time events

affecting the results.

5. Results

We will perform the TAR analysis for the months May (June 1993 contract) and

November (December 1993 contract). For both months, the futures price and index value

are cointegrated. The formal tests are given in Table 1.

The results indicate that for both months the futures and index prices have a unit

root (prices non-stationary, returns stationary), which is the first condition for coin-
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tegration. For both months a linear combination exists between the futures and index

prices, which is stationary. Thus, the futures and index prices are cointegrated. The

cointegration vectors are not significantly. different from (1,-1). After adjusting the

cointegration relationship using (1,-1) with the interest rate and dividends, the basis as

defined by equation (2) is still stationary as can be seen from the bottom line of Table 1.

5.1. Location of the thresholds

Step I: AR order and set of threshold lags

We will now estimate the threshold values of the TAR model for the error

correction term. First, the AR order p is selected using the PACF in (A2), resulting in p=7

and p=4 for May and November, respectively. Next, we have to select the set S of

possible threshold lags d. In 1976 the Super Designated Order Turnaround (DOT) system

Was developed by the NYSE. This system is an automated order-processing system that

electronically links member-firm order rooms to the market makers on the exchange. A

NYSE member is guaranteed execution and reporting within 3 minutes. Since arbitrage

opportunities will be observed almost immediately, we will use S = {1, 2, 3, 4).

Step 2: Non-linearity test and the optimal threshold lag

For the four possible d's the arranged autoregressions are estimated. The F-statistics in

(A6) associated with the regression of the residuals in (A5) of these arranged autoregres-

sions are reported in Table 2.

The results indicate that linearity is rejected for all threshold lags d, while this is

most clear for d=1. Thus, we set d* equal to one for both months.

Step 3: Number and location of thresholds

In the third step following the method of Tsay (1989), we need to establish the

number and the location of the threshold values. For this purpose we use the arranged

autoregressions based upon z".. For the constant and for the lags of zt, the t-values can

then be plotted against the threshold variable zt.d.. In our case of non-linearity we expect to

see unexpected deviations in the t-values after trespassing a candidate threshold. Since we

look for more than one threshold we look at the t-values, sorting from low to high and

from high to low. The reason for this is that, when trespassing a threshold at the end of
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the arranged autoregressions,. already most of the data will be included reducing the

effect'. We also plotted the coefficients from the arranged autoregressions against the

threshold variable. As we will see, especially the t-values of the AR(1) coefficient become

so large, that deviations are not observable anymore. From Section two, however, we

expect to clearly see changes .in the AR(1) coefficient in particular.

For May the t-values and coefficients for the constant and the first four lags of the

basis are given in Figures 2a through 2j sorting the data according to zt.1 from low to high.

In Figures 3a through 3j the data are sorted according to zt.1 from high to low.

Threshold candidates should be indicated by changes in the pattern of the t-values

and in the coefficients. An exception are changes in the pattern at the moment the t-values

are smaller than 1.96 indicating non-significance at the 5% level. We also should be

careful at the start when we have a small amount of observations (we start the arranged

autoregressions with the first 15 observations).

For the negative values of the basis (Figures 2a through 2j) we observe as ppssible

candidates (approximately) -0.16 (t-values constant become significant, while there is a

drop in the coefficient; the latter can also be observed from the AR(1) coefficient in

Figure 2d), -0.14 (starting a steady rising pattern in both the constant and AR(1) coeffici-

ent), -0.10 and -0.06 (being a local maximum and absolute minimum, respectively, in

Figure 2a). The figures of the second and third lag do not contribute any candidates, since

the t-values indicate they are not significant. From Figure 2i we see that the fourth lag is

only significant around -0.15 and -0.13, the coefficient showing a large drop around -0.13.

On the positive side (Figures 3a through 3j) reading the figures from the right to

the left, we observe as possible candidates 0.20 (the constant becomes significant and the

coefficient drops clearly), 0.18 and 0.19 (peaks in both plots, from 0.18 starting to

decrease towards zero). The same candidates apply from the AR(1) t-values and coef-

ficients. From Figure 3e it is noticeable that from the significant level around 0.10 the t-

values move rapidly towards zero until 0.07. From the last figures (3g trough 3j) only the

'Suppose there are two thresholds on either side of the average. Suppose we arrange the observations from
low to high and we find the threshold at observation 1000. This will give a clear deviation in the path of t-ratios.
If, however, the second threshold is at, say, observation 6000, the deviation will be less clear. The reason for this
is that the previous t-ratio was already based upon 6000 observations, and as a result for example 50 extra
observations will only slightly deviate the path of the t-ratios. Therefore we also estimate the arranged
autoregressions from high to low to have a closer look at the second threshold.
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AR(4) coefficient is significant around 0.07.

For November the t-values and coefficients of the constant, and the four lags of the

basis are given in Figures 4a through 4j and Figures 5a through 5j for sorting according to

zt_i from low to high and high to low, respectively.

For the negative values of the basis (Figures 4a through 4j), we observe as possible

threshold candidates -0.19 (a clearly changing point for all the coefficients and the

constant although for some of them in the non-significant area), -0.15 (a clear turning

point in most figures as well), and -010 (peak in both constant plots, turning point for the

AR(2) t-values and coefficients although more towards -0.09; the latter also accounts for

the AR(3) and AR(4) plots).

On the positive side (Figures 5a through 5j) we observe as possible candidates 0.26

(maximum in the constant plot although in the non-significant area, minimum for the

AR(1) coefficient, and a sharp rise in the plots for the fourth lag), 0.22 (from this point on

the constant and the AR(1) coefficient start to converge, a sharp drop in the AR(2) plots,

and a turning point in the fourth lag, although the latter is closer to 0.21). Closer to zero it

is difficult to point out any clear candidate taking into account the significance of the

coefficients.

Step 4: Refine the threshold candidates

The third step should also involve the establishment of the number of thresholds.

Clearly, this is difficult as so far there exists no formal test for this. Since our primary

interest is to find the band around the arbitrage value in which arbitragers will not enter

into the market, we apply the following procedure:

(i) Find two thresholds from the candidates which are far enough from zero as to

reflect candidates for the no-arbitrage band

(ii) Find two thresholds between zero and the outer thresholds for investigating

changes in the pattern involving infrequent trading

For both steps we will use a grid search using the criterion of the least sum of squared

errors. Fixing the number of regimes at five, we can optimise their location by adding the

sum of squared errors of all the regimes and minimise this. For the grid search of the

11



outer regimes we take into account the observed candidates, while for the other two

thresholds we search the whole area. The reason for this is that we do not expect that

infrequent trading will change radically at a certain point, but we think that the pattern

might be different at a certain distance from zero.

To start with the month May, we observed as candidate on the outer negative side -

0.16. A grid search in this area gives the optimal threshold -0.158. On the outer positive

side we observed as candidates 0.18, 0.19 and 0.20. A grid search in this area provides the

optimal threshold 0.204. Next, we use a grid search for the entire area between -0.158 and

0.204 for two other thresholds. The sum of squared errors (SSE) criterion results in the

thresholds -0.073 and 0.072.

For November we observed as candidate on the most negative side -0.19. The grid

search in this area provides the threshold -0.186. On the outer positive side we observed

as candidates 0.21, 0.22 and 0.26. A grid search results in the threshold 0.212. The SSE

criterion for the area in between these two thresholds results in the thresholds -0.090 and

0.062.

The above results are summarised in Table 3. Table 3 also gives the number of

observations in every regime. We see that there is only a small number of observations in

the outer regimes. To give an indication whether arbitrage would be possible in these outer

regimes, while it is not likely in the other regimes, we calculate the bandwidth in terms of

index-points. The average value of the index in May 1993 was equal to 445.25, while in

November 1993 it was 462.89. The bandwidth in May is 0.362 (0.204+0.158) percent, or

1.61 index-points. In November the bandwidth is 0.398 (0.212+0.186) percent, or 1.84

index-points. If the bandwidth is symmetrical around the arbitrage value, then this would

mean a deviation of 0.805 index-points in May. and 0.92 index-points in November that

would trigger arbitrage2.

• The bid-ask spread for a typical stock in the S&P 500 index is 0.125. With, for

example, an average share price of 40 dollars, the average percentage spread would be

0.3125 percent. If the cash index level is half way between the bid and ask levels, half the

bid-ask spread would be incurred as a cost. With the average index level in May of

?This does not necessarily mean that all observations in the outer regimes will trigger arbitrage. Some of them
may well be the result of infrequent trading. In practice arbitragers will compute the S&P index level using the
bid or ask prices to observe a 'true' arbitrage opportunity.
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445.25, this would mean a transaction cost of 0.5*0.003125*445.25 or 0.70 index-point.

For a futures contract half the spread is 0.05 index-point. Thus, costs due to the spread are

in this example 0.75 index-point. For November this is 0.77 index-point. On top of these

costs an arbitrager will have to pay commission fees. The latter costs will, however, be

small for a member firm of the New York Stock Exchange. If a position is hold until

expiration, then there are extra costs due to the spread. The above argument, however, did

not consider the early unwinding option. Considering the number of observations in the

outer regimes, we expect that for an arbitrage position started several weeks before

maturity, such an early unwinding possibility will quite likely occur.

5.2. The TAR model

With the thresholds found in the previous section, we can now estimate the AR

model per regime. The results for May and November are given in Table 4. For May we

see that the AR(1) coefficient is the smallest in the outer regimes reflecting rapid return

towards zero when arbitrage is presumably possible. The middle regime has the highest

AR(1) coefficient. The two regimes around the middle regime have a somewhat lower

coefficient than in the middle regime. Since arbitrage is not likely to be possible in these

regimes, this effect can be ascribed to the infrequent trading effect which has obviously a

larger impact when there is some deviation from the arbitrage relation. This deviation

could be caused by new information coming into the market moving the futures prices

only later followed by the index due to infrequent trading.

For November we see a similar pattern, with the only exception that the AR(1)

coefficient is very large in regime 5. We already observed from Figure 5d that the pattern

found in all other figures of the AR(1) coefficient (from a certain point a steady conver-

gence) was not present here. A possible reason is that the infrequent trading effect was

quite severe in this case.

5.3. The Threshold Error Correction model

We can now estimate for each regime the error correction model given by

equations (4) and (5). The results for the regimes 2, 3, and 4 are reported in Tables 5 and

6 for May and November, respectively. For May we observe a clear lead of the futures

market on the spot market in all three regimes. In regime 2, where futures prices are rela-
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tively low compared to index prices, the coefficients of the lagged futures returns in the

index equation are approxi-mately twice the magnitude of the coefficients in the other two

regimes. If futures lead the spot, then this regime is reached in cases of negative news

entering the market, seemingly increasing the infrequent trading effect (if this is one of the

main causes the futures market leads the spot market). The error correction term is mainly

significant for the index returns, also indicating the lead of the futures prices. The impact

of the deviation of the arbitrage relation on the current index returns is clearly larger in

regime 2 and 4 than in the middle regime.

Estimating the ECM for the outer regimes using only 1 lag of the index and futures

return to save on the degrees of freedom, we find no significant impact of the error

correction term, but the sign is correct and the magnitude nearly twice as large as in

regimes 2 and 4. The large coefficient (0.551 and 0.426 for regime 1 and 5, respectively)

of the lagged index return in the index equation indicates that part of the observations in

the outer regimes are due to infrequent trading (thus they do not reflect arbitrage oppor-

tunities).

For November we find similar results as for May. Again the futures market seems

to lead the spot market, and the coefficients of the lagged futures returns in the index

equation are approximately twice as large in regime 2. The shorter lead can be partly

ascribed to the much lower number of observations in this regime. As opposed to May, in

November we find some significant impact the other way around, i.e. a lead of the spot

market on the futures market. For the error correction term we again find that the

magnitude of the coefficients is larger in regimes 2 and 4 than in regime 3. For the outer

regimes the clearly significant lagged spot return in the index equation (coefficient 0.488)

and the much smaller coefficient of the error correction term confirm our conclusion that

the different behaviour of the upper outer regime in November is due to a relative large

number of infrequent trading cases outside the no-arbitrage band.

7. Conclusion

The threshold error correction model allows us to explicitly model the behaviour of

arbitragers. Index-futures arbitrage only occurs when the deviation from the arbitrage

relation is large enough to offset the difference between the costs (and risks) and the

expected return including the early unwinding option. The threshold autoregression

14



approach provides the band in which arbitrage is presumably not profitable, or at least not

for a large group of arbitragers. One difficulty is that the infrequent trading effect of the

index imposes the same pattern on the basis: first we observe a deviation• from the no-

arbitrage relation, and then the basis moves back towards zero. Arbitrage opportunities

cause this pattern only at a deviation of the no-arbitrage relation at which the expected

return is positive. For the infrequent trading effect the change in the pattern will occur

more gradually the further away the basis is from zero. The results indicate that also in the

case that arbitrage is not possible, the pattern is different in the regimes next to the central

regime.

The error correction models for the regimes show that the impact of the futures

market on the spot market is larger when the basis is negative, and that the deviation from

the no-arbitrage relation becomes more important for the current returns the further the

• futures price is away from its theoretical value.
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Appendix: Tsay's method for TAR models

In this appendix we describe Tsay's (1989) method to establish the threshold lag and the threshold values. The model we
want to estimate is the following:

,k(l) t"-• A
Zr = + 

tP1Zti 
Eut ) r.J 5.z <r-1 t-d

where j=1,...,k, with k the number of regimes, and d the threshold lag. The thresholds are
-c<=ro<r,<...<re--0.. The AR order of the model is p.

Tsay suggests the following procedure to estimate p, d and the thresholds:
Step 1 

(Al)

Select the AR order p and the set of possible threshold lags S. For this purpose the partial autocorrelation function (PACF) of
z, may be used. This function is calculated by estimating

zt = 4)0 + E e, (A2)
i.1

for increasing order q and test the significance of 4),. This coefficient is called the qth partial autocorrelation coefficient, say Ogg. As a
model for the data-generating process we choose an AR(p) model such that

0 for q=p
(1)qq = 0 for q>p

The 
qq
. are approximately normally distributed with mean zero and variance 1/N for q>p, where N is the sample size. This can be used

to check the significance of (q q.
The set S of possible threshold lags can be chosen by own practical feeling about what will be the lag length of the reaction

of the market towards the deviations.

Step 2 

(A3)

For a given p and every element of S arranged autoregressions are fitted and the threshold nonlinearity test is performed.
Suppose we have the AR(p) model for z. We refer to (41,4,,...,z,p) as a case of data for the AR(p) model. An arranged

autoregression is an autoregression with cases rearranged, based on the values of a particular regressor. For the TAR model (Al),
arranged autoregression becomes useful if it is arranged according to the threshold variable z,„,. Consider for example the case For
a given TAR model with N observations, the threshold variable zi.d may assume values (z„,...,zNii) where h equals max{ 1, p+1-d}. Let It„
be the time index of the nth smallest observation of (zh,...,z„). We then can rewrite (Al) as

= 4)(01) E 4)(ioz7c.d_i
i=1

(2)• (2)
Po T a

 
p 
 ▪ ,(

t
2
a
)
. d 

i.1

(3) • (3) • c(3)
Y 0

i.1

if n5.14

if L<n5_U

if n>U

(A4)

where L satisfies zit< r, < zx and U satisfies c <, < . This is an arranged autoregression with the first L cases in the first
regime, the second cases iirthe second regime Ajnd the rest"Ih the third regime. This way the data points are grouped so that all of
the observations in a group follow the same linear AR model. We need to find the threshold values r, and r2. Since the threshold values
are unknown, however, one must proceed sequentially. The least squares estimates CI) are consistent for 4)41) if there are sufficiently
large numbers of observations in the first regime. In this case, the predictive residuals are white noise asymptotically and orthogonal to
the regressors. On the other hand, when n arrives at or exceeds L the predictive residual for the observations with time index It„.,+d is
biased because of the model change at this time. Hence, the predictive residual is a function of the regressors. Consequently, the
orthogonality between the predictive residuals and the regressors is destroyed once the recursive autoregression goes on to the
observations whose threshold values exceeds rl.

The procedure then is as follows. Equation (Al) for cases rearranged according to the threshold variable 4,1 is estimated for
the first m cases. Then every time the next case enters into the estimation. Each time the last residual is stored. These residuals are the
predictive residuals. For the standardised residuals we then estimate

e = Oo + E 01 z .
for n=m+1,...,N-d-hi-1, and compute the associated F statistic
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e,2 - ty(p+i)
P(p,d) =   (A6)

E 1 (N—d—m—p—h)
where the summations are over all of the observations in (A5) and. ê1 is the least squares residual of (A5). If the F-statistic exceeds the
critical value of the F distribution with p+1 and N-d-m-p-h degrees of freedom, linearity is rejected. We then prefer a TAR model. The
optimal threshold lag cr is then selected as to maximise the F-statistic.

Step 3 
For given p and d', locate the threshold values by using scatterplots. For the above described procedure to calculate the

predictive residuals, the arranged autoregression is estimated every time. The t-values of every AR-coefficient and the constant are also
stored together with the value of the threshold variable zi.d. from the last observation included in the regression. We then use the
scatterplots of the t-values of the constant and the AR-coefficients against the threshold variable. The idea behind this plot is the
following. When we have a linear model, the t-values show the significance of the coefficient, and when the coefficient is significant,
the t-ratios converge gradually and smoothly to a fixed value as the recursion continues. This is also the case in a TAR model until the
recursion reaches a threshold r. Then the estimate of the parameter starts to change and the t-ratio begins to deviate. In effect, the t-ratio
starts to turn and, perhaps, changes direction at the threshold value. Therefore the plots give insight on the possible number of thres-
holds and their location.

Step 4 
Refine the AR order and threshold values, if necessary, in each regime by using linear autoregression techniques. To refine

the threshold values a grid search can be applied in a range considered reasonable from the scatterplots. A possible criterion is the sum
of squared errors of all the regimes together, for example the sum of the squared residuals in equation (A4) in case of three regimes.
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Table 1
Augmented Dickey Fuller tests on spot and futures prices, and cointegration

May November critical
value

Futures Index Futures Index

levels (i) -0.96 -1.15 -1.83 -2.44 -2.86
(ii) -1.21 -1.48 -1.78 -2.39 -3.41

differences (i) -48.0 -24.5 -37.6 -15.1 -2.86

cointegrationl -16.9 -16.8 -17.7 -17.7 -3.30

vector 1 -1.03 1 1.00

• basis' -16.81 -16.67 -2.86

The following equations are estimated using OLS:

L,

00 + 91*/),-1 E eit

= + Oi*Pt-1 E *t elt

(i)

For both the levels and the first differences, the t-values of 01 are reported. Critical values
are given in the last column. The null hypothesis of non-stationarity is rejected if the t-
value of 01 is below the critical value.

Pit= c 7rP2t zt is estimated, first with the futures price as dependent variable
(column futures), second with the index value as dependent variable (column
index). For the resulting error term i„ equation (i) is estimated. The t-value of 01 is
reported here.

2 For the basis given in equation (2) equation (i) is estimated. The t-value of 01 is
reported here.
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Table 2
Tsay Test for Threshold Nonlinearity for the difference between the index-futures price
and the index value .

threshold lag d F-statistic2

May '93 November '93

1 10.48 6.34

2 9.42 3.08

3 4.70 5.27

4 2.13 3.88

2
The data set is sorted out from low to high based upon zt-d
The degrees of freedom are p for the denumerator (7 for May and 4 for November)
and the number of observations for the numerator (7053 in May and 7689 in
November) The 5% (1%) critical value equals 3.84 (6.63) and 3.00 (4.61) for May
and November, respectively.

Table 3
Boundaries and number of observations of each regime

May 1993 November 1993

Thresholds # obs Thresholds # ohs

Regime 1 ( -... ;-0.158] 45 ( -Do ;-0.186] 19

Regime 2 (-0.158;41073] 787 (-0.186.-0.090] 225

Regime 3 (-0.073; 0.072] 4794 (-0.090 0.060] 4463

Regime 4 ( 0.072; 0.204] 1391 (0.060;0.212] 2890

Regime 5 ( 0.204; . ) 36 (0.212;. ) 92

0



Table 4
Results of the TAR model

Panel A: May 1993

Regime 1 2 3 4 5

constant

zt-i '

Zt-2

Zt..3

Zt.4

Zt-5

Zt-6

-0.597 -0.00641 0.000206 0.00733 0.104
(-1.33) (-1.07) (0.52) (2.17) (1.31)

0.573 0.761 0.931 . 0.900 0.557
(2.30) (11.45) (55.17) (24.44) (1.91)

-0.0852 -0.0296 -0.00476 -0.00146 -0.370
(-0.46) (-0.59) (-0.25) (-0.039) (-1.93)

-0.279 0.0460 -0.0154 -0.0527 0.113
(-1.21) (0.94) (-0.82) (-1.41) (0.52)

0.440 -0.0256 0.0119 -0.0793 0.104
(1.80) (-0.50) .(0.65) (-2.04) (0.36)

-0.592 0.0473 0.000344 0.0732 0.180
(-3.12) (0.94) (0.019) (1.95) (0.53)

0.469 -0.0316 0.00157 -0.0164 -0.142
(1.79) (-0.64) (0.086) (-0.42) (-0.54)

-0.0825 0.123 0.0164 0.0680 -0.160
(-0.34) (3.23) (1.19) (2.43) (-0.81)

Panel B: November 1993

constant

Zt-1

Zt-2

Zt.3

*Zt_4,

0.0572 0.0102
(0.89) (0.77)

0.544 0.705
(1.76) (5.83)

0.00255 0.00859 -0.0309
(6.06) (4.87) (-0.81)

0.892 0.855 0.962
(51.56) (36.23) (5.64)

0.732 0.313 0.0124 0.0251 -0.165
(1.84) (3.75) (0.65) (0.98) (-1.20)

-0.0173 -0.203 -0.00612 -0.00972 -0.186
(-0.034) (-2.54) (-0.32) (-0.38) (-0.12)

-0.0811 . 0.181
(-0.23) (2.56)

0.0220 0.0118 0.315
(1.53) (0.62) (2.54)

The model estimated is

= (Von _, e?)
i•1

rJ <-1 t-d r j '

where j=1, ..., 5 and the threshold lag d equals 1. The thresholds are =r, < r
1 
<...< r5= For May we have

r1=-0.158, r2=-0.073, r3=0.072, and 7-4=0.204. For November we have r1=-0.186, r2=-0.090, r3=0.062, and
r4=0.212.
T-values are given in parentheses.
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Table 5
Error correction model for the index and index-futures in May 1993.

Regime 2
-0.158<z05.-0.073
772 observations

Regime 3
-0.073< zo 5_0.072
4809 observations

Regime 4
0.072< z" 5. 0.204
1391 observations

AlnFt,T AlnSt AlnFt.T AlnS, Aln T AlnS,

(01

4)2

4)3

(1)4

4)5

4)6

4)7

(1)8

4)9

4)10

4)11

4)12

01

03

adj R2

.000002 .00106a .000001 .000001 -.000049 -.000084a

-.157' .0856' -.043P .0417' -.0383 .0400'

-.0282 .230 .0229 .104a .0141 .117a

.164a .0389b .106a -.00349 .0883a

.144a .0258' .0787' -.0571c .0917a

.141a .0615' .0474a,

.134a .0445a .0108

.0714a .0502a .0328'

.0597a .0267a .00950

.047V' .0287a .0287b

-0.0692 .0408' .0196a

.0391' .0125b

.0573a .00958

-.0308 -.0233 -.0530a .0159 .0738a

-.0493 -.0185 -.137b

-.134a

.000305 .00106a -.000129 .000130a ØØØ728b .000999a

.023 .263 • .003 .121 .007 .208

The following model is estimated for each regime, with L,, L2, L3 and L4 based on significant coefficients:

ln Ft, CF + E 4)„..,keinFi_k E OF.kAlnSt_k + yFzfri +
k.1 k.1

L,

AlnSt.7. = cs + E E es.kAinsfrk Frszfr, e

where A1nFo. and AlnS, are the futures and index return at time .t, respectively. z, is the difference between the natural
logs of the futures price and the index value.

b, and C correspond to significance levels of 1%, 5%, and 10%, respectively.



Table 6
Error correction model for the index and index-futures in November 1993.

para-
meter

Regime 2
-0.186<z 15-0.090
225 observations

Regime 3
-0.090< z,./ 50.062
4463 observations

Regime 4
0.062<z,./ 50.212
2890 observations

. AinFa AlnS, AinFt.T AlnS, tlInFt.T 6.111S t

c .000068 .000079 .000007' -.000120' .000039b -.000034'

4), -.256' .0811b .00406 .0473' -.0393' .0307'

4)2 .107 .121 .0514' .0169 .0699'

4)3 -.142" .123a .0561* .0154 .0671'

4)4 -.00509 .0533a .0519' .0428'

05 .0470' .0337'

4)6 .0204' .0219b

07 .0347'

4)8 .0307'

4)9 .0126'

Om .0232'

4)ii .0178'

4)12 .0152"

4)13 .0137"

01 .0382 -.00967 .118' .0221 .0889b .0814'

0 .315b .282* .0104 .0303b .0730*

0 .181b .0676" .0453* .0418b

0 .155' .0865' .0278' .0402b

0 .0181

Y .000712 .00115b -.000209' .000386* -.000473* .000441*

adj R2 .119 .234 .008 .119 .008 .137

The following model is estimated for each regime, with LI, L2, L3 and L4 based on significant coefficients:

L,
AlnF4 CF E 4)FkeinFfrk„. E OFekAlnSfrk y-Fzfri

1.3 L,

= cs + E 4)skeinF,_k„. E es.kAinsfrk rtszt_I 4- Cs,:
where AlnFa and AlnS, are the futures and index return at time t, respectively. zt is the difference between
the natural logs of the futures price and the index value.
a, b, and C correspond to significance levels of 1%, 5%, and 10%, respectively.
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Fig la: Supposed pattern after positive news Fig lb: Supposed pattern after negative news
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