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Abstract

This paper is concerned with the problem of testing a subset of the parameters

which characterize the error variance-covariance matrix in the general linear regression

model. Formulae for likelihood ratio, Wald, Lagrange multiplier and asymptotically

locally most mean powerful test statistics based on the likelihood of a maximal

invariant statistic or an equivalent marginal likelihood are given. Specific applications

discussed are the problems of testing against AR(4) disturbances in the presence of

AR(1) disturbances and testing for a Hildreth-Houck (1968) random coefficient

against the alternative of a Rosenberg (1973) random coefficient. Monte Carlo size

and power calculations for these two testing problems are reported. These results

provide further evidence that supports the proposed approach to test construction. It

also suggests that better handling of nuisance parameters is likely to improve the

small-sample properties of asymptotically based inference procedures.
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1. Introduction

In regression analysis involving non-experimental economic data, the

specification of the covariance matrix of the disturbances is always a matter for

concern. This is widely recognised in the extensive literature on testing linear

regression disturbances; see for example Godfrey (1988), Judge et al. (1985), King

(1987a, 1987b), Pagan and Hall (1983) and Pagan (1984). There is an emphasis in this

literature on the three classical testing procedures based on the likelihood function,

namely the likelihood ratio (LR), Wald (W) and Lagrange multiplier (LM) tests. On

the other hand, some have questioned the accuracy in small-samples of these tests, see

for example King (1987a), Honda (1988), Moulton and Randolph (1989) and Ara and

King (1993).

Ara and King (1993) conjectured that the relatively poor performance of these

tests in small samples is due to the presence of nuisance parameters that can cause

biases in the estimates of key parameters in the test statistics. For tests of regression

disturbances, the regression coefficients and any other parameters not under test are

nuisance parameters. Ara and King suggested the use of invariance arguments to

overcome this problem. This involves treating a maximal invariant statistic as the

observed data and its density as the likelihood function. They proved that this is

equivalent to constructing tests based on the marginal likelihood function. Estimates

based on the marginal likelihood function are known to be less biased than those based

on the profile or concentrated likelihood; see Tunnicliffe Wilson (1989) and Ara and

King (1993). The latter's study suggests that the maximal invariant/marginal

likelihood (MIML) approach produces more accurate asymptotic critical values for the
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LM and LR tests when the null hypothesis is normal spherical disturbances. They

were unable to report a similar improvement for the W test.

Rahman and King (1993) extended this work to the multivariant one-sided

testing problem involving a subset of the parameter vector of this disturbance

covariance matrix. In this setting, not all nuisance parameters can be eliminated by

invariance arguments. The usual procedure in such a situation is to replace the

nuisance parameters in the test statistics by maximum likelihood estimates. The

MIML approach suggests the use of maximum MIML estimates for the nuisance

parameters. There are two reasons for expecting this method to be superior to the

classical approach. The first is the use of invariance arguments to reduce the number

of nuisance parameters and the second involves the use of typically less biased

estimates of those nuisance parameters which remain.

Rahman and King's (1993) principal concern was with the problem of testing

against Hildreth-Houck (1968) random coefficients in the presence of first-order

autoregressive (AR(1)) errors. They considered only the LM and King and Wu's

(1990) asymptotic locally most mean powerful (ALMMP) tests and found

improvements in both small-sample size accuracy and power when MIML based tests

are used in place of their classical counterparts. In a subsequent study (Rahman and

King (1994)), they extended their Monte Carlo study to include King's (1987b)

approximate point optimal invariant (APOI) tests and concluded that the extra work

required to apply APOI tests hardly seems worthwhile.

In this paper, we extend this work to include both one-sided and two-sided

testing and a greater range of tests for the general case of testing a subset of the

parameter vector of the disturbance covariance matrix. The plan of the paper is as
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follows. Section 2 outlines the theory behind the MIML approach to hypothesis

testing in the context of the general linear regression model. Formulae for MIML-

based LR, W, LM and ALMMP tests are given for the general testing problem.

Section 3 discusses the application of these formulae to the problem of testing for

AR(4) disturbances in the presence of AR(1) disturbances. The problem of testing for

a Hildreth-Houck (1968) random coefficient against the alternative of a Rosenberg

(1973) random coefficient in the linear regression model is the subject of section 4.

Section 5 reports the results of a Monte Carlo size and power comparison for these two

specific testing problems. Section 6 contains some concluding remarks.

2. Theory

Consider the normal linear model with non-spherical disturbances

y = X13 + u, (1)

where y is n x 1, Xis n x k nonstochastic and of rank k <n, and Q(0) is a symmetric,

positive definite matrix function of the unknown p x 1 parameter vector 0.

Suppose 0 is partitioned as 0 '= (01' ,0 2') where 0 and 02 are

pi x 1 and (p — pl) x 1 subvectors, respectively. We are interested in testing

H0:0 2 =0 against either Ha:0 2 # 0 or 1-1::0 2 >0, where > denotes each component is

less than or equal to its corresponding component but there is at least one strict

inequality. This testing problem is invariant with respect to transformations of the

form

y Tloy + Xri (2)
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where ri 0 is a positive scalar and i is a k x 1 vector. As noted in Ara and King

(1993) and Rahman and King (1993), the m x 1 vector

v= P zl(z' P' 
pz).112

is a maximal invariant under the group of transformations given by (2) where

m=n—k, P is an mxn matrix such that PP'= I,„ and P' P= I„— X(X' X'= M

and z = P' Py is the ordinary least squares (OLS) residual vector from (1).

The probability density function of v (see King, 1980) is

f (v;8)dv = (m I 2)n nni
pn(0) I I/2 a(0 )rni2 dv (3)

where

a(0) = vi(PQ(0)P) i v

= Q(0)-1 z' z ,

is the generalized least squares (GLS) residual vector assuming covariance matrix

a2C2(0) and dv denotes the uniform measure on the surface of the unit m-sphere.

Also note that from Tunnicliffe Wilson (1989), the marginal likelihood for 0 can be

written as

1
Iy) = IS2(0 )1 1/21X' Q(0 

)-1X1/2 (a, nor, ii)„,12 
(4)

and Ara and King (1993) have shown that as likelihoods of 0, (3) and (4) are

equivalent.

By invariance arguments, our testing problem can be reduced to one of testing

1/0 against Ha based on v with density (3) as the observed data. Equivalently in this

case we could choose to base our inferences about 0 on the marginal likelihood (4).

We call this the MIML approach because (3) and (4) are equivalent likelihoods. In our
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case, 0 is a nuisance parameter vector which we have been unable to eliminate

through either invariance or marginal likelihood arguments.

Let 0 denote the unrestricted maximum MIML estimator of 0 i.e., that value

of 0 that maximizes (3) (or equivalently (4)). Let e denote the maximum MIML

estimate of 0 under the restriction that 02 = 0. Thus ö = (6, . The MIML-based

LR test of H„ against Ha:0 2 # 0 rejects Ho for large values of

log
In(e)
Is2(6)

xts2(6)x
l}+iniog{irc2(6)-11

xin(e)xl
(5)

where II is the GLS residual vector assuming 0 = 0, and z2 is now the GLS residual

vector for 0 = e. (5) can also be written as

1/12

(FilHorm1/4'xl
m log 1=1

01 —1Int 11/2n: )2E(eilH(0)1 lx*,x*
(6)

where H(0) is the Cholesky decomposition matrix of Q(0) , i.e.

HOY H(0) = (0)',S2 2* = H(6)X, X = H(0)X, and e and es are the OLS residual

vectors from the transformed regression

H(0 )y = )X13 + H(0)u

with 0 =6 and 0 =0, respectively.

In order to construct the W test we need to partition the information matrix

1(0), whose (i3Oh element is simplified from Ara and King (1993) as

1
/(0)= 2(m + 2) [m trt M(0)* D(0), M(0) D(0)11— trIM(0)* D, (0 )}trt M(0 ) * Di (0)1]

(7)

where M(0)* = -noy x(dr n(0)--' x)'
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and D(0), = an(ori 
ao c20) = Qoy. awe)

ao, •

The submatrices are defined as

/(0) =
17(0)„ /(0)12]

L/(0)21 10)22

(8)

where 40)11, 1(0)12 and 1(0)22 are pl x p1, p1 x (p — pi) and (p — pi) X (p — p3,

respectively.

The MIML-based W test of Ho against Ha:0 2 # 0 rejects 1/0 for large values of

62146)22 -./(6)21/(0) -46)12)52 (9)

where 62 is the lower (p — pi) xl subvector of 0. One further simplification is

possible when 1(6)12 =1(6)21 =0 and the information matrix is block diagonal as then

the W test statistic becomes

62 1(6)2262 •

The construction of the LM and King and Wu's (1990) ALMMP tests needs

the calculation of the score subvector and the partitions of the information submatrices

under the null. Let s(e) denote the (p —p3 x 1 vector of scores with respect to the

elements of 02 evaluated at 01 = 61 and 02 = 0 . Thus the th element of the score is

u 
 

u u no y 17s(6), = - mr1 an(6)-1 1tr[A(6) 

where i = p1 +1,...,p and go) = Q(6)-1 — S-1(6)-1X(X' C1(611 Q(6)-1 .

s(0)i can again be simplified as

s(6); = tr[M(6) * m an(6) 
2 ao,

(10)
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where Al(6)* and D(6); are defined as in (7) with 0 replaced by 0 =0.

Let /(6)u denote the ith element of the p x p information matrix defined by

(7) evaluated at 02 =0 and 0 = 01. We partition the information matrix /(6),, as in

(8) and evaluate it at 0 =6. The LM test of Ho against Ha:02 # 0 rejects 1/0 for

large values of

406)22 -1(6)211(6);1(6)121-14).

If the information matrix is block diagonal, (11) simplifies to

s(6)' /(6)-2 s(6) .

In the case of testing 1/0 against J1, we can construct an ALMMP test. This

test rejects Ho for large values of

'E s(6),/fr1(6)22E—f.1(6)2,1(6);-:1(6)12E1"2
i=p1+1

(12)

where is the (p— pi) x 1 vector of ones. If the information matrix is block diagonal,

the denominator becomes

1 4-1,
[m tri M(ë) * D (u )M(u)*D 

•
f ) — tri M(ë) * D (151 )itri M(ë) * 3 (ö)}].

2(m +2) „pro i=m+,

3. Testing for AR(4) Disturbances in the Presence of AR(1) Disturbances

As noted by King (1989), the presence of first order autocorrelation in a

quarterly regression model is a good reason to suspect additional high order seasonal

autocorrelation. Indeed, the omission of relevant variables with seasonal components

might lead to higher order effects in addition to first order autoregression in the



disturbances. Thus it makes sense to test for a higher order autoregressive process in

the disturbances when first order autocorrelation is present. Godfrey (1978a, 1978b)

recommended the use of the LM test to test for higher order AR models. He observed

that error processes are often modelled by low order autoregressive schemes which

may in some cases be inappropriate. It is therefore important to be able to check the

consistency of the error structure with the sample data and to check that there is no

significant additional autocorrelation in the residuals.

Consider the linear regression model with the disturbances generated by the

stationary AR(4) process

U, = 0 174,...,1 +02/4„.2 +0314,...3 +0414,_4 +

where £, iN(0,6 2). The Q(0) matrix is defined by

Q(0) = [L4' -

(see Ljung and Box, 1979, or van der Leeuw, 1994) in which L4 is the nxn matrix

L4 =

1 0 0 0-

-01 1 0

—0 —0

0 —04
1 0

0 0 —04 .•• —01 1_ 

andN is the n x 4 matrix of zeros but with the top 4 x 4 block being

- 44, anti,

0 04 —03 —02

0 0 —0 —0

0 0 0 —04_

The Cholesky decomposition matrix H(0) is an nxn lower triangular matrix
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where

and

H(0) =

0 0 0 0

h22 0 0 0

'32 /733 0 0

1142 h43 h44 0

—04 —03 —02 —01

0

1

1 0

0 0 -04 -02 - 0 1

h44
= _ 0 2 \ 1/2

4 1 ,

(—O -
-

h  04-P4)
h44

h33 .(1+0; -0- 2 I, 2 \I/2
4 - "43) ,

i= 1,2,3,

1222 ( 1 + 0 21 _0 32 _024 _ /1322 _ /1422 )1/2 5

3 .

0 -0102 - E0 - /143/742

i=2 
h32 = 5

/233

h31 = (-0 2 -0204 - h43h41

(-01 -0304 h32h31 h42h41)
h21 =

h22

1/23

h11 = (1-024

The matrix of first derivatives is

anoy-' 
=(B
'
.0 

'
)+B.'0))-(cio)+cito))

• ao; 

where B1(0) is the n x n matrix whose left n x (n —1) matrix is

(13)

(14)
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ei+1 04 0 0

0;

0

01 04

—1

0

0

0,

—1 0

0 —1

and the remaining i columns are zeros and C;(0) is the nx n matrix of zeros whose

top left ai x 4 block is identical to the top left i x 4 block of B1 (0) .

We are .interested in testing H0:02 =03 =04 =0 against the alternative that at

least one 0, is non-zero. Under the null hypothesis, u, follows a stationary AR(1)

process, i.e.,

In this case

and H(0) =

u, = + s „ 10 II< 1 ,

Q(0) = 1_0;

--o o
—0 , 1

0

don-I

0

0

0-0 1

— IN (0,a2)

• 07-1

01

01 1

(15)

(16)
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The LR test statistic will be defined as (5) or (6) with Q(6) and H(6) given by

(15) and (16) in which 0 =0. The W test statistic is (9) with the partitioned matrices

defined as in (8) and the elements of the information matrix 1(0) given by (7)

evaluated at 0 = 0. The LM and the ALMMP test statistics will be defined as (11) and

(12), respectively, when Q(6) and H(6) are determined by (15) and (16), respectively,

with 0 = B. The   matrices are defined as in (14) evaluated at
ae

=O and 02 =03 =04 =0.

4. Testing against a Rosenberg Coefficient in the Presence of a Hildreth-

Houck Random Coefficient

In this section we consider the problem of testing a single time varying

coefficient in the linear regression model. The null hypothesis is that the coefficient

follows the Hildreth-Houck (1968) random coefficient (HRC) model and the

alternative is that the coefficient follows Rosenberg's (1973) return to normalcy

(RRN) model. The latter assumes the coefficient follows an AR(1) process while the

former assumes it is independently distributed about a mean value. Thus the HRC

model can be viewed as a special case of the RRN model.

Bos and Newbold (1984) considered this testing problem in their empirical

investigation of systematic risk in the market model. They applied classical likelihood

based LR and W tests and conjectured that these tests lacked power. For this reason,

Brooks and King (1994) suggested the use of the APOI test and compared its small

sample properties with those of the classical LR and W tests. These studies indicate
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that classical likelihood based tests cannot be relied upon to have good small sample

properties. Below we discuss the construction of MIML based LR, W, LM and

ALMMP tests for this testing problem. In the following section we report the results

of.a Monte Carlo study conducted to investigate the small sample properties of these

tests.

Consider the linear regression model with a single varying coefficient, a „

y, =a,x, +z,'P -1-c„ c, /N(0,a2), t =1,•••,n, (17)

where x, is a scalar regressor, z, is a k x 1 vector of k non-stochastic regressors, [3 is a

k x 1. vector of unknown constant coefficients and E, is the disturbance term. If a, is

a HRC then

(18)

with a, — /N(0,0 la 2) (19)

and a, is independent of 6, . The economic interpretation of a, is that it has an

instantaneous mean reversion property so that the effect of any shock on the

coefficient does not carry over to future periods.

Alternatively, if a, follows the RRN model then

(20)

where a, is generated as (19) and is independent of E,. In this case we have an

additional parameter 02 and a, follows an AR(1) process. For the process to be

stationary, 02 must lie between -1 and +1. From an economic point of view, a more

meaningful restriction is 0 5_ 02 1 which implies smooth evolution of the coefficient

over time. Also a negative value for 02 causes considerable difficulties in

interpretation particularly when the time interval is reduced. The economic
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interpretation of the RRN model is that a, still possesses a mean reversion property

but it is not instantaneous. The speed of mean reversion depends on the value of the

AR(1) parameter 02. The greater the speed of mean reversion, the smaller is the value

of 02.

Under either (18) or (20), the model (17) can be written as

y, = + z,' f3 + w,

where w, is normally distributed with mean zero and the second order moments are

determined by the cc, process. If a, is generated by (18) and (19) then

var(w, ) = .2(1+0 lx,2

cov(w,ws) = 0 for t # s

and if a, is generated by (19) and (20) then

( 
01x2  )

var(w,) = a2 1+ 
1—€22

cov(w, ws) = 
a20,x,x,01;-"1

(1-022)
for t # S.

Our problem is one of testing H0:02 =0 against IC:0 2 > 0.

The construction of the MIML based LR test requires the Cholesky

decomposition matrix H(0) to be constructed for both 0 = § and 0 . Following

Brooks (1993), we define H(0) as

H(0) = L-1772

with
1  01 

1:11 =[-2 (1-0)

11/2

13



( 1
2 

02
,-"„ = 2

x
2 1 

xi
2
-1 /

1:- 
.  ° 2 

1,(1-1) - / 2 7"
.Xt.-1L1-1,,--1 ) '

and remaining .E,/ values being zero,

Ti =

T2 =

_

1 0 0 •

—02 1 0 •

0 —02 •

-

1/2

0

0

0 0 —0 2 1

_x1_1 0 0

0 fl2

-

-

0 
•-1
• x„ _

-

_

By multiplying the above three matrices, we find that the H(0) matrix has the form of

a lower triangular matrix with elements

A
H(0)„ JL—

x,

= (is-0221,...1), s =1,2,...,(t —1) (21)

with 211.1— .

IA [1; 1-IA-1 S]
1-11., 7::  ; s = 1,2,...,(t —1).
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The matrix H(o) can then be constructed from H(0) by evaluating at 0 =0.

Similarly, H(6) can be constructed using 01 =01 and 02 = 0 . The MIML based LR

test statistic will then follow from (5) or (6).

The calculation of the MIML based W test needs the construction of the first

H(0) 
derivative matrix 

as2(6) 
, as well as H(0). The elements of the matrix are

ao aei

defined as

ano)„ x2

ao, (1--e)

_ 20140 2 

a02 —0D2

as20)„. xixso
ao, (1-e)

ono) A IX/Xs 
— S)0 (73" — t — SI-2)0 (21-1 for t > s. (22)

ae2 (1-0)2

Ho) 
These elements of the   matrix are then evaluated at 0 =O and 0, =62,

aei

allowing the MIML based W test statistic to be calculated from (9).

For the LM and ALMMP tests we need to construct the H(6) and

matrices. The elements of the 
aQ(EY  

matrices are obtained from (22) as follows
ae,

ac2(6)„  _0

502 — 5

ae,
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for t s

for It — sl= 1,

=0, for It — sl> 1.

The elements of the  
 
matrices are then obtained using the relationship

aol

and

—as2(6)-i  = Q(6)-1 .m(0)coy'
ao,

1 =
(i-Fol4)

=0, for t # s.

The MIML based LM test statistic is therefore obtained using equation (11). Note

here that the ALMMP test statistic is the square root of the LM test statistic in this case

as 02 is a scalar parameter. The asymptotic null distribution of the LM statistic is x2

with one degree of freedom and the asymptotic null distribution of the ALMMP test

statistic is N(0,1).

The LR and W tests are based on MIML estimates of 02 under the constraint

02 > 0 . These tests are now one-sided versions of the original LR and W tests and

their asymptotic null distributions are probability mixtures of chi-square distributions,

i.e.,

1 2 1 2

—
2 

X,(o) + %or

See Gourieroux, Holly and Monfort (1980) and also Wu and King (1994) for more

details about one sided LR and W tests. The critical region of the LR test at level a
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will therefore be- of the form LR > c, when c is defined by Pr[LR > Ho] = a. To

obtain the required asymptotic size, we therefore use the x,(21) critical value at the 2a

level of significance.

5. Monte Carlo Size and Power Comparisons

In order to explore the small-sample size and power properties of the MIML

based tests, we conducted two Monte Carlo experiments. The first experiment

concentrated on the problem of testing for general AR(4) disturbances in the presence

of AR(1) disturbances as outlined in section 3. The size and powers of the MIML

based tests, denoted by MLR, MW and MLM, were compared with those of their

classical likelihood counterparts, namely the LR, W and LM tests. The second

experiment concentrated on the problem of testing for a Rosenberg coefficient in the

presence of a Hildreth-Houck random coefficient as outlined in section 4. As it is a

one sided testing problem, we have also included the MIML based ALMMP test

(MALMMP) and the classical likelihood based ALMMP tests for comparison along

with those tests of the first experiment.

5.1 Experimental Design

The following n xkX matrices were chosen for the data generation process:

X1 : (n x 2) A constant and a linear time trend. The time trend is the regressor with

the varying coefficient.

X2: (n x 4) A constant and three quarterly seasonal dummy variables. This data set

was used only for the first experiment.
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X3: (n x 3) A constant, the quarterly seasonally adjusted Australian household

disposable income and private consumption expenditure series, commencing

1959(4). The consumption series which is lagged one quarter, is the regressor

with the varying coefficient.

X4: (n x 3) A constant, quarterly Australian private capital movements and

Government capital movements commencing 1968(1). The latter is the

regressor with the varying coefficient. For the first experiment, the two

additional regressors are the two variables lagged one quarter.

X5: • (n x 6) A constant, quarterly Australian private capital movements and

Government capital movements commencing 1968(1) and a full complement

of quarterly seasonal dummies.

For testing the presence of general AR(4) disturbances, size and powers were

estimated for Xl, X2, X3 and X4 with k = 5. For testing against the Rosenberg

coefficient, the data matrices used were Xl, X3, X4 and X5.

It is important to note here that the Hildreth-Houck parameter O i is the ratio of

the random coefficient disturbance variance to the regression disturbance variance. Its

contribution to the variance of the composite disturbance wt depends on the scale of all

the regressors. We transform x, (t =1,2,...,n) to kt using the equation

x, — min(x,)
= +1

max(x,) — min(x,)

where min(x,) and max(x,) are the minimum and maximum of the x, series

respectively. The testing problem is unchanged by this kind of transformation in the

x, 's. The variance of w, under the null hypothesis becomes

18



=a20+0

so that n(0)„

and under the alternative hypothesis,

and

(1-02)

c2(0),s = 
(1_022)

for t # S.

It is now possible to examine the coefficient of variation in cy2, under the null

hypothesis for different values of 01. This then allows us to choose reasonable bounds

on the 0 values according to the coefficient of variation values. For more details

about the choice of 01 bounds, see Evans and King (1985). .

For each testing problem, the experiment was conducted in two parts. The first

part of the study involved a comparison of estimated sizes using asymptotic critical

values. As sizes vary for different values of 01, we estimated sizes for a range of

values of 01. For the first problem, the values used were 0 , = 0, 0.1, 02, ..., 0.9. For

the second problem, the 01 values were chosen according to the coefficient of

variation in a ,2 and so that the chosen values reflect a range of coefficient of variation

in a ,2 . These are 01 =.001, .05, .2, .5, 1, 3, 7, 30, 100, 200.

The second part involved the use of Monte Carlo methods to estimate five

percent critical values for each of the tests at each of the 0, values. Note here that the

size of each test is a function of 01 and may not be constant over the null parameter

space. Thus the maximum size may be greater than the nominal significance level. We

therefore controlled the maximum probability of a type 1 error by choosing the highest
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critical value. For each test the largest critical value was used to calculate exact

powers. For the first testing problem, powers were calculated at the following

(01, 0 2,03,04) parameter combinations:

(0.0, 0.0, 0.0, 0.0), (0.0, 0.5, 0.0, 0.0), (0.2, 0.6, -0.0, 0.0),

(0.4, 0.0, 0.0, 0.4), (0.3, 0.2, 0.0, 0.0), (0.3, 0.2, 0.2, 0.0),

(0.3, 0.2, 0.2, 0.2), (0.2, 0.5, 0.1, 0.1), (0.1, -0.3, 0.0, 0.3),

(0.1, 0.4, -0.2, 0.0).

For the second testing problem, the following (01,02) parameter combinations were

used:

(0.5, 0.3), (0.5, 0.5) (0.5, 0.8), (3, 0.3), (3, 0.5),

(3, 0.8), (30, 0.3), (30, 0.5) and (30, 0.8).

A nominal significance level of five percent and 1000 replications were used

throughout. The two different sample sizes used were 30 and 60. All tests are invariant

to (3 and c 2 and therefore these parameter values were set to one in the simulations.

The IMSL subordinates DBCLSF, DUMPOL and DBCPOL were used to maximise

the likelihood functions.

5.2 Size Results

Tables 1 and 2 report the estimated sizes of the six tests against AR(4)

disturbances in the presence of AR(1) disturbances when asymptotic critical values at

the five percent nominal level were used. The corresponding estimated sizes of the

eight tests for a Rosenberg coefficient are presented in tables 3 and 4. In both cases,

sizes are estimated for each value of 0.

20



Tables 1 and 2 reveal that all estimated sizes of the classical likelihood based

LR and W tests for AR(4) disturbances in presence of AR(1) disturbances are

significantly above 0.05. This is true for all X matrices and both sample sizes. In

particular, the sizes of the W test are very high and clearly unreliable. However, there

is a clear sign of improvement in size as n increases from 30 to 60. The LM test has

acceptable sizes except for higher values of 01. The sizes tend to become significantly

above 0.05 at the upper boundary of 01 values. For example, in the case of design

matrix X2, the estimated sizes of the LM test are significantly above 0.05 when 01 =

0.7, 0.8 and 0.9. The sizes decreased with the increase of n from 30 to 60 for data

matrices X1 and X2. For X4, sizes increase with the increase in sample size and for

X3, sizes increase except when 01 = 0.3, 0.7, 0.8 and 0.9.

The improvement in estimated sizes when the marginal likelihood method is

applied is remarkable both in the case of the MLR and MW tests. The most reliable

test seems to be the MLR test. Its estimated sizes are much closer to 0.05 compared

to those of the LR test and significantly higher than 0.05 only for the data matrix

X4 (n = 30) with 01 = 0.4, 0.5, and 0.6. However, this is not the case when n is

increased from 30 to 60. The sizes are closer to 0.05 for the X3 and X4 matrices with

the increase of n from 30 to 60, the only exception being X3 with 0, = 0.9. For X1

and X2, sizes are slightly reduced with the increase in n, but show a better

approximation to the desired size near the boundary of 01.

There is a large improvement in the sizes of the MW test compared to those of

the W test, although they are still significantly above 0.05 in more than half of the

cases. For the data matrices Xl, X2 and X3 with 01 = 0.0, 0.1, .0.2 and 0.3 the
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differences between the estimated sizes and nominal size of the MW test are not

significant. The behaviour of the MW test mentioned in Ara and King (1993) seems

slightly improved, possibly because of the use of MIML estimates of 01.

The LM test seems to have better estimated sizes compared to the MLM test

for most 01 values. However, the sizes of MLM test are less variable compared to the

LM test and particularly improved at the upper bound of 01 values, i.e., at 01 = 0.7,

0.8 and 0.9. The estimated sizes of the MLM test are not significantly different from

0.05 with the only exceptions occurring at n = 30 and 01 = 0.9 for the X1 and X2

matrices and at n = 60 and 01 = 0.2, 0.3, 0.4, 0.5, 0.6 for the X2 matrix. Based on

actual size being the maximum size, the MLM test is clearly better than the LM test.

Our results regarding the LM and MLM tests are consistent with those reported by

Rahman and King (1993).

Tables 3 and 4 report the estimated sizes of eight tests against a Rosenberg

coefficient in the presence of a Hildreth-Houck random coefficient in the linear

regression model. Asymptotic critical values at the 5% nominal level were used for

the LM, MLM, ALMMP and MALMMP tests. Asymptotic critical values of the 7(21)

distribution at the 10% nominal level are used for the LR, MLR, W and MW tests as

the asymptotic null distributions of their test statistics are mixtures of x2  and x(21)

distributions as discussed at the end of section 4.

Most of the estimated sizes of the LR test are significantly below 0.05, the few

exceptions are for X5 and X4 with n =30 and for X1 and X5 with n = 60 for the upper

half of 01 values. In contrast, in the case of the MLR test, typically there is no
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significant difference between the estimated sizes and the nominal size. The sizes are

overestimated only for X4 (n = 30) and for X1 (n = 60) when 0, = 3, 7.

The estimated sizes of the W test are mostly significantly below 0.05 at the 1%

level of significance, the only exceptions are X5 (n = 30) and X4 (n = 30). Our results

regarding low sizes of the LR and W tests are consistent with the findings of Bos and

Newbold (1984) and Brooks and King (1994). The sizes improve everywhere except

for X5 (n = 30) when the MW test is used. The sizes for X5 improve when the sample

size increased to 60, because then the sizes of the W test are significantly different

from 0.05. The improvement in sizes of the MW test are significant when the sample

size is 60 for all X matrices and also for X4 when n = 30. For X4 (n = 60), the MW

test seems to overestimate the sizes for lower half of the 0 I range.

The sizes of the LM test increase with the increase in sample size. There

appears to be a tendency for the sizes to be slightly above 0.05 and they are

significantly above 0.05 for most of the 0, values in the cases of X3 and X5 with n =

60. In contrast, the sizes of the MLM test are not significantly different from 0.05.

For the X1 data matrix, both the LM and MLM tests show similar size behaviour. For

the X3 and X4 matrices, LM test sizes are closer to 0.05 when n = 30, but when

n =60 LM test sizes became significantly above 0.05 for most of the 0, values and the

MLM test sizes are closer to 0.05. For the X5 matrix, the MLM test has better sizes

except for the first two 01 values.

The ALMMP test sizes are mostly significantly below 0.05, the only exception

occurs for X4 (n = 30) and for X1 (n = 60) when 01 = 3, 7, 30, 100, 200. The sizes of

the ALMMP test for X4 are significantly below 0.05 when n = 60. On the other hand,

23



there is no significant difference between the estimated sizes of the MALMMP test

and the nominal size except for X4 with n = 30.

For all data matrices except X4, the MALMMP test gives the most accurate

sizes among all the tests, at least for the lower half of the 01 range. The LM test tends

to have good size properties towards the lower bound of 01, whereas the MLM test

. tends to perform better towards the upper bound of 01, in which case the LM test gives

significantly high sizes, the MLR test is the next best test in terms of size properties in

general, but sometimes has more accurate sizes compared to the LM and MLM tests.

The sizes of the MW test are also reasonably improved due to the use of marginal

likelihood estimates of the nuisance parameter 01.

Hence among all the tests, the MLR test seems to have the best estimated sizes.

At the upper bound of the 01 range, the LM test sizes are mostly significantly different

from the nominal size. Based on actual sizes being the maximum size, the MLM test is

clearly better than the LM test. Hence, the MLM test is the next best candidate. Only

in the case of the W test, are the sizes significantly higher than the nominal size.

However, the improvement in size after using the MIML approach is clear. In the one

sided testing situation, the MALMMP test gives most accurate sizes among all the

tests. This is also evident in the results reported by Ara and King (1993) and is not

surprising because this test is particularly designed for one-sided testing problems.

Overall it seems clear that the use of MIML improves the accuracy of the asymptotic

critical values for all the tests although this improvement is not as clear cut as for

testing against AR(4) disturbances.
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5.3 • Power Results

Estimated powers of the six tests for AR(4) disturbances in presence of AR(1)

disturbances are presented in tables 5 and 6. Exact critical values have been computed

at the 5% level using Monte Carlo simulation for each of the 01 values. The largest

simulated critical value was then used to calculate power of each test thus ensuring

that the maximum size is approximately 0.05, as mentioned in section 5.1. The tables

show that the tests' powers increase with the increase in sample size. This is 1rue for

each data set.

• Among the classical likelihood based tests, the LR test dominates the LM and

W tests in general and the W test dominates the LM test. Exceptions occur on few

occasions. The LM test dominates at the parameter combinations (0.1, -0.3, 0, 0.3)

and (0.4, 0, 0, 0.4) for most X matrices. The W test dominates the LM test at few

points on the alternative parameter space mostly when n = 60.

When the MIML approach is applied, powers of the MLR and MLM tests are

increased everywhere in the alternative parameter space. This is true for all the X

matrices and both sample sizes. In some cases it increases substantially, i.e., around

20% for the MLR test and 30% for the MLM test. The increase in average power is

from 8% to 15% in both cases. The power of the MW test is also improved when the

MIML approach is used with very few exceptions. The average increase is 2% to 8%

in this case. It therefore appears that the power curves of the MIML based tests are

higher than those of the classical likelihood based tests. Among the three tests, the

MLR test has the highest power and the MLM test has the second highest power in
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general. The MLM test is the most powerful in very few cases and occasionally its

power is slightly below that of the MW test.

We now discuss the estimated powers of the tests for a Rosenberg coefficient

in the presence of a Hildreth-Houck random coefficient. The power results are

presented in tables 7 and 8. The 0, values were chosen according to the degree of

coefficient of variation in the composite disturbance variance. For each 01 value,

three different 02 values have been chosen to represent different degrees of

autocorrelation in the alternative parameter space. The tables reveal that the powers of

all the tests increase with increases in 0, and 02 values.

The LM test shows the lowest power among all the classical likelihood based

tests. Power differences among the LR, W and ALMMP tests are, in most cases, less

than 4%. The ALMMP test shows a slightly better power for half the regressors, i.e.,

for X1 (n = 60), X3 (n = 30) and X4 (n = 30, 60), otherwise no test dominates the

others. The power differences of the LM test with the other three tests are sometimes

more than 30%. Its power gets closer to those of the other tests only at parameter

combinations (3, 0.8) and (30, 0.8) when n = 60.

When the MIML approach is used, the MLR test has better power than that of

the LR test when n = 60 except at 3 points for X4 and at most of the points in the

alternative parameter space when n = 30. The MW test performed relatively poorly

compared to the W test. The difference in power is sometimes more than 15%. The

findings in Brooks and King (1994) and Bos and Newbold (1984) also show that the

LR test lacks in power, but the W test does not lack in power although its sizes are

typically different from the nominal size. The average power difference between the
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MALMMP test and ALMMP test is less than 2%. However, the MALMMP test

performed slightly better except for X4 and X3 when n = 30. The improvement in

power of the MLM test is rather noticeable. The power curves of the MLM test are

clearly higher than those of the LM test. Power improvements are sometimes more

than 20%. We note that Rahman and King (1993) reported a similar finding in their

study.

Among all the tests, the MLR and MALMMP tests performed best in terms of

power. The power advantage of the MLR test over MALMMP test is less than 4% and

no one dominates the other on average.

6. Conclusion

This paper is concerned with testing the covariance matrix of the disturbances

that involve nuisance parameters which cannot be eliminated by invariance arguments.

We outlined the construction of MIML based LR, LM, W and ALMMP tests

extending the work of Ara and King (1993) and Rahman and King (1993). The Monte

Carlo experiment we report shows that the use of MIML based tests rather than their

traditional counterparts does improve both size and power properties of the tests in

finite samples. The level of improvement is higher than that reported by Ara and King

when no nuisance parameters are present in the marginal likelihood. This is

particularly evident from the ALMMP test. In the case of the ALMMP test, the sizes

clearly improve and the power also improves slightly. This is in contrast to the results

of Ara and King who report identical powers when simulated critical values are used.

The additional improvement in our case seems to 'come from the use of maximum

MIML estimates of the nuisance parameters which are more nearly unbiased than the
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classical maximum likelihood estimates. This is also true for the LR and LM tests.

Both the size and power of the W test have improved when the MIML approach is

used for testing the form of autocorrelation. Only in the case of the W test and testing

for a Rosenberg coefficient, did we not see an improvement in power after using the

MIML approach, although the sizes did improve. A possible reason could be that one

sided testing is more likely to have asymptotic problems than two-sided testing.

Power curves can be wrongly centered and recentering them can give rise to lower

power in part of the parameter space and higher power elsewhere. It is a gamble.

All the evidence reported above strongly supports the MIML approach to test

construction. It also suggests an important implication for econometricians who are

forced to apply asymptotically based inference procedures to short data sets. It does

seem that the small-sample properties of these procedures can be improved by better

handling of any nuisance parameters. The full potential of this improvement for

highly parameterised systems of equations that are common in econometrics has yet to

be investigated.

,
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Table 1: Estimated asymptotic sizes of six tests of AR(4) disturbances in the

presence of AR(1) disturbances using asymptotic critical values at the

five percent level for design matrices X1 and X2.

n Test 01
0.0 0.1 ' 0.2 0.3 0.4 0.5 1 0.6 0.7 , 0.8 0.9

X1

30 LR .105* .101* .104* .101* .101* .102* .104* .109* .105* .107*
MLR .050 .051 .054 .054 .054 .053 .049 .049 .052 .056

.168* .169* .172* .171* .179* .189* .187* .190* .197* .208*
MW .074* .079* .077* .076* .073* .073* .075* .078* .081* .077*
LM .049 .049 .051 .046 .054 .055 .055 .061 .075* .087*
MLM .037 .037 .036 .037 .037 .039 .042 .046 .060 .073*

60 LR .071* .073* .073* .069* .068* .068* .074* .078* .081* .096*
MLR .046 .049 .049 .046 .045 .045 .044 .048 .050 .050

.091* .089* .091* .091* .093* .088* .089* .104* .108* .119*
MW .062 .064 .060 .059 .053 .056 .060 .054 .059 .064
LM .045 .044 .039 .044 .042 .048 .053 .058 .070* .080*
MLM .040 .037 .038 .036 .034 .037 .041 .040 .042 .048

X2

30 LR .116* .116* .115* .114* .119* .127* .123* .123* .130* .156*
MLR .048 .052 .052 .052 .052 .053 .055 .057 .050 .057

.205* .198* .204* .212* .213* .212* .211* .209* .228* .241*
MW .089* .091* .087* .085* .087* .085* .087* .088* .084* .098*
LM .047 .049 .052 .056 .055 .056 .066 .074* .103* .120*
MLM .039 .040 .038 .041 .043 .039 .045 .050 .048 .072*

60 LR .078* .076* .073* .076* .071* .077* .083* .081* .078* .085*
MLR .041 .040 .043 .040 .039 .044 .045 .043 .047 .053

.109* .101* .102* .103* .102* .108* .112* .114* .110* .116*
MW .055 .056 .053 .054 .057 .059 .058 .060 .056 .059
LM .042 .047 .047 .054 .050 .054 .057 .071* .066 .076*
MLM .034 .038 .030* .031* .031* .031* .031* .037 .042 .051

* denotes significantly different from 0.05 at one percent level.
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Table 2: Estimated asymptotic sizes of six tests of AR(4) disturbances in

the presence of AR(1) disturbances using asymptotic critical values at

the five percent level for design matrices X3 and X4.

n Test 01_
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X3

30 LR .133* .134* .131* .134* .128* .131* .125* .132* .126* .128*
MLR .054 .054 .055 .049 .049 .042 .045 .041 .048 .049

.258* .258* .264* .25.7* .266* .269* .264* .260* .275* .275*
MW .089* .090* .090* .096* .093* .090* .093* .093* .094* .096*

LM .050 .047 .049 .051 .046 .046 .048 .061 .070* .084*

MLM .036 .034 .034 .034 .033 .032* .032* .033 .041 .049

60 LR .092* .090* .092* .092* .092* .084* .079* .083* .085* .091*
MLR .051 .049 .051 .051 .045 .042 .047 .046 .051 .059
W • .124* .134* .131* .124* .128* .126* .128* .130* .130* .143*

MW .074* .076* .070* .074* .059 .063 .065 .061 .062 .064
LM .052 .049 .050 .050 .050 .048 .051 .057 .069* .075*
MLM .044 .042 .039 .035 .039 .038 .040 .046 .043 .048

X4

30 LR .219* .214* .213* .207* .205* .200* .200* .194* .195* .198*

MLR .066 .063 .061 .063 .068* .069* .070* .067 .060 .059
.460* .470* .469* .468* .469* .462* .467* .457* .446* .452*

MW .162* .170* .168* .173* .176* .174* .171* .175* .175* .162*
LM .037 .039 .042 .041 .046 .052 .055 .054 .056 .079*
MLM .040 .040 .040 .043 .046 .044 .048 .052 .051 .064

60 LR .107* .107* .110* .107* .109* .106* .111* .104* .098* .102*
MLR .057 .059 .061 .057 .050 .056 .047 .051 .057 .054

.171* .173* .168* .171* .176* .177* .170* .168* .170* .163*
MW .074* .080* .081* .074* .077* .077* .079* .078* .071* .074*

LM .046 .048 .048 .054 .061 .056 .060 .064 .070* .067

MLM .039 .037 .035 .036 .039 .043 .048 .047 .053 .058

* denotes significantly different from 0.05 at one percent level.
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Table 3: Estimated asymptotic sizes of eight tests for a Rosenberg coefficient in

presence of a Hildreth-Houck random coefficient using asymptotic

critical values at the five percent level for design matrices X1 and X3.

n Test 0,

.001 .05 .20 .50 1 3 7 30 100 200

X1

30 LR .160* .017* .020* .022* .025* .028* .029* .029* .028* .028*
MLR .047 .045 .056 .056 .056 .063 .062 .063 .063 .063
W .017* .017* .017* .017* .019* .018* .017* .017* .017* .017*
MW .029* .032* .028* .028* .028* .027* .026* .025* .025* .026*
LM .036 .036 .039 .050 .050 .050 .050 .051 .051 .051
MLM .039 .042 .042 .044 .045 .051 .051 .050 .050 .050
ALMMP .017* .019* .019* .021* .020* .024* .024* .023* .023* .023*
MALMMP .051 .052 .050 .052 .052 .056 .056 .056 .056 .056

60 LR • .021* .023* .028* .030* .028* .035 .036 .037 .037 .037
MLR .038 .048 .061 .067 .066 .069* .068* .067 .067 .067

.022* .023* .027* .023* .022* .021* .021* .017* .017* .017*
MW .036 .044 .054 .050 .047 .040 .042 .042 .041 .041
LM .048 .049 .054 .058 .060 .061 .058 .058 .057 .057
MLM .042 .044 .050 .054 .061 .059 .059 .058 .058 .058
ALMMP .022* .022* .025* .030* .031* .034 .034 .033 .033 .034
MALMMP .051 .050 .055 .059 .059 .061 .060 .060 .059 .059

X3

30 LR .015* .016* .019* .021* .023* .022* .024* .024* .024* .024*
MLR .037 .041 .048 .056 .059 .058 .061 .062 .063 .063

.016* .014* .016* .018* .021* .021* .020* .020* .019* .019*
MW .027* .026* .024* .026* .028* .031* .029* .030* .030* .029*
LM .039 .043 .048 .048 .051 .051 .052 .054 .053 .053
MLM .032 .033 .036 .038 .045 .042 .044 .044 .044 .044
ALMMP .010* .011* .013* .013* .013* .013* .013* .013* .013* .013*
MALMMP .051 .050 .049 .050 .048 .052 .053 .052 .052 .052

60 LR .011* .012* .014* .015* .018* .023* .025* .025* .025* .025*
MLR .041 .046 .050 .060 .060 .057 .062 .059 .059 .059

.010* .010* .013* .011* .011* .008* .010* .009* .009* .009*
MW .039 .039 .044 .044 .038 .034 .033 .032* .032* .031*
LM .048 .053 .059 .065 .068* .072* .070* .073* .074* .074*
MLM .042 .044 .043 .047 .048 .053 .054 .055 .055 .055
ALMMP .014* .012* .015* .016* .017* .020* .021* .022* .022* .022*
MALMMP .047 .046 .049 .047 .050 .050 .050 .051 .051 .051

* denotes significantly different from 0.05 at one percent level.
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Table 4: Estimated asymptotic sizes of eight tests for a Rosenberg coefficient in

presence of a Hildreth-Houck random coefficient using asymptotic

critical values at the five percent level for design matrices X4 and X5.

n Test 01

_ .001 .05 , .20 .50 1 3 7 A 30 ' 100 200

X4

30 LR .044 .045 .052 .055 .055 .055 .056 .056 .056 .056
MLR .070* .073* .071* .074* .075* .077* .077* .079* .079* .079*

.033 .035 .036 .035 .032* .036 .035 .034 .032* .032*
MW .047 .050 .052 .055 .055 .056 .053 .052 .051 .051
LM. .046 .048 .050 .054 .051 .054 .054 .052 .051 .051
MLM .059 .059 .060 .059 .060 .061 .063 .064 .064 .064
ALMMP .033 .034 .034 .034 .032* .034 .034 .036 .036 .036
MALMMP . .072* .071* .071* .072* .073* .069* .071* .070* .070* .070*

60 LR .018* .024* .028* .029* .033 .031* .030* .030* .030* .030*
MLR .049 .049 .052 .050 .051 .051 .051 .051 .050 .050

.025* .021* .022* .023* .020* .016* .015* .014* .013* .013*
MW .120* .115* .098* .083* .074* .058 .050 .047 .042 .044
LM .046 .049 .049 .052 .055 .057 .059 .057 .057 .057
MLM .048 .050 .052 .051 .051 .053 .052 .051. .051 .051
ALMMP .022* .023* .024* .025* .025* .025* .026* .026* .026* .026*
MALMMP .042 .042 .044 .043 .042 .042 .042 .041 .041 .041

X5

30 LR .033 .036 .036 .039 .042 .043 .041 .041 .041 .041
MLR .048 .051 .054 .057 .058 .060 .060 .060 .060 .060

.034 .035 .037 .037 .038 .036 .036 .035 .035 .035
MW .031* .031* .031* .026* .024* .022* .023* .022* .023* .023*
LM .047 .051 .053 .051 .057 .059 .059 .060 .061 .061
MLM .035 .035 .041 .043 .044 .046 .048 .048 .047 .048
ALMMP .021* .022* .023* .026* .026* .026* .027* .029* .029* .029*
MALMMP .048 .049 .050 .049 .052 .047 .047 .048 .048 .048

60 LR .020* .020* .021* .029* .034 .036 .035 .035 .035 .035
MLR .044 .046 .055 .056 .058 .060 .057 .054 .055 .055

.017* .018* .016* .018* .022* .016* .021* .020* .020* .020*
MW .033 .036 .043 .039 .037 .034 .035 .032* .031* .032*
LM .051 .051 .057 .062 .068* .069* .068* .068* .068* .068*
MLM .042 .042 .042 .045 .050 .052 .055 .059 .060 .061
ALMMP .023* .023* .023* .025* .028* .029* .031* .031* .030* .031*
MALMMP .044 .044 .045 .047 .049 .050 .050 .050 .050 .051

* denotes significantly different from 0.05 at one percent level.
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Table 5: . Estimated power of six tests of AR(4) disturbances in the presence of

AR(1) disturbances using simulated critical values at the five percent

level for design matrices X1 and X2.

,
01 0.0

'

0.0 0.2 0.4 0.3 0.2 0.1 0.1 3 3
n Tests 02 0.0 0.5 0.6 0.0 0.2 * 0.5 -0.3 - 0.4 .0.2 0.2

03 0.0 0.0 0.0 0.0 0.2 0.1 ' 0.0 ' -0.2 ' 0 0.2
04 0.0. 0.0 0.0 * 0.4 0.2 • 0.1 ' 0.3 :o.0 0 0

X1

30 LR .037 .161. .241 .131 .026 .102 .508 .191 .030 .028
MLR .043 .368 .496 .247 .089 .312 .582 .335 .068 .092

.034 .124 .196 .114 .021 .087 .482 .158 .028 .028
MW .041 .172 .203 .180 .021 .077 .564 .247 .046 .035
LM .021 .096 .179 .184 .025 .088 .589 .106 .015 .016
MLM .021 .311 .423 .221 .075 .288 .553 .231 .036 .053

60 LR .041 .699 .871 .452 .302 .745 .841 .640 .087 .189
MLR .043 .829 .931 .665 .554 .860 .870 .739 .173 .386

.040 .689 .865 .459 .310 .743 .838 .621 .083 .189
MW .041 .782 .791 .510 .146 .566 .874 .710 .132 .229
LM .020 .660 .845 .452 .218 .727 .864 .583 .068 .119
MLM .041 .825 .939 .675 .524 .862 .893 .729 .163 .335

X2

30 LR .033 .204 .319 .063 .062 .214 .204 .151 .045 .072
MLR .039 .316 .476 .234 .209 .413 .372 .231 .068 .120

.034 .159 .273 .054 .060 .191 .208 .132 .039 .068
MW .035 .229 .354 .147 .092 .254 .323 .171 .050 .085
LM .013 .105 .203 .073 .039 .141 .209 .061 .023 .037
MLM .026 .253 .386 .226 .127 .321 .413 .173 .044 .062

60 LR .039 .764 .909 .407 .521 .866 .669 .619 .128 .337
MLR .035 .814 .938 .664 .711 .911 .796 .670 .166 .440

.038 .762 .904 .425 .534 .859 .683 .609 .130 .328
MW .043 .810 .934 .651 .696 .904 .780 .662 .162 .424
LM .026 .728 .895 .391 .404 .839 .715 .569 .093 .248
MLM .034 .815 .927 .657 .657 .895 .832 .671 .146 .361
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Table 6: • Estimated power of six tests of AR(4) disturbances in presence of

AR(1) disturbances using simulated critical values at the five percent

level for design matrices X3 and X4.

'01 0.0 ' 0.0 0.2 0.4 0.3 ' 0.2 0.1

' fr 
0.1 3 3

n Tests 02 0.0 i 0.5 0.6 0.0 0.2 0.5 -0.3 0.4 0.2 0.2
03 0.0 0.0 0.0 0.0 0.2 ' 0.1 0.0 -0.2 ' 0 ' 0.2
04 0.0 ' 0.0 0.0 0.4 0.2 0.1 0.3 0.0 1 0 0

X3

30 LR .047 .135 .214 .152 .029 .091 .545 .182 .042 .034
MLR .047 .306 .429 .223 .083 .263 .564 .309 .064 .091

.043 .114 .187 .128 .028 .088 .489 .156 .038 .038
MW .049 .166 .198 .177 .028 .071 .547 .228 .045 .047
LM .021 .053 .127 .182 .026 .053 .592 .077 .013 .013
MLM .037 .337 .468 .277 .121 .331 .615 .305 .061 .075

60 LR .048 .625 .812 .400 .200 .645 .836 .599 .076 .132
MLR .047 .799 .910 .610 .497 .833 .872 .726 .163 .362

.047 .626 .829 .426 .273 .691 .833 .589 .080 .150
MW .045 .748 .881 .530 .292 .783 .861 .691 .127 .228
LM .033 .602 .793 .459 .162 .630 .873 .552 .056 .099
MLM .046 .812 .907 .652 .477 .817 .886 .724 .167 .162

X4

30 LR .050 .171 .269 .111 .043 .178 .457 .154 .034 .039
MLR .039 .280 .408 .207 .158 .361 .480 .242 .062 .106

.042 .152 .251 .113 .062 .177 .379 .146 .054 .052
MW .043 .189 .305 .144 .061 .189 .436 .178 .048 .057
LM .021 .101 .176 .116 .035 .132 .465 .044 .020 .016
MLM .030 .266 .378 .185 .111 .315 .491 .181 .050 .064

60 LR .049 .650 .845 .464 .397 .786 .807 .585 .087 .214
MLR .047 .773 .904 .643 .605 .862 .833 .673 .143 .362

.048 .660 .853 .473 .429 .803 .800 .585 .101 .227
MW .043 .726 .894 .571 .546 .849 .816 .634 .122 .286
LM .030 .590 .803 .445 .260 .715 .827 .534 .067 .142
MLM .032 .757 .893 .606 .533 .844 .839 .656 .136 .291
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Table 7: Estimated power of eight tests fora Rosenberg coefficient in

presence of a Hildreth-Houck random coefficient using simulated

critical values at the five percent level for design matrices X1 and X3.

n Test T 01 .5 ' .5 T .5 ' 3 3 T 3 30 ' 30 30
02 .3 .5 _ .8 _ .3 * .5

,.'
.8 , .3 .5 .8

X1

30 LR .148 .301 .663 .288 .604 .915 .353 .722 .949
MLR .156 .323 .691 .293 .619 .926 .349 .722 .948

.147 .314 .671 .294 .620 .917 .359 .731 .953
MW .148 .308 .563 .279 .579 .748 .337 .670 .768
LM .048 .119 .408 .106 .329 .765 .135 .425 .837
MLM .114 .241 .594 .213 .525 .876 .274 .621 .915
ALMMP .147 .312 .658 .288 .592 .904 .338 .697 .944
MALMMP .148 .312 .661 .290 .596 .902 .339 .698 .944

60 LR .256 .559 .952 .506 .888 .998 .612 .997 1.00
MLR .273 .575 .959 .501 .891 .997 .604 .946 1.00

.247 .561 .955 .500 .892 .998 .616 .950 1.00
MW .207 .503 .945 .383 .821 .996 .467 .896 .999
LM .126 .374 .890 .317 .776 .990 .397 .869 .998
MLM .191 .482 .925 .418 .845 .998 .508 .917 .999
ALMMP .272 .592 .947 .519 .901 .998 .633 .946 .999
MALMMP .273 .592 .948 .518 .901 .990 .635 .947 .999

X3

30 LR .140 .278 .566 .275 .557 .875 .345 .664 .930
MLR .144 .293 .607 .271 .560 .896 .325 .645 .931

.130 .276 .566 .261 .551 .879 .326 .658 .930
MW .149 .295 .601 .266 .552 .884 .326 .652 .937
LM .030 .073 .256 .061 .205 .556 .079 .291 .662
MLM .105 .214 .486 .148 .467 .798 .246 .562 .872
ALMMP .153 .296 .565 .286 .566 .854 .345 .643 .905
MALMMP .153 .289 .566 .273 .554 .854 .334 .639 .913

60 LR .206 .438 .861 .497 .862 .993 .628 .933 .998
MLR .229 .471 .903 .492 .875 .996 .621 .934 1.00

.195 .437 .865 .499 .860 .992 .634 .935 .998
MW .186 .434 .885 .385 .810 .993 .500 .892 .999
LM .043 .182 .644 .183 .585 .946 .281 .749 .981
MLM .161 .359 .832 .371 .795 .985 .475 .892 .995
ALMMP .230 .471 .976 .481 .859 .990 .629 .919 .996
MALMMP .239 .482 .887 .485 .866 .990 .629 .921 .997
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Table 8: Estimated power of eight tests for a Rosenberg coefficient in

presence of a Hildreth-Houck random coefficients using simulated

critical values at the five percent level for design matrices X4 and X5.

n Test 01 '.5 .5 .5 3 , 3 3 , 30 30 30

02
,

.3 .5 .8 .3 .5 _ .8 .3 .5 ' .8

X4

30 LR .135 .289 .720 .240 .570 .925 .297 .665 .959

MLR .142 .290 .735 .248 .561 .917 .300 .653 .959
.135 .266 .710 .219 .500 .912 .250 .595 .954

MW .122 .238 .656 .167 .388 .866 .197 .454 .912

LM .068 .149 .500 .139 .365 .823 .155 .456 .882

MLM .119 .227 .617 .195 .488 .882 .242 .581 .931

ALMMP .148 .304 .694 .270 .578 .917 .323 .673 .950
MALMMP .147 .303 .697 .267 .576 .914 .321 .670 .950

60 LR .255 .556 .930 .557 .900 .997 .676 .949 .999
MLR .257 .580 .947 .549 .903 .997 .669 .955 .999

.243 .553 .942 .547 .891 .998 .650 .947 .999

MW .118 .312 .862 • .175 .563 .985 .210 .685 .993

LM .084 .278 .808 .259 .713 .988 .357 .839 .997

MLM .161 .419 .890 .403 .822 .995 .504 .917 .999
ALMMP .280 .573 .938 .569 .910 .997 .676 .950 1.00

MALMMP .270 .560 .940 .559 .904 .997 .664 .952 1.00

X5

30 LR .132 .132 .561 .250 .539 .866 .302 .632 .917

MLR .143 .143 .588 .245 .522 .867 .289 .619 .918
.148 .148 .583 .235 .531 .873 .292 .630 .923

MW .154 .154 .571 .242 .501 .859 .284 .585 .916
LM .045 .086 .291 .078 .236 .587 .104 .331 .685
MLM .084 .177 .440 .162 .408 .754 .199 .504 .839
ALMMP .132 .269 .526 .258 .526 .824 .310 .605 .889
MALMMP .139 .283 .536 .263 .528 .836 .312 .609 .893

60 LR .225 .473 .872 .508 .868 .993 .634 .936 1.00
MLR .227 .490 .897 .482 .873 .996 .601 .932 1.00

.204 .466 .875 .490 .866 .993 .619 .935 .999

MW .183 .447 .878 .383 .796 .993 .468 .891 1.00

LM .065 .224 .700 .232 .639 .958 .328 .794 .980

MLM .150 .353 .811 .361 .778 .977 .462 .884 .995

ALMMP .224 .459 .871 .479 .861 .988 .607 .912 .997

MALMMP .243 .481 .879 .491 .869 .990 .617 .921 .998
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