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1. Introduction

The use of panel data has become increasingly popular in econometrics over the last
decade. This is mainly due to its large information content, that is to its heterogeneity.
Several models and approaches are able to deal with the key features of these data sets
(see M&tyds and Sevestre [1992]), but three formulations are dominating the literature:
the Fixed Effects (FE), the Error Components (EC) and the Random Coefficients (RC)

models.

The central question is how to formalize the heterogeneity of the data. When
few restrictions (if any) are made about it, we may end up with models which
look quite realistic because of the absence of restrictive assumptions, but probably
lack explanatory power, are hardly estimable, and are useless for prediction and/or
structural analysis. If more restrictions are made than are strictly necessary, the model
is not able to explain the real data generating process and it can be considered useless
as well. The structure imposed on the heterogeneity is, therefore, crucial from the
viewpoint of any analysis.

The FE, EC and RC models are dominating the theory and practice of panel
data modelling because they are considered to be parsimonious, reflect well the
heterogeneity of the data and, therefore, produce reliable and realistic parameter
estimates.

The above three models rarely formalize the heterogeneity of the data (and the
data generating process) absolutely correctly and, as a consequence, frequently in
practice misspecified models are used for estimation and inference. It is, therefore,
of paramount importance to analyse the behaviour of these models when they are
misspecified or when their specification is not fully correct.

There are surprisingly few studies on the effects of misspecification in panel
data models. Baltagi [1986] analyses the EC heterogeneity versus the Kmenta—type
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structure and concludes that for samples with short time series the EC model should
be preferred. Baltagi [1992] investigates the effects of under— or over-specifying the
structure of an EC model. He shows that underspecification (omission of an error
component) results in inconsistency of the variance component’s estimators, while
overspecification has not such a harmful effect. Deschamps [1991] demonstrates for the
same model that misspecification of the error structure induces bias in the estimators
of the structural coefficients’ variances as well. Van den Doel and Kiviet (1991] point
out the serious consequences of incorrectly omitting the lagged dependent variable
from the right hand side of a EC or fixed effects model.

In this paper we analyse systematically through Monte Carlo simulations the
consequences of misspecification of the FE, EC and RC models on their estimators,
the testing procedures used to test for (individual) specific effects, and the information
criteria used to select between these models. We also illustrate our ﬁndmgs, through
the estimation of an investment demand model.

2. Framework of the Analysis

In order to simplify the analysis we assume that the heterogeneity of the data is purely
individual and there is complete time homogeneity. Our core model then is

! / «!
Yit = -'Eit,B + 205 + 25 s + U,

where z;, 2z;; and z}, are the non stochastic right hand side variables of the model
with dimensions (k x 1), (k. x 1) and (k* x 1) respectively; 8 is a fixed parameter
vector of dimension (k x 1); a; is an individual specific parameter vector of dimension
(k2 x 1); 7; is a vector of individual specific random variables of dimension (k* x 1)
with zero expected value, variances af J =1,...,k* and u; is a white noise. By
imposing restrictions on this core model we can get back all the familiar panel models
and even more formulations for the heterogeneity:

1. if z;; = 0 and 2}, = z;;, the Swamy’s random coefficient model;

2. if z;z = 0 and 2}, = e;;, where e;; is a dummy vector with all elements equal to
zero except one which equals one, the error components model;

. if z;; = 0, the functional error components model;

. if 2, = 0 and z;; = e;;, the fixed effects model;




. if 2}; = 0 and z;; = x;, the cross sectional model;
. if 2}, = 0, the varying coefficients model;
. if z;; = 0 and 2z}, = 0, the the absolute homogenous model.

The analysis focuses on the behaviour of the main estimators, tests for specific
effects and model selection criteria when the data generating process (DGP) is the
core model or processes 1-7 and the FE, EC or RC models are fitted.

For the Monte Carlo data generation we used the following model specification:

z) —xfi)1+e§:3t =12

D v, =12

g =20 +e9, j=1,2
S,-Jzt ﬁ’,)t S*)u ~ Uniform [-0.5, 0.5]

Uit N(O, 1) Yi ~ N(O, 0.5)
fr=F=a® =05 and oV =i.

2.1 Estimators Involved in the Analysis

The Swamy’s RC model has two basic formulations (Hsiao [1992]). The one proposed
originally assumes that restrictions 1 apply to the core model and the disturbance
term is heteroscedastic (E(u2) = o2). In this case the GLS estimator of the model is

BoLs = (X'Q71X)"1(XQ~y)

N N
= QX0 X)) X107 )
=1

=1
N
=> Rip,,
1=1

N -1
R = {zm s a,?(x;xi)-lrl} (A + P

=1

Bi = (X X:) ™' X}y;
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Q, the covariance matrix of the composite disturbance term x;‘t’ v: + u;, is block
diagonal, and the ith diagonal block equals

Q= X;:AX! + oI,

A ifi=j
E(%'”’;'):{o if 7 # 7.

For an operational FGLS estimator we can obtain unbiased estimators of ¢; and
A as

A,A ]
~2 _ Uil

ag

T T-K
= sl = X(XUX) T Xy,

~ 1 /- s
A=m;(_@i—N Z@-)

=1

SO AU .
(éi - N7 Zé,-) —5 XX

=1 =1

N

A

We have to take into account that this estimator for A is not necessarily non—negative
definite. In this case Swamy suggests to set A = 0. With homoscedasticity of the
disturbance term (second formulation of the Swamy model)

Q= X;AX! +o®Ir

and 72 = @'4/NT — k.

The ML estimator can be obtained by maximising the log-likelihood function
which has two slightly different forms. For the homoscedastic model:

logL; = —g log 27 — g zlog | X:AX] + oI

1

-5 2. wi- XiB) (XiAX] + o*Ir) ™ (y: — XiB) .




(This formula is given in Swamy [1971, p.111] making the 0% = o2 substitution.)
Restrictions 62 > 0 and A and X;AX; + o%I7 positive definite are imposed. The
second form given in Swamy (1971, p.112] is

N T - K 1
logLy = —TTlog27r -3 ¢ zjlogo2 ~3 Zlog | X! X;|

—é-;log|A+0’ (XiXo)| - —5 Z;

1

- 3 B - YA+ (XIX) (- B)

with the same restriction as in log Ly except that now A+02(X!X;)~! must be positive
definite. For the heteroscedastic model log L; and log L, and the constraints are the
same as for the homoscedastic model just o2 must be replaced by o2. To compute the
ML estimator we use the GAUSS new Constrained ML (CML) module. It is possible to
use this module not only to evaluate the log-likelihood but also the gradient, Hessian
or Jacobian constraints which can speed up the iterations considerably.

We get the EC model by applying restrictions 2 to the core model. The GLS
estimator for the model is then (M4tyds [1992])

Bors = (X'Q71X)"1x'Q 1y,

where the covariance matrix  has the structure

J- J
Q=0c(Int - (IN® 7"f’-)) + (02 +To2)(In ® 7,’—"
with o2 being the common variance of the white noise term u;; and 0'.27 the variance of
-the individual effects v; and I is the identity matrix of given size and J is the matrix
of ones of given size. To use the FGLS estimator we need consistent estimators for

the variance components:

o _ @(Int — (IN® %))
ST NT-1)-K

1 N T
= R 2 2 U

=1 t=1

, and

There are no serious problems with applying the ML estimator, but, as noted by
Breusch [1987], the likelihood function is not globally concave, and therefore multiple
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local maxima may arise, and, also, implied estimates of the variance components may
be negative. So we applied the Iterated GLS (IGLS) estimator (suggested by Breusch
[1987]) as well. This represents an iterative procedure between B obtained by GLS and
the maximised concentrated log-likelihood, maximised over the variance components
o? and o2 given B (CML). The series

52 “ o2 ~
~o s B5,GLS; | Ao s Bj+1,GLS;
05/ j,cML 5/ j+1,CML

have quite good convergence properties.
~ The Within estimator for both the EC and FE models is

B = (X'(Inr — (In ® Z) X)X (Inr — (In © L))y

2.2 Tests Involved in the Analysis

We are interested in testing for the presence of individual specific effects. For the EC
model we analyse the behaviour of the variance decomposition (F), the one and two
sided LM and the LR tests. The variance decomposition test (M4tyds [1992]) is based
on the test statistic

@(In ® FE)a (N — k)1
@(Int — (IN ® F))E[N(T - 1) - k)]-1’

=

which is distributed as an F' (N —k, N(T'—1) — k) random variable under Hy : ,02=0

where # is the OLS residual from the model obtained by applying restrictions 2.

The two sided LM test (Breusch and Pagan [1980]) is based on the

_( NT d(In®Jr)a  _\?
LMz‘(z(cr-g)( we

test statistic which under Hj is asymptotically distributed as a X2 random variable
with 1 degree of freedom.

The one sided LM test (Baltagi et al. [1992], Moulton and Randolph [1989], and
Honda [1985]) is based on the

L, ~
LM1 = NT : u(IN,\(gi\JT)u—l
2(T-1) u'u
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test statistic which under the null hypothesis Hy : oﬁ = 0 (against the alternative
hypothesis H4 : aZ > 0) has standard normal asymptotic distribution if NV & T — 0.

The one sided LR test (Baltagi et al. [1992]) is based on the test statistic

likelihood(restricted)

LR =~2log hkehhood(unrestncted)

which is asymptotically (N & T — oo) distributed as 1/2X2%(0) + 1/2X%(1) random
variable (Gourieroux, Holly and Monfort [1982] and Gourieroux and Monfort [1989]).
To compute the test we used two methods: the true ML for the constrained and
unconstrained model (Hsiao [1986]) and the iterative procedure proposed by Oberhofer
and Kmenta [1974].

For the heteroscedastic RC model (Hsiao [1986], Swamy [1970], [1971]) the
statistic

Z (ﬁz ols — )6* XIX (61 ols — E*)

i=1

can be used to test Hy: Sy =..., B = [, where

N

B —(ZAQX,X) I(Z_XI
i=1 i=1

\

This has a X2(k(V —1)) distribution under the null hypothesis. The same test can be
used when the FE model (with heteroscedasticity) is under investigation, because the
test is valid regardless the alternative hypothesis. To take explicitly into account the
randomness assumption of the coefficients, a test based on Hy: A = 0 can be used.

For the homoscedastic RC model the statistic (Hsiao [1986])

(@htr —'a) /(N — L)k

b= = NT = B

can be used, which has an F((N — 1)(k — 1), N(T — k) distribution under the null
hypothesis, and where u* is the vector of piled up residuals formed from the individual
OLS residuals (OLS performed separately on the individual time series).

As shown by Hsiao [1986], the two sided LM test (Breusch and Pagan test) can be
adapted to the Swamy type model, because introducing random coefficient variation
gives to the dependent variable of the ith individual a different variance. Using the
formulation

. 1
2—=—E§6+wi, i=1,...,N
i
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and replacing o; by its estimate &; = \/ulu; /(T —[), the model

ko k
~ 1 — -
(Tof-1) = é?(E : E :xjixj’ia'ijjl +7h>

1 _7=1 J'I=1

is estimated by OLS, where @ is the OLS residual from the previous formulation.
When N — oo and T — oo the one half predicted sum of squares of the regression,
that is the LM statistic,

—_ 2
2 _
2 , .
has a x? distribution with k(k + 1)/2 degrees of freedom under the null hypothesis

H01A=0.

For the FE model the null hypothesis of homogeneity of the individual specific
constant term(s) can be tested (Balestra [1992]) with the statistic

(uztr — wyus) /N

5= Gag/NT —1) =k

which has an F(N, N(T — 1) — k) distribution under the null hypothesis, and where
uj, j = 4,7 are the OLS residuals from models 4 and 7.

We also use the Hausman test to test the specification of the models FE against
EC (HM1), and Homegenous against EC (HM2), and the White test to test for
homoscedasticity given that models 1-3 and 5-6 can be considered as a form of
heteroscedasticity (and serial correlation). To compute the White test we regress
the OLS residuals on (1,3, 2,22, 73, 7172) and use the test statistic NTR2, where
R? is the coefficient of determination of this regression. It has a x2(k) distribution,
where k is the number of variables in the model.

Summing up we study the following estimators:

Analysed Estimators

Fitted model | Estimators

RC FGLS*, OLS, ML*

EC FGLS, OLS, Within, ML, IGLS
FE Within

* For the homoscedastic and the heteroscedastic models as well.

and the following tests:




Analysed Tests

Fitted model | Tests

RC Swamy’s f*, two sided LM, F,, White

EC F3, one and two sided LM, LR, White, Hausman
FE F3, Swamy’s f*, two sided LM, Hausman

The usefullness of the Bayesian (BIC) and Akaike (AIC) information criteria in
selecting the correct model is also analysed. Overall, the behaviour of nine estimators
and ten testing procedures is under investigation for each data generating process, and
the Hausman test for two pairs of specifications.

3. Simulation Results

3.1 Estimators

Results on the different estimation procedures for the mean bias and mean squared
errors of B can be found in Tables 1-4 for a range of different sample sizes. It is fairly
clear that the main decision one has to make about the heterogeneity is whether
it is observed or not. Getting wrong the specification at this stage will certainly
cause biases in the estimated parameters. On the other hand, while for the fixed

effects heterogeneity the given form of the specification matters, for the latent (or
residual) individual heterogeneity its form (whether an error components or a random
coefficients approach was used) does not matter too much. The IGLS-EC, ML-EC
and FGLS-EC estimators are quite robust against the RC model and vice versa. The
ML-RCM and FGLS-RCM were robust against an error components model, especially
when N is large.

The really interesting issue is that the fixed effects model behaves, from the point
of view of the estimation, very much like an EC model. As a result the IGLS-EC, ML~
EC and FGLS-EC estimators are very robust against a fixed effects specification (even
in small samples). This means that these estimators provide good point estimates
regardless of whether the real DGP has an error components, random coefficients or




fixed effects structure. And these results hold not only in terms of bias but in terms
of mean squared errors as well.

The Within estimator has a rock solid behaviour as well. It is robust against all
specifications considered except for the functional fixed effects and the cross sectional
DGP, which is quite natural.

A further outcome of this experiment is that in small samples (especially if N
is small) anything can happen. For example, estimators may have some bias where,
theoretically, they are not supposed to have, etc.

It is interesting to compare the behaviour of the FGLS and ML estimators for the
RCM models, especially because the ML estimators have never been used in practice
so far to estimate and RCM model due to the heavy computing involved. It can be seen
from Tables 1-4 that the estimation results for the simulated data sets are pretty close
to each other for all FGLS and ML estimators involved in the analysis. The L; and
L, ML estimators (see (2) and (3)) led, as expected, to numerically identical results.
- All this would suggest the use of the much more simple to perform FGLS estimators
intead of the theoretically (asymptotically) optimal but extremely hard to compute
ML estimators. There is, however, an important difference between these estimators.
While the FGLS estimators truncate to zero (A = 0) if the positivity constraints
(1) (about A) are not satisfied, the LM estimators take always into account these
constraints. These were effective in about 60%-70% of the cases, which means that
on the average the truncation required by the FGLS does not have any severe effects.
This does not mean, however, that the truncation cannot have (even serious) effects
for some data sets. This is well reflected by the estimation results on the Grunfeld data
(see Table 13) where truncation was necessary for both the homo- and heteroscedastic
FGLS. In this case, there is a non—negligible difference between the FGLS and ML
parameter estimates which means that one should rely on the ML rather the FGLS
estimates. This means that we suggest to use the FGLS estimator as far as the A =0
truncation is not necessary, but otherwise the use of the ML is recommended.

3.2 Testing Procedures

The main results are summarised in Tables 5-8. Columns 1-5 and 8 and rows 1-6
and 8 show the power of the tests under different alternative hypotheses, while row 7
shows the empirical size (theoretical 5%) of the tests. Columns 6, 7 and 9 row 1 show
the power of the RCM tests against the correct alternative hypothesis and rows 2-6
and 8 show the power robustness of the RCM tests against misspecification.

10




The results are impressive. All the analysed tests, except the f*, F5 and White’s,
have excellent power and size behaviour for all the sample sizes, and only the size of the
LM/RCM test seems to be of concern. On the other hand it is difficult to understand
the poor size behaviour of the f* and the F; tests. The only plausible explanation we
could find is that for the individial regressions the sum of squared residuals may be
frequently unusually low inflating up the value of the test statistic, forcing the test to
always reject.

These results suggest that the F;, F3, one and two sided LM and the LR test
can be used quite efficiently to test for individual heterogeneity, without worrying too
much about the specification of the model.

The HM1 and HM2 Hausman test results are missbehaved, which follows from
the setup of the experiments. HM1 always accepts the null, while HM2 rejects the
null for DGP 4 in over 90% of the cases and in less than 10% of the cases for all other
DGP’s, regardless the sample size.

The AIC and BIC model selection criteria (Tables 9-12) are performing surpris-
ingly well. We have to consider two cases: a) when amongst the GDP’s we analyse
(which is assumed model: FE, EC, RCM, Homo.) the true DGP can be found and b)
when the true DGP can be represented by a model not taken into account. In case
a) the BIC criteria will almost certainly pick up the correct model, especially if the
sample is large in N, while the AIC fails only in the case of the FE model due to the
improper penalty it is using for the number of parameters. For small N the BIC has a
uniformly better behaviour than the AIC. Based in these results we can say that these
information criteria are working very efficiently in choosing the correct model and in
practice we should rely on them much more frequently. In case b), however, we are in
trouble, which is natural because the correct model is not taken in account and this
results in the erratic behaviour of these criteria.

3.3 Discussion

During the simulations we found several problems:
e With DGP7 (completely homogenous data):

— For the IGLS estimator in more than 50% of the cases, regardless the sample

size, the estimated variance ratio —2‘13-—2 = @) is larger than 1. In this case
o +Ta_y 123

we force § = 1.




— For the FGLS-EC estimator in about 50% of the cases the estimated variance
ratio is negative. Then we use alternative estimators to obtain an estimate
for the individual specific variance (Greene [1992]).

e In many cases, particularly with DGP5 and DGP7, for both the homo- and
heteroscedastic FGLS-RCM estimators, the estimate of A is negative-definite.
Then we use the solution proposed by Swamy [1970], which consist of dropping
the term % SN 52(X;, X:)™! (A =0).

e We also have some convergence problems with the ML estimators.
The most important numerical problems are summarised in Table 16.

It is well known that all the above problems may theoretically happen. But, while
theoreticians frequently argue that only in unlikely special cases; our study showed that
this is quite often a real nuisance.

4. An Application

To illustrate our findings we estimated a classical model for investment demand
based on Grunfeld’s well known data set (Grunfeld [1958], Grunfeld and Griliches
[1960]), which has been used several times (Boot and deWitt [1960], Swamy [1970],
Maddala [1981] Baltagi et al. [1992], Greene [1993, 445-446.], etc.) to investigate the
behaviour econometric methods in a panel data context.

The model
LIit = 1+ B2 Fit + B3Cit + uis

is estimated, where I;; is the gross investment of firm 7 at period ¢, F;; is the market
value of firm ¢ at the end of the previous year (end ¢ — 1), C;; is the value of the
stock of plant and equipment of firm ¢ at the end of the previous year (end ¢t — 1),
firms ¢ are mayor US companies (i =1,...,10) and the time series run from 1935 to
1954 (t = 1,...,20). The explanatory variables in the model stand for the anticipated
profit and the expected replacement investment required.

The estimation results are summarised in Tables 13-15. It can be seen, as
predicted by the simulation analysis, the estimated values of the structural parameters




of the model produced by the different estimators are quite close to each other.! All
the different hypothesis testing procedures reject the null hypothesis of homogeneity at
5% and 1% significance levels. Both the AIC and BIC criteria pick up the RCM/hetero
model as the true model generating the data.

In the light of these results we think it is legitimate to ask the question whether we
have enough information in the data and appropriate tools (except for the information
criteria) to make confidently a choice between the RC, EC and FE models for a given
data set. Although these models are by no means observationally equivalent, the
choice between them, in today’s practice, seems to be much more based on subjective
judgement, than real information extracted from the data. This is not necessarily bad,
but we should be aware of it.

4. Conclusion

In this paper we analyse the consequences of misspecification of the Fixed Effects,

Error Components and Random Coeflicients models on their estimators, the testing
procedures used to test for (individual) specific effects, and the information criteria
used to select between these models. We also illustrate our findings, through the
estimation a well known investment demand model. We suggest that the structure of
these models and the lack of power of our testing procedures against these models may
not enable us to make a clear cut decision when picking up a specification for practical
purposes. We also suggest that this may not matter too much after all, given that we
probably end up with very similar parameter estimates whatever model we choose.

Computer programs: The Gauss computer codes used for this paper are available
on the World Wide Web :\\www.monash.edu.au/econometrics/workpaps.htm.

! The Between estimator has no practical importance, and was not analysed in the
simulation study.




Table 1la: Mean bias for 3
N =25 T=10

DGP

OLS

Within

FGLS-EC

IGLS-EC

ML-EC

Swamy

0.1466

0.1794

0.1429

0.1429

0.1429

EC

0.1605

0.1388

0.1186

0.1188

0.1185

Func. E.C

0.1218

0.1578

0.1185

0.1186

0.1186

FE

3.2144

0.1388

0.1389

0.1407

0.1389

Cross Sect.

12.9768

12.9941

12.9893

12.9891

12.9896

Func. F.E.

2.0037

1.5492

1.5401

1.5415

1.5411

Homogen.

0.0762

0.1388

0.0771

0.0769

0.0768

wlN|olofn]w|o|m

Complete

2.0070

1.5512

1.5426

1.5441

1.5436

Table 1a: Mean bias for ; (continued)
N=25T=10

DGP

FGLS-RCM/hom

FGLS-RCM/het

ML-RCM/hom

ML-RCM/het

. Swamy

0.1388

0.1440

0.1295

0.1409

. EC

0.1648

0.1668

0.1732

0.1755

Func. E.C

0.1356

0.1392

0.1199

0.1306

FE

2.8772

2.4721

2.7895

2.4221

. Cross Sect.

12.9933

13.0042

13.021

13.019

. Func. F.E.

1.8811

1.5395

1.7814

1.3713

. Homogen.

0.1054

0.1127

0.0893

0.1044

. Complete

1.8837

1.5396

1.7806

1.3684




Table 1b: Mean squared errors for (;
N =25 T=10

DGP Within FGLS-EC | IGLS-EC
. Swamy 0.0.0466 | 0.0337 0.0338
EC 0.0306 0.0237 0.0238
. Func. E.C 0.0381 0.0203 0.0203
FE 0.0306 0.0305 0.0309
Cross Sect. 170.15 170.23 170.20
Func. F.E. 3.9496 3.9095 3.9080
. Homogen. 0.0306 0.0094 0.0094
. Complete 3.9510 3.9080 3.9070

BRI I E I IS

Table 1b: Mean squared errors for (; (continued)
N=25T=10

DGP FGLS-RCM/hom | FGLS-RCM/het | ML-RCM/hom | ML-RCM /het
. Swamy 0.0293 0.0322 0.0276 0.0326
. EC 0.0506 0.0523 0.0470 0.0480
. Func. E.C | 0.0288 0.0315 0.0236 0.0278
. FE 13.023 9.6730 12.601 9.3391
. Cross Sect. | 169.62 169.34 169.42 169.37
. Func. F.E. | 5.0808 3.3592 4.8477 2.9046
Homogen. | 0.0195 0.0221 0.0133 0.0175
Complete | 5.0830 3.3640 4.8550 2.9110

olN|ololn]lw o=




Table 2a: Mean bias for 3;
N=25T=25

DGP

OLS

Within

FGLS-EC

IGLS-EC

ML-EC

. Swamy

0.1350

0.1240

0.1217

0.1216

0.1216

. EC

0.0958

0.0553

0.0523

0.0523

0.0522

. Func. E.C

0.0997

0.0905

0.0860

0.0859

0.0859

FE

1.9968

0.0553

0.0552

0.0552

0.0552

Cross Sect.

13.0411

13.0033

13.0055

13.0053

13.0051

Func. F.E.

1.8982

1.5185

1.5067

1.5069

1.5071

Homogen.

0.0317

0.0553

0.0320

0.0319

0.0319

®|Nfo|o|nwl ol

Complete

1.9010

1.5198

1.5084

1.5087

1.5087

Table 2a:

Mean bias for 3; (continued)
N=25T=25

DGP

FGLS-RCM/hom

FGLS-RCM /het

ML-RCM/hom

ML-RCM/het

. Swamy

0.0978

0.0965

0.0958

0.0966

EC

0.0953

0.0926

0.0937

0.0908

. Func. E.C

0.0950

0.0919

0.0940

0.0886

FE

1.7814

1.6207

1.7586

1.6265

. Cross Sect.

12.9969

13.0015

12,983

12.985

. Func. F.E.

1.6960

1.4886

1.7774

1.5189

Homogen.

0.0439

0.0451

0.0369

0.0373

O N[ w|ofe=

Complete

1.7016

1.4935

1.7776

1.5219




Table 2b: Mean squared errors for f;
N=25T=25

DGP Within | FGLS-EC | IGLS-EC
Swamy 0.0248 0.0238 0.0238
EC 0.0046 0.0040 0.0040
. Func. E.C 0.0121 0.0109 0.0108
. FE 0.0046 0.0046 0.0047
. Cross Sect. 170.21 170.17 170.16
. Func. F.E. 3.6631 3.6557 3.6552
Homogen. 0.0046 0.0014 0.0014
. Complete 3.6782 3.6716 3.6713

Table 2b: Mean squared errors for 3; (continued)
N=25T=25

DGP FGLS-RCM/hom | FGLS-RCM/het | ML-RCM/hom | ML-RCM /het
. Swamy 0.0151 0.0147 0.0145 0.0154
. EC 0.0142 0.0131 0.0140 0.0131
. Func. E.C 0.0144 0.0136 0.0142 0.0127
FE 4.7390 4.0855 4.6778 3.9991
. Cross Sect. | 168.76 168.84 168.75 168.80
. Func. F.E. | 5.3213 4.0590 5.0918 3.6919
Homogen. 0.0029 0.0030 0.0022 0.0023
Complete 5.3453 4.0635 5.0945 3.7013

o|lNjo|o|s]lw|v|-




Table 3a: Mean bias for §;
N =100,T =10

DGP

OLS

Within

FGLS-EC

IGLS-EC

ML-EC

. Swamy

0.0791

0.0890

0.0760

0.0760

0.0760

EC

0.0784

0.0695

0.0598

0.0599

0.0598

. Func. E.C

0.0632

0.0816

0.0621

0.0621

0.0621

FE

5.9392

0.0695

0.0695

0.0695

0.0605

. Cross Sect.

50.4295

50.4722

50.4663

50.4660

5046.61

. Func. F.E.

3.8018

2.9605

2.9607

2.9513

2.9611

Homogen.

0.0377

0.0695

0.0378

0.0377

0.0377

oiNlo|olps|w|vo|~

Complete

3.7985

2.9588

2.9584

2.9590

2.9588

Table 3a: Mean bias for 3; (continued)
N =100,T =10

DGP

FGLS-RCM/hom

FGLS-RCM/het

ML-RCM/hom

ML-RCM /het

. Swamy

0.0692

0.0715

0.0636

0.0688

. EC

0.0831

0.0829

0.0812

0.0794

. Func. E.C

0.0704

0.0714

0.0632

0.0651

. FE

5.6642

4.8578

5.3979

4.7277

. Cross Sect.

50.4629

50.5007

50.4524

50.4459

. Func. F.E.

3.5079

2.7862

3.4406

2.7581

. Homogen.

0.0548

0.0583

0.0379

0.0490

. Complete

3.5043

2.7833

3.4422

2.7730




Table 3b: Mean squared errors for 3;
N =100,T =10

FGLS-EC
0.0077
0.0050
0.0054
0.0066
2161.99
13.016
0.0020
13.017

DGP

. Swamy

. EC

. Func. E.C
. FE

. Cross Sect.
. Func. F.E.

Homogen.

OLS
0.0088
0.0102
0.0057
56.145
2580.78
20.898
0.0020
20.887

Within
0.0099
0.0065
0.0097
0.0065
2559.31
19.574
0.0065
13.572

IGLS-EC
0.0078
0.0050
0.0053
0.0066
2562.06
13.017
0.0020
13.017

ML-EC
0.0077
0.0050
0.0053
0.0066
2561.98
13.018
0.0020
13.019

wlN|olalslw|w]|w

. Complete

Table 3b: Mean mean squared errors for ; (continued)
N =100, T = 10

DGP

FGLS-RCM/hom

FGLS-RCM/het

ML-RCM/hom

ML-RCM/het

Swamy

0.0069

0.0766

0.0062

0.0072

EC

0.0114

0.0101

0.0103

0.0101

. Func. E.C

0.0079

0.0078

0.0062

0.0066

. FE

48.189

34.580

45.445

34.793

Cross Sect.

2550.24

2547.34

2548.05

2547.34

Func. F.E.

18.457

11.971

18.375

12.117

Homogen.

0.0042

0.0046

0.0022

0.0038

IR P E IS

Complete

18.504

12.007

18.423

12.157




Table 4a: Mean bias for 3;

N =100,T =25

DGP

OLS

Within

FGLS-EC

IGLS-EC

. Swamy

0.0684

0.0629

0.0615

0.0615

. EC

0.0452

0.0274

0.0255

0.0255

Func. E.C

0.0489

0.0467

0.0440

0.0440

FE

3.7011

0.0274

0.0274

0.0274

Cross Sect.

50.4130

50.5243

50.5176

50.5178

Func. F.E.

3.7716

2.9332

2.9288

2.9287

Homogen.

0.0151

0.0274

0.0155

0.0155

R N RS IS

Complete

3.7713

2.9350

2.9302

2.9301

Table 4a: Mean bias for ; (continued)
N =100,T =25

DGP

FGLS-RCM/hom

FGLS-RCM /het

ML-RCM/hom

ML-RCM/ het

. Swamy

0.0501

0.0491

0.0597

0.0706

. EC

0.0461

0.0454

0.0573

0.0586

. Func. E.C

0.0492

0.0476

0.0575

0.0642

FE

3.3790

3.0965

3.3882

3.0784

Cross Sect.

50.4867

50.5002

52.021

52.014

. Func. F.E.

3.3796

2.9625

2.6930

2.7890

. Homogen.

0.0218

0.0224

0.0193

0.0212

olulofo|slw|o]|m

. Complete

3.3774

2.9609

3.3212

3.0083




Table 4b: Mean squared errors for (3
N =100,T =25

DGP

OLS

Within

FGLS-EC

IGLS-EC

ML-EC

. Swamy

0.0090

0.0079

0.0071

0.0071

0.0071

. EC

0.0041

0.0011

0.0010

0.0010

0.0010

. Func. E.C

0.0054

0.0034

0.0034

0.0034

0.0034

. FE

25.911

0.0011

0.0011

0.0011

0.0011

. Cross Sect.

3123.47

3139.25

3137.81

3137.82

3137.82

. Func. F.E.

26.527

15.926

15.801

15.803

15.803

Homogen.

0.0011

0.0011

0.0004

0.0004

0.0004

Complete

26.496

15.962

15.835

15.837

15.837

Table 4b: Mean squared errors for (§; (continued)
N =100,T =25

DGP

FGLS-RCM/hom

FGLS-RCM / het

ML-RCM/hom

ML-RCM/het

. Swamy

0.0048

0.0045

0.0046

0.0063

EC

0.0042

0.0040

0.0042

0.0045

. Func. E.C

0.0046

0.0040

0.0045

0.0058

FE

23.368

20.100

23.374

20.110

. Cross Sect.

3133.01

3131.80

3132.56

3131.80

. Func. F.E.

25.233

18.640

24.757

18.656

. Homogen.

0.0008

0.0009

0.0005

0.0005

o|Nlofoln|w]|o|~

Complete

25.262

18.669

24.811

18.686




Table 5: Number of rejections of Hj
N=25T=10

DGP

. Swamy

. EC

. Func. E.C
FE

. Cross Sect.
. Func. F.E.

. Homogen.

= B B =20 SN I U R e

. Complete

Table 6: Number of rejections of Hy
N=25T=25

DGP

. Swamy

. EC

. Func. E.C
. FE

Cross Sect.
. Func. F.E.

. Homogen.

. Complete




Table 7: Number of rejections of H
N =100,T =10

DGP

. Swamy

. EC

. Func. E.C
FE

Cross Sect.
. Func. F.E.

. Homogen.

. Complete

Table 8: Number of rejections
N =100,T =25

DGP

. Swamy

. EC

. Func. E.C
. FE

. Cross Sect.
. Func. F.E.

. Homogen.

IV |w]N] -

. Complete




Table 9: The AIC and BIC criteria
N=25T=10
The number of times a model chosen using AIC

DGP

Homogen. (7)

FE (4)

EC (2)

RCM/homo (1)

Swamy

79

168

100

646

EC

2

995

3

0

Func. E.C

419

308

135

FE

1000

0

0

Cross Sect.

0

0

892

Func. F.E.

79

0

Homogen.

1

48

e I R R Rl e R

Complete

83

0

The number of times a model chosen using BIC

DGP

Homogen. (7)

FE (4)

EC (2)

RCM/homo (1)

RCM /het

Swamy

324

0

298

378

0

EC

2

0

998

0

0

Func. E.C

339

0

625

36

0

FE

0

0

0

0

Cross Sect.

0

0

0

61

Func. F.E.

0

206

63

675

Homogen.

4

1

0

RN G Do =

Complete

0

0
0
0

267

66

667

One column represents an assumed DGP and defines the likelihood chosen.
One row adds up to 1000.




Table 10: The AIC and BIC criteria
N=25T=25
The number of times a model chosen using AIC

DGP FE (4) RCM/homo (1) | RCM/het
Swamy 23 '
EC 1000
Func. E.C 915
FE 1000
Cross Sect. 0
Func. F.E. 0
Homogen. 0
Complete 0

RN SO ] o pof =

The number of times a model chosen using BIC

DGP FE (4) | EC (2) | RCM/homo (1) | RCM/het
Swamy 0 4 996
EC 0 0
Func. E.C 0 216
FE 0
Cross Sect. 0 53
Func. F.E.
Homogen.
Complete |0

RN S| oo

One column represents an assumed DGP and defines the likelihood chosen.
One row adds up to 1000.




Table 11: The AIC and BIC criteria
N =100, T =10
The number of times a model chosen using AIC

DGP

FE (4)

EC (2)

RCM/homo (1)

Swamy

17

7

976

EC

1000

0

0

Func. E.C

380

187

FE

1000

0

0

Cross Sect.

0

0

1000

Func. F.E.

0

0

Homogen.

37

107

I B S Rl Rl e R e

Complete

0
0
0

0

0

The number of times a model chosen using BIC

DGP

FE (4)

EC (2)

RCM /homo (1)

Swamy

0

30

970

EC

0

1000

0

Func. E.C

0

932

65

FE

0

0

Cross Sect.

0

0

Func. F.E.

83

0

Homogen.

10

el B ] ol Bl ad B e

Complete

0

83

0

One column represents an assumed DGP and defines the likelihood chosen.
One row adds up to 1000.




Table 12: The AIC and BIC criteria
N =100,T =25
The number of times a model chosen using AIC

DGP

FE (4)

RCM/homo (1)

Swamy

0

1000

EC

0

Func. E.C

5

FE

0

Cross Sect.

Func. F.E.

10

Homogen.

47

RIS | L bof =

Complete

10

The number of times a model chosen using BIC

DGP

FE (4)

RCM/homo (1)

Swamy

0

1000

EC

0

0

Func. E.C

0

192

FE

0

. Cross Sect.

0

1000

Func. F.E.

16

Homogen.

26

0

il B I il ol B o B

Complete

0

0
0
0

16

943

One column represents an assumed DGP and defines the likelihood chosen.

One row adds up to 1000.




Table 13: Estimation results on Grunfeld’s data
N=10,T =20

Estimator

OLS

Between

FGLS-EC

IGLS-EC

B

-43.024
(9.498)

-9.103
(47.54)

-57.869
(28.81)

-57.805
(27.83)

B2

0.115
(0.0058)

0.134
(0.0288)

0.109
(0.0119)

0.109
(0.0105)

0.109
(0.0104)

Bs

0.231
(0.0255)

0.035
(0.1911)

0.310
(0.0174)

0.308
(0.0172)

0.308
(0.0172)

Table 13: Estimation results on Grunfeld’s data (continued)
N=10,T=20

Estimator

FGLS-RCM/het

FGLS-RCM

ML-EC

ML-RCM/het

b1

-9.530
(17.148)

-22.32
(23.61)

-57.806
(27.62)

-2.406
(5.814)

B2

0.081
(0.0187)

0.097
(0.0286)

0.109
(0.0103)

0.065
(0.018)

B3

0.203
(0.053)

0.202
(0.070)

0.309
(0.017)

0.224
(0.051)

-1095.1

-844.6




Table 14: Hypothesis testing for Grunfeld’s data

N=10,T =20

Test

F1

LM?2

LM1

LR*

Calc. value

51.63

797.72

28.24

192.65

Distr.

F(7,187)

x*(1)

N(O, 1)

1/2x*(0) +1/2x*(1)

All tests reject the null hypothesis at 5% significance level.
Results for the LR and LR/igls tests are identical.

Table 14: Hypothesis testing for Grunfeld’s data (continued)

N=10,T=20

Test

F2

F3

LM3

Calc. value

37.73

43.89

36785

Distr.

F(20, 170)

x*(6)

F(10, 187)

All tests reject the null hypothesis at 5% significance level.

Table 15: AIC and BIC results for Grunfeld’s data
N=10,T =20

Model

AIC

BIC

Homogen.

-1195.4

-1202.0

FE

-1083.6

-1105.1

EC

-1100.1

1108.3

RCM/homo

-1140.3

1156.8

-847.5

-894.9

RCM /hetero

AIC = max ) ;log L; —k and BIC = max ) ;log L; — k/2log NT.
The RCM /hetero model is selected by both AIC and BIC.




Table 15: Numerical problems during the simulations
N=25T=10

DGP

FGLS-EC

A/hom

A/het

. Swamy

18

860

669

EC

0

820

577

Func. E.C

14

845

702

FE

0

677

31

Cross Sect.

0

1000

612

787 89
873 855
789 89

Func. F.E.
Homogen.
Complete

o| N ool ol ol

N =100,T =10

DGP

Swamy
EC

Func. E.C
FE

Cross Sect.
Func. F.E.
Homogen.
Complete

FGLS-EC | A/hom

836

A/het
356
689 200
823 493
383 0

1000 556
583 3 0
882 836
856 3 0

e I R Rl el B R e

FGLS-EC: number of times # < 0 for the FGLS-EC estimator.
/S/hom: number of times ﬁ/homo is neg. def. for the FGLS/homo estimator.
E/het: number of times A /heter is neg. def. for the FGLS/heter estimator.

ML/hom: number of times when we have no convergence in 5 minutes for the ML-RCM/hom

estimator.

ML /het: number of times when we have no convergence in 5 minutes for the ML-RCM //het
estimator.

Grad: number of times with numerical problems when evaluating the gradient and/or the
log-likelihood for the ML-RCM/hetero estimator. No such problems noticed for the ML—
RCM/homo estimator.
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