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Pierre Blanchard* and Laszlo Matyas**

* Universite de Paris XII, ERUDITE

** Monash University, Australia and Budapest University of Economics

1. Introduction

The use of panel data has become increasingly popular in econometrics over the last

decade. This is mainly due to its large information content, that is to its heterogeneity.

Several models and approaches are able to deal with the key features of these data sets

(see Mayas and Sevestre [1992]), but three formulations are dominating the literature:

the Fixed Effects (FE), the Error Components (EC) and the Random Coefficients (RC)

models.

The central question is how to formalize the heterogeneity of the data. When

few restrictions (if any) are made about it, we may end up with models which

look quite realistic because of the absence of restrictive assumptions, but probably

lack explanatory power, are hardly estimable, and are useless for prediction and/or

structural analysis. If more restrictions are made than are strictly necessary, the model

is not able to explain the real data generating process and it can be considered useless

as well. The structure imposed on the heterogeneity is, therefore, crucial from the
viewpoint of any analysis.

The FE, EC and RC models are dominating the theory and practice of panel
data modelling because they are considered to be parsimonious, reflect well the
heterogeneity of the data and, therefore, produce reliable and realistic parameter
estimates.

The above three models rarely formalize the heterogeneity of the data (and the

data generating process) absolutely correctly and, as a consequence, frequently in

practice misspecified models are used for estimation and inference. It is, therefore,

of paramount importance to analyse the behaviour of these models when they are
misspecified or when their specification is not fully correct.

There are surprisingly few studies on the effects of misspecification in panel

data models. Baltagi [1986] analyses the EC heterogeneity versus the Kmenta—type
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structure and concludes that for samples with short time series the EC model should
be preferred. Baltagi [1992] investigates the effects of under— or over—specifying the
structure of an EC model. He shows that underspecification (omission of an error
component) results in inconsistency of the variance component's estimators, while
overspecification has not such a harmful effect. Deschamps [1991] demonstrates for the
same model that misspecification of the error structure induces bias in the estimators
of the structural coefficients' variances as well. Van den Doel and Kiviet [1991] point
out the serious consequences of incorrectly omitting the lagged dependent variable
from the right hand side of a EC or fixed effects model.

In this paper we analyse systematically through Monte Carlo simulations the
consequences of misspecification of the FE, EC and RC models on their estimators,
the testing procedures used to test for (individual) specific effects, and the information
criteria used to select between these models. We also illustrate our findings, through
the estimation of an investment demand model.

2. Framework of the Analysis

In order to simplify the analysis we assume that the heterogeneity of the data is purely
individual and there is complete time homogeneity. Our core model then is

yit = :403 Zitai uit ,

where xit, zit and z7t are the non stochastic right hand side variables of the model
with dimensions (k x 1), (kz x 1) and (k* x 1) respectively; 3 is a fixed parameter
vector of dimension (k x 1); ai is an individual specific parameter vector of dimension
(kz x 1); -yi is a vector of individual specific random variables of dimension (k* x 1)
with zero expected value, variances al j = 1, , k*, and uit is a white noise. By
imposing restrictions on this core model we can get back all the familiar panel models
and even more formulations for the heterogeneity:

1. if zit = 0 and z'iKt = it, the Swamy's random coefficient model;

2. if zit = 0 and 4 = eit, where eit is a dummy vector with all elements equal to
zero except one which equals one, the error components model;

3. if zit = 0, the functional error components model;

4. if 4 = 0 and zit = eit, the fixed effects model;



5. if z7t = 0 and xit = xit, the cross sectional model;

6. if zrt = 0, the varying coefficients model;

7. if zit = 0 and z7t = 0, the the absolute homogenous model.

The analysis focuses on the behaviour of the main estimators, tests for specific
effects and model selection criteria when the data generating process (DGP) is the
core model or processes 1-7 and the FE, EC or RC models are fitted.

For the Monte Carlo data generation we used the following model specification:

(1) (2) , , (1) (1) (2) (2) (1) *(1) ,),,C,2)zsit(2) UitYit N1X 
, 

it N2Xit cei zit 
I 
7 i Zit

xit = xit-1 6x,it
(j) (i) (.1)

zit = zit-1 + z,it
*(j) *(j) (j)

zit .= zit-1 ± 6z*,it
(i)w
Ex,it Ez*,it Uniform [-0.5, 0.5]

uit N(0, 1) -yi r N(0, 0.5)

= /32 = a?) 1)= 0.5 and a.. .

j = 1,2

j = 1,2

j = 1,2

2.1 Estimators Involved in the Analysis

The Swamy's RC model has two basic formulations (Hsiao [1992]). The one proposed
originally assumes that restrictions 1 apply to the core model and the disturbance
term is heteroscedastic (E(uFt) = un. In this case the GLS estimator of the model is

where

T3GLS = (Xi X)-1(Xcrly)

= (E Xi)-1(E

i=1 i=1

}-1

= {EV\ [A ± ,
i=1

02 =
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12, the covariance matrix of the composite disturbance term e i uit, is block
diagonal, and the ith diagonal block equals

where

ci = XiAri IT,

if i =
if i j•

For an operational FGLS estimator we can obtain unbiased estimators of o-i and
as

a
z
? 

T
1

= 

1

N —1

N \

oi)

—1

1
-7CT

i=1

A

(1)

We have to take into account that this estimator for A is not necessarily non—negative
definite. In this case Swamy suggests to set A = 0. With homoscedasticity of the
disturbance term (second formulation of the Swamy model)

= XiAX' u2/7,

and a-2 = — k.

The ML estimator can be obtained by maximising the log—likelihood function
which has two slightly different forms. For the homoscedastic model:

log Li = — 
NT 

log 27r — —
n E log IXiD.X' cr2/T I2 2

_ _ 7(yi - Xii3Y(XiAX a2IT)- XTO) •2

(2)



(This formula is given in Swamy [1971, p.111] making the r = o-2 substitution.)
Restrictions a-2 > 0 and A and XiAXi ± a-2/T positive definite are imposed. The
second form given in Swamy [1971, p.112] is

T — K 1
logL2 = — 

NT 
log 27r  

2 
logo-2 - -

2 
E log

2 

T — K

2 La o-2

- -,0/)(6, (Y2(XXi))-1(-iji

(3)

with the same restriction as in log L1 except that now -1--o-2(X'Xi)-1 must be positive
definite. For the heteroscedastic model log L1 and log L2 and the constraints are the
same as for the homoscedastic model just 0-2 must be replaced by 4. To compute the
ML estimator we use the GAUSS new Constrained ML (CML) module. It is possible to
use this module not only to evaluate the log—likelihood but also the gradient, Hessian
or Jacobian constraints which can speed up the iterations considerably.

We get the EC model by applying restrictions 2 to the core model. The GLS
estimator for the model is then (Mayas [1992])

T3GLs = (r1r1X)-1X'Srly ,

where the covariance matrix f2 has the structure

1-2 = 0-2(INT — (IN 0 -7- 1)) + (0-2 "4- Ta-.27)(IN 0

with a-2 being the common variance of the white noise term uit and a-1,2 the variance of
• the individual effects 7i and I is the identity matrix of given size and J is the matrix
of ones of given size. To use the FGLS estimator we need consistent estimators for
the variance components:

CT = 
N(T — 1) — K 

and

1
- E -7 NT — K i=1 t=1

NT

There are no serious problems with applying the ML estimator, but, as noted by
Breusch [1987], the likelihood function is not globally concave, and therefore multiple
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local maxima may arise, and, also, implied estimates of the variance components may
be negative. So we applied the Iterated GLS (IGLS) estimator (suggested by Breusch
[1987]) as well. This represents an iterative procedure between obtained by GLS and
the maximised concentrated log—likelihood, maximised over the variance components
cr2 and cr,),2 given (CML). The series

(&2)

T3i,GLS; '.idj-F1,GLS;
j,CML '7) j-1-1,CML

have quite good convergence properties.

The Within estimator for both the EC and FE models is

• • •

AL,= (x/(I - (IN 'If ))x)--ixi(INT - (IN ))y

2.2 Tests Involved in the Analysis

We are interested in testing for the presence of individual specific effects. For the EC
model we analyse the behaviour of the variance decomposition (F), the one and two
sided LM and the LR tests. The variance decomposition test (Mayas [1992]) is based
on the test statistic

= 
uTINT — (IN lif))ii[N(T —1) — 0]-1

Ft' (IN 0 (N — k)-1

which is distributed as an F (N — k, N(T —1)— k) random variable under Ho : , o = 0
where 11 is the OLS residual from the model obtained by applying restrictions 2.

The two sided LM test (Breusch and Pagan [1980]) is based on the

iF(IN .17-)7q 1) 2LM2 = (  
NT 

test statistic which under Ho is asymptotically distributed as a X2 random variable
with 1 degree of freedom.

The one sided LM test (Baltagi et al. [1992], Moulton and Randolph [1989], and
Honda [1985]) is based on the

(  NT  )1
LM1 (17(IN JT)il=

2(T — 1) ) int
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test statistic which under the null hypothesis Ho : crt,2 = 0 (against the alternative
hypothesis HA : Cr > 0) has standard normal asymptotic distribution if N & T oo.

The one sided LR test (Baltagi et al. [1992]) is based on the test statistic

likelihood(restricted)
LR —21og 

likelihood(unrestricted)

which is asymptotically (N & T oo) distributed as 1/2X2(0) 1/2X2(1) random
variable (Gourieroux, Holly and Monfort [1982] and Gourieroux and Monfort [1989]).
To compute the test we used two methods: the true ML for the constrained and
unconstrained model (Hsiao [1986]) and the iterative procedure proposed by Oberhofer
and Kmenta [1974].

For the heteroscedastic RC model (Hsiao [1986], Swamy [1970], [1971]) the
statistic

can be used to test Ho

N
= coi,ois — —2(, — 0*)

i=1

01 = • • • , Ok = 0, where

0-* = (E XP(i)-1(E

i 
(T

ii=1 =1

This has a X2(k(N— 1)) distribution under the null hypothesis. The same test can be
used when the FE model (with heteroscedasticity) is under investigation, because the
test is valid regardless the alternative hypothesis. To take explicitly into account the
randomness assumption of the coefficients, a test based on H0: = 0 can be used.

For the homoscedastic RC model the statistic (Hsiao [1986])

F2 = (I/171117 - IL*11/1Ar/( - 1)k

(IL*1111*)/Ar(T - k)

can be used, which has an F((N — 1)(k — 1), N(T — k) distribution under the null
hypothesis, and where ii is the vector of piled up residuals formed from the individual
OLS residuals (OLS performed separately on the individual time series).

As shown by Hsiao [1980, the two sided LM test (Breusch and Pagan test) can be
adapted to the Swamy type model, because introducing random coefficient variation
gives to the dependent variable of the ith individual a different variance. Using the
formulation

1 ,
i = 1, . . . , N

Ori Gri



and replacing cri by its estimate — 1), the model

k k

(T 31 31A),?-1)=-(E E -523 • 3-' Tr)az? j=1.P=1 
«

is estimated by OLS, where ED is the OLS residual from the previous formulation.
When N oo and T oo the one half predicted sum of squares of the regression,
that is the LM statistic,

2

LM3 = 
Ei (tw.? - 1) 

2

has a x2 distribution with k(k + 1)/2 degrees of freedom under the null hypothesis

Ho : = O.

For the FE model the null hypothesis of homogeneity of the individual specific

constant term(s) can be tested (Balestra [1992]) with the statistic

- 
114)/NU7U7 4 

F3 = 

r 

u /u4)/N(T - 1) - k4

which has an F(N,N(T — 1) — k) distribution under the null hypothesis, and where

, j = 4,7 are the OLS residuals from models 4 and 7.

We also use the Hausman test to test the specification of the models FE against

EC (HM1), and Homegenous against EC (HM2), and the White test to test for

homoscedasticity given that models 1-3 and 5-6 can be considered as a form of

heteroscedasticity (and serial correlation). To compute the White test we regress

the OLS residuals on (1, xl, x2,4, x3, x1x2) and use the test statistic NTR2, where

R2 is the coefficient of determination of this regression. It has a )(2(k) distribution,

where k is the number of variables in the model.

Summing up we study the following estimators:

Analysed Estimators

Fitted model Estimators
RC FGLS*, OLS, ML*
EC FGLS, OLS, Within, ML, IGLS

, FE Within

* For the homoscedastic and the heteroscedastic models as well.

and the following tests:



Analysed Tests

Fitted model Tests
RC Swamy's f*, two sided LM, F2, White
EC F1, one and two sided LM, LR, White, Hausman
FE F3, Swamy's f*, two sided LM, Hausman

The usefullness of the Bayesian (BIC) and Akaike (AIC) information criteria in

selecting the correct model is also analysed. Overall, the behaviour of nine estimators

and ten testing procedures is under investigation for each data generating process, and

the Hausman test for two pairs of specifications.

3. Simulation Results

3.1 Estimators

Results on the different estimation procedures for the mean bias and mean squared

errors of 3 can be found in Tables 1-4 for a range of different sample sizes. It is fairly

clear that the main decision one has to make about the heterogeneity is whether

it is observed or not. Getting wrong the specification at this stage will certainly

cause biases in the estimated parameters. On the other hand, while for the fixed

effects heterogeneity the given form of the specification matters, for the latent (or

residual) individual heterogeneity its form (whether an error components or a random

coefficients approach was used) does not matter too much. The IGLS—EC, ML—EC

and FGLS—EC estimators are quite robust against the RC model and vice versa. The

ML—RCM and FGLS—RCM were robust against an error components model, especially

when N is large.

The really interesting issue is that the fixed effects model behaves, from the point

of view of the estimation, very much like an EC model. As a result the IGLS—EC, ML—

EC and FGLS—EC estimators are very robust against a fixed effects specification (even

in small samples). This means that these estimators provide good point estimates

regardless of whether the real DGP has an error components, random coefficients or



fixed effects structure. And these results hold not only in terms of bias but in terms
of mean squared errors as well.

The Within estimator has a rock solid behaviour as well. It is robust against all
specifications considered except for the functional fixed effects and the cross sectional
DGP, which is quite natural.

A further outcome of this experiment is that in small samples (especially if N

is small) anything can happen. For example, estimators may have some bias where,

theoretically, they are not supposed to have, etc.

It is interesting to compare the behaviour of the FGLS and ML estimators for the

RCM models, especially because the ML estimators have never been used in practice

so far to estimate and RCM model due to the heavy computing involved. It can be seen

from Tables 1-4 that the estimation results for the simulated data sets are pretty close

to each other for all FGLS and ML estimators involved in the analysis. The L1 and

L2 ML estimators (see (2) and (3)) led, as expected, to numerically identical results.

• All this would suggest the use of the much more simple to perform FGLS estimators

intead of the theoretically (asymptotically) optimal but extremely hard to compute

ML estimators. There is, however, an important difference between these estimators.

While the FGLS estimators truncate to zero (A = 0) if the positivity constraints

(1) (about 2i) are not satisfied, the LM estimators take always into account these
constraints. These were effective in about 60%-70% of the cases, which means that

on the average the truncation required by the FGLS does not have any severe effects.

This does not mean, however, that the truncation cannot have (even serious) effects

for some data sets. This is well reflected by the estimation results on the Grunfeld data

(see Table 13) where truncation was necessary for both the homo- and heteroscedastic

FGLS. In this case, there is a non—negligible difference between the FGLS and ML

parameter estimates which means that one should rely on the ML rather the FGLS

estimates. This means that we suggest to use the FGLS estimator as far as the A = 0

truncation is not necessary, but otherwise the use of the ML is recommended.

3.2 Testing Procedures

The main results are summarised in Tables 5-8. Columns 1-5 and 8 and rows 1-6

and 8 show the power of the tests under different alternative hypotheses, while row 7

shows the empirical size (theoretical 5%) of the tests. Columns 6, 7 and 9 row 1 show

the power of the RCM tests against the correct alternative hypothesis and rows 2-6

and 8 show the power robustness of the RCM tests against misspecification.
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The results are impressive. All the analysed tests, except the f*, F2 and White's,
have excellent power and size behaviour for all the sample sizes, and only the size of the
LM/RCM test seems to be of concern. On the other hand it is difficult to understand
the poor size behaviour of the f* and the F2 tests. The only plausible explanation we
could find is that for the individial regressions the sum of squared residuals may be
frequently unusually low inflating up the value of the test statistic, forcing the test to
always reject.

These results suggest that the F1, F3 one and two sided LM and the LR test
can be used quite efficiently to test for individual heterogeneity, without worrying too
much about the specification of the model.

The HM1 and HM2 Hausman test results are missbehaved, which follows from
the setup of the experiments. HM1 always accepts the null, while HM2 rejects the
null for DGP 4 in over 90% of the cases and in less than 10% of the cases for all other
DGP's, regardless the sample size.

The AIC and BIC model selection criteria (Tables 9-12) are performing surpris-
ingly well. We have to consider two cases: a) when amongst the GDP's we analyse
(which is assumed model: FE, EC, RCM, Homo.) the true DGP can be found and b)
when the true DGP can be represented by a model not taken into account. In case
a) the BIC criteria will almost certainly pick up the correct model, especially if the
sample is large in N, while the AIC fails only in the case of the FE model due to the
improper penalty it is using for the number of parameters. For small N the BIC has a
uniformly better behaviour than the AIC. Based in these results we can say that these
information criteria are working very efficiently in choosing the correct model and in
practice we should rely on them much more frequently. In case b), however, we are in
trouble, which is natural because the correct model is not taken in account and this
results in the erratic behaviour of these criteria.

3.3 Discussion

During the simulations we found several problems:

• With DGP7 (completely homogenous data):

— For the IGLS estimator in more than 50% of the cases, regardless the sample
2

size, the estimated variance ratio (2Ta2 = 0) is larger than 1. In this casea-1-a

we force 9 = 1.
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— For the FGLS—EC estimator in about 50% of the cases the estimated variance

ratio is negative. Then we use alternative estimators to obtain an estimate

for the individual specific variance (Greene [1992]).

• In many cases, particularly with DGP5 and DGP7, for both the homo— and

heteroscedastic FGLS—RCM estimators, the estimate of A is negative—definite.

Then we use the solution proposed by Swamy [1970], which consist of dropping

the term k Xi)—' (A = 0).

• We also have some convergence problems with the ML estimators.

The most important numerical problems are summarised in Table 16.

It is well known that all the above problems may theoretically happen. But, while

theoreticians frequently argue that only in unlikely special cases, our study showed that

this is quite often a real nuisance.

4. An Application

To illustrate our findings we estimated a classical model for investment demand

based on Grunfeld's well known data set (Grunfeld [1958], Grunfeld and Griliches

[1960]), which has been used several times (Boot and deWitt [1960], Swamy [1970],

Maddala [1981] Baltagi et al. [1992], Greene [1993, 445-4461, etc.) to investigate the

behaviour econometric methods in a panel data context.

The model

= 131 + 132F it 133Cit Uit

is estimated, where /it is the gross investment of firm i at period t, Fit is the market

value of firm i at the end of the previous year (end t — 1), Cit is the value of the

stock of plant and equipment of firm i at the end of the previous year (end t — 1),

firms i are mayor US companies (i = 1, , 10) and the time series run from 1935 to

1954 (t = 1, , 20). The explanatory variables in the model stand for the anticipated

profit and the expected replacement investment required.

The estimation results are summarised in Tables 13-15. It can be seen, as

predicted by the simulation analysis, the estimated values of the structural parameters
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of the model produced by the different estimators are quite close to each other.' All

the different hypothesis testing procedures reject the null hypothesis of homogeneity at

5% and 1% significance levels. Both the AIC and BIC criteria pick up the RCM/hetero

model as the true model generating the data.

In the light of these results we think it is legitimate to ask the question whether we

have enough information in the data and appropriate tools (except for the information

criteria) to make confidently a choice between the RC, EC and FE models for a given

data set. Although these models are by no means observationally equivalent, the

choice between them, in today's practice, seems to be much more based on subjective

judgement, than real information extracted from the data. This is not necessarily bad,

but we should be aware of it.

4. Conclusion

In this paper we analyse the consequences of misspecification of the Fixed Effects,

Error Components and Random Coefficients models on their estimators, the testing

procedures used to test for (individual) specific effects, and the information criteria

used to select between these models. We also illustrate our findings, through the

estimation a well known investment demand model. We suggest that the structure of

these models and the lack of power of our testing procedures against these models may

not enable us to make a clear cut decision when picking up a specification for practical

purposes. We also suggest that this may not matter too much after all, given that we

probably end up with very similar parameter estimates whatever model we choose.

Computer programs: The Gauss computer codes used for this paper are available

on the World Wide Web :\\www.monash.edu.au/econometrics/workpaps.htm.

1 The Between estimator has no practical importance, and was not analysed in the
simulation study.
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Table la: Mean bias for 01
N 25, T = 10

DGP OLS Within FGLS-EC IGLS-EC ML-EC

1. Swamy 0.1466 0.1794 0.1429 0.1429 0.1429

2. EC 0.1605 0.1388 0.1186 0.1188 0.1185

3. Func. E.0 0.1218 0.1578 0.1185 0.1186 0.1186

4. FE 3.2144 0.1388 0.1389 0.1407 0.1389

5. Cross Sect. 12.9768 12.9941 12.9893 12.9891 12.9896

6. Func. F.E. 2.0037 1.5492 1.5401 1.5415 1.5411

7. Homogen. 0.0762 0.1388 0.0771 0.0769 0.0768

8. Complete 2.0070 1.5512 1.5426 1.5441 1.5436

Table la: Mean bias for 01 (continued)

N 25, T = 10

DGP FGLS-RCM/hom FGLS-RCM/het ML-RCM/hom ML-RCM/het

1. Swamy 0.1388 0.1440 0.1295 0.1409

2. EC 0.1648 0.1668 0.1732 0.1755

3. Func. E.0 0.1356 0.1392 0.1199 0.1306

4. FE , 2.8772 2.4721 2.7895 2.4221

5. Cross Sect. 12.9933 13.0042 13.021 13.019

6. Func. F.E. , 1.8811 1.5395 1.7814 1.3713

7. Homogen. 0.1054

,

0.1127 0.0893 0.1044

8. Complete 1.8837 1.5396 1.7806 1.3684
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Table lb: Mean squared errors for 01
N 25, T = 10

DGP OLS Within FGLS-EC IGLS-EC ML-EC

1. Swamy 0.0371 0.0.0466 0.0337 0.0338 0.0337

2. EC 0.0431 0.0306 0.0237 0.0238

,

0.0237

3. Func. E.0 0.0216 0.0381 0.0203 0.0203 0.0203

4. FE 15.651 0.0306 0.0305 0.0309 0.0305

5. Cross Sect. , 171.53 170.15 170.23 170.20 170.21

6. Func. F.E. 6.4299 3.9496 3.9095 3.9080 3.9064

7. Homogen. 0.0094 0.0306 0.0094 0.0094

,

0.0094

8. Complete 6.4210 3.9510 3.9080 3.9070 3.9050

Table lb: Mean squared errors for 01 (continued)

N 25, T = 10

DGP FGLS-RCM/hom FGLS-RCM/het ML-RCM/hom ML-RCM/het

1. Swamy 0.0293 0.0322 0.0276

,

0.0326

2. EC 0.0506 0.0523

,

0.0470 0.0480

. 3. Func. E.0 0.0288 0.0315 0.0236 0.0278

4. FE 13.023 9.6730 12.601 9.3391

5. Cross Sect. 169.62 169.34 169.42 169.37

6. Func. F.E. 5.0808 3.3592 4.8477 2.9046

7. Homogen. 0.0195 0.0221 0.0133 0.0175

8. Complete 5.0830 3.3640 4.8550 2.9110
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Table 2a: Mean bias for 01
N 25, T = 25

DGP OLS Within FGLS-EC IGLS-EC ML-EC

1. Swamy 0.1350 0.1240 0.1217 0.1216 0.1216

2. EC 0.0958 0.0553 ,. 0.0523 0.0523 0.0522

3. Func. E.0 0.0997 0.0905 0.0860 0.0859 0.0859

4. FE 1.9968 0.0553 0.0552 0.0552

,

0.0552

5. Cross Sect.

_

13.0411 13.0033 13.0055 13.0053 13.0051

6. Func. F.E. 1.8982 1.5185 1.5067 1.5069 1.5071

7. Homogen. 0.0317 0.0553 , 0.0320 0.0319

,

0.0319

8. Complete 1.9010 1.5198 1.5084 1.5087 1.5087 .

Table 2a: Mean bias for 01 (continued)

N 25, T = 25

DGP FGLS-RCM/hom FGLS-RCM/het ML-RCM/hom ML-RCM/het

1. Swamy 0.0.978 0.0965 ,. 0.0958 0.0966

2. EC 0.0953 0.0926 0.0937 0.0908

3. Func. E.0 0.0950 0.0919 0.0940 0.0886

4. FE 1.7814 1.6207 1.7586 1.6265

5. Cross Sect. 12.9969

,

13.0015 12.983 12.985

6. Func. F.E. 1.6960 1.4886 1.7774 1.5189

7. Homogen. 0.0439 0.0451 0.0369 0.0373

8. Complete 1.7016 1.4935 1.7776 1.5219
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Table 2b: Mean squared errors for 01
N 25, T = 25

DGP OLS Within FGLS-EC IGLS-EC ML-EC
1. Swamy 0.0283 0.0248 0.0238 0.0238 0.0238

2. EC

,

0.0136 0.0046 0.0040 0.0040 0.0040

3. Func. E.0 0.0140 0.0121 0.0109 0.0108 0.0108

4. FE 5.8698 0.0046 0.0046 0.0047 0.0046

5. Cross Sect. 170.55 170.21 170.17 170.16 170.17

6. Func. F.E. 6.3956 3.6631 3.6557 3.6552 3.6550

7. Homogen. 0.0014 0.0046 0.0014 0.0014 0.0014

8. Complete 6.4298 3.6782 3.6716 3.6713 3.6715

Table 2b: Mean squared errors for 01 (continued)

N 25, T = 25

DGP FGLS-RCM/hom FGLS-RCM/het ML-RCM/hom ML-RCM/het
1. Swamy

,

0.0151 0.0147 0.0145 0.0154

2. EC 0.0142

,

0.0131 0.0140 0.0131
3. Func. E.0 0.0144 0.0136 0.0142 0.0127
4. FE 4.7390 4.0855 4.6778 3.9991
5. Cross Sect. . 168.76 168.84 168.75 168.80

6. Func. F.E. 5.3213 4.0590 5.0918 3.6919
7. Homogen. , 0.0029 0.0030 0.0022 0.0023

. 8. Complete 5.3453 4.0635 5.0945 3.7013
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Table 3a: Mean bias for 01
N = 100, T = 10

DGP OLS Within FGLS-EC IGLS-EC ML-EC,

1. Swamy 0.0791

,

0.0890 0.0760 0.0760

,

0.0760

2. EC

,

0.0784 0.0695 0.0598

,

0.0599 0.0598

3. Func. E.0 0.0632 0.0816 0.0621

,

0.0621

,

0.0621

4. FE 5.9392 0.0695 0.0695 0.0695

,

0.0605

5. Cross Sect. 50.4295 50.4722 50.4663 50.4660 5046.61

6. Func. F.E. 3.8018 2.9605 2.9607 2.9513 2.9611

7. Homogen. 0.0377 0.0695 0.0378 .0.0377

i

0.0377

8. Complete 3.7985 2.9588 2.9584 2.9590

,

2.9588

Table 3a: Mean bias for /31 (continued)

N = 100, T = 10

DGP FGLS-RCM/hom FGLS-RCM/het ML-RCM/hom ML-RCM/het

1. Swamy 0.0692 0.0715 0.0636 0.0688

2. EC

,

0.0831 0.0829 0.0812 0.0794

3. Func. E.0

,

0.0704 0.0714 , 0.0632 0.0651

4. FE 5.6642 4.8578 5.3979 4.7277

5. Cross Sect.

,

50.4629 50.5007 50.4524 50.4459

6. Func. F.E.
_.

3.5079 2.7862 3.4406 2.7581

7. Homogen. 0.0548 0.0583 0.0379 0.0490

8. Complete 3.5043 2.7833 3.4422 2.7730
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Table 3b: Mean squared errors for 01
N = 100, T = 10

DGP OLS Within FGLS-EC IGLS-EC ML-EC

_ 1. Swamy

.

0.0088 0.0099 0.0077 0.0078
._

0.0077

2. EC 0.0102 0.0065 0.0050 0.0050
,

0.0050

3. Func. E.0 0.0057 0.0097 0.0054 0.0053
,

0.0053

4. FE 56.145 0.0065 , 0.0066 0.0066 0.0066

5. Cross Sect. 2580.78 2559.31 2161.99 2562.06 2561.98

6. Func. F.E. 20.898 19.574 , 13.016 13.017

,

13.018

7. Homogen. 0.0020 0.0065 0.0020 0.0020

,

0.0020

8. Complete 20.887 13.572 13.017 13.017 13.019 _

Table 3b: Mean mean squared errors for 01 (continued)

N = 100, T = 10

DGP FGLS-RCM/hom FGLS-RCM/het ML-RCM/hom ML-RCM/het

1. Swamy 0.0069 0.0766 0.0062 0.0072

2. EC 0.0114 0.0101 0.0103 0.0101

3. Func. E.0 0.0079 0.0078 0.0062 0.0066

4. FE 48.189 34.580 45.445 34.793

5. Cross Sect. 2550.24

,

2547.34 2548.05 2547.34

6. Func. F.E. 18.457 11.971 18.375 12.117

7. Homogen. , 0.0042 0.0046 0.0022 0.0038

8. Complete 18.504 _ 12.007 18.423 12.157
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Table 4a: Mean bias for 01
N = 100, T = 25

DGP OLS Within FGLS-EC IGLS-EC ML-EC

1. Swamy 0.0684 0.0629 0.0615 0.0615 0.0615

2. EC 0.0452 0.0274 0.0255 0.0255 0.0255

3. Func. E.0 0.0489 0.0467 0.0440 0.0440 0.0440

4. FE 3.7011 0.0274 0.0274 0.0274 0.0274

5. Cross Sect. 50.4130 50.5243 50.5176 50.5178 50.510

6. Func. F.E. 3.7716 2.9332 2.9288 2.9287 2.9262

7. Homogen. 0.0151 0.0274 0.0155 0.0155 0.0155

8. Complete 3.7713 2.9350 2.9302 2.9301 2.9267

Table 4a: Mean bias for (continued)

N = 100, T = 25

DGP FGLS-RCM/hom FGLS-RCM/het ML-RCM/hom ML-RCM/het

1. Swamy 0.0501

.

0.0491 0.0597 0.0706

2. EC 0.0461 0.0454 0.0573 0.0586

3. Func. E.0 0.0492 0.0476 0.0575 0.0642

4. FE 3.3790 3.0965 3.3882 3.0784

5. Cross Sect. 50.4867 50.5002 52.021 52.014

6. Func. F.E. 3.3796 2.9625 2.6930 2.7890

7. Homogen. 0.0218 0.0224 0.0193 0.0212

8. Complete 3.3774 2.9609 , 3.3212 3.0083
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Table 4b: Mean squared errors for 01
N = 100, T = 25

DGP OLS Within FGLS-EC IGLS-EC ML-EC

1. Swamy 0.0090 0.0079 0.0071 0.0071 0.0071

2. EC 0.0041 0.0011 0.0010 0.0010

,

0.0010

3. Func. E.0 0.0054 0.0034 0.0034 0.0034 0.0034

4. FE 25.911 0.0011 0.0011 0.0011

,

0.0011

5. Cross Sect. 3123.47 3139.25 3137.81 3137.82 3137.82

6. Func. F.E. 26.527 15.926 15.801 15.803 15.803

7. Homogen. 0.0011 0.0011 0.0004 0.0004 0.0004

8. Complete 26.496 15.962 15.835 15.837 _ 15.837

Table 4b: Mean squared errors for IA (continued)

N = 100, T = 25

DGP FGLS-RCM/hom FGLS-RCM/het ML-RCM/hom ML-RCM/het

1. Swamy 0.0048 0.0045 0.0046 0.0063

2. EC 0.0042 0.0040 0.0042 0.0045

3. Func. E.0 0.0046 0.0040 0.0045 0.0058

4. FE 23.368

,

20.100 23.374 20.110

5. Cross Sect. 3133.01 , 3131.80 3132.56 3131.80

6. Func. F.E. 25.233 18.640 24.757 18.656

7. Homogen. 0.0008 0.0009 0.0005 0.0005

8. Complete 25.262 18.669 24.811 18.686
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Table 5: Number of rejections of Ho
N 25, T = 10

DGP Fl LM2 LM1 LR/igls LR f* F2 F3 LM3 White

1. Swamy 829 761 818 837 781 977 1000 827 909 429

2. EC 1000 1000 1000 1000 993 996 1000 1000 982 103

3. Func. E.0 840 777 831 857 810 . 909

.

996 840

,

753 134

4. FE 1000 1000 1000 1000 1000 1000 1000 1000

.

1000 948

5. Cross Sect. 1000 1000 1000 1000 , 1000 1000 1000 1000 1000 1000

6. Func. F.E. 1000 1000 1000 1000 1000 1000 1000 1000 1000 715

7. Homogen. 45 42 39 68 30 385 795 44 197

,

56

8. Complete 1000 1000 1000 1000 1000 1000 1000

, .

1000 998

,

716 ,

Table 6: Number of rejections of Ho

N 25, T = 25

DGP Fl LM2 LM1 LR/igls LR f* F2 F3 LM3 White

1. Swamy 1000 1000 1000 1000 1000 1000 1000 1000 1000 918

2. EC 1000 1000 1000 1000 1000 1000

,

1000 1000 1000 292

3. Func. E.0 1000 1000 1000 1000 1000 1000 1000 1000

,

994 505

4. FE 1000 1000 1000 1000 1000 1000 1000 1000 1000 998

5. Cross Sect. 1000 1000 1000 1000 1000 1000 1000

,

1000 1000 1000

6. Func. F.E. 1000 1000 1000 1000 1000 1000 1000 1000 1000 930

7. Homogen. 50 40 44 79 32

,

138 836

,

47 70 59

8. Complete 1000 1000 1000 1000 1000 1000 _ 1000 1000 1000 934 ,
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Table 7: Number of rejections of Ho
N = 100, T = 10

DGP F1 LM2 LM1 LR/igls LR f* F2 F3 LM3 White

1. Swamy 999 999 999 999 999 1000 1000 999 1000 264

2. EC 1000 1000 1000 1000 1000 1000 1000

,

1000

,

1000 46

3. Func. E.0 1000 999 1000 1000 1000 1000 1000 1000

.

995 72

4. FE , 1000 1000 1000 1000 1000 1000 1000 1000 1000 285

5. Cross Sect. 1000 1000 1000 1000 1000 1000 1000 1000 1000 300

6. Func. F.E. 1000 1000 1000 1000 1000 1000

.

1000 1000 1000 256

7. Homogen. 43 36 40 73 34 791 999

,

45 550 14

8. Complete 1000 1000 1000 1000 1000 1000 1000 1000 1000 257

Table 8: Number of rejections of Ho
N = 100, T = 25

DGP Fl LM2 LM1 LR/igls LR f* F2 F3 LM3 White

1. Swamy 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

2. EC 1000 1000 1000 1000 1000 1000 1000 1000 1000 389

3. Func. E.0 .1000 1000 1000 1000 1000 1000 1000

,

1000 1000

,

767

4. FE 1000 1000 1000 1000 1000 1000 1000 1000 1000 990

5. Cross Sect. 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

6. Func. F.E. 1000 1000 1000 1000 1000 1000 1000 1000 1000 984

7. Homogen. . 57 47 53 101 48 246 1000 56 158

,

52

8. Complete 1000 1000 1000 1000 1000 1000 1000 1000 1000 984
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Table 9: The AIC and BIC criteria

N 25, T = 10

The number of times a model chosen using AIC

DGP Homogen. (7)
'
FE (4) EC (2) RCM/homo (1) RCM/het

1. Swamy 79 168 100 646 7 
.

2. EC 2 ' 995 3 0 0 
,

3. Func. E.0 131 419 308 135 7 
,

4. FE 0 1000
r 
0 0 0

5. Cross Sect. 0 0 0 892 ' 108
6. Func. F.E. 0 79 0 0 921
7. Homogen. 945 1 48 6 0
8. Complete 0 83 0 0

.
917 .

The number of times a model chosen using BIG

DGP Homogen. (7) FE (4) EC (2) RCM/homo (1) RCM/het
1. Swamy 324 0

,
298 378 0

2. EC 2 0 998 0 0
3. Func. E.0 339 0 625 36 0
4. FE 0 1000 0 0 0
5. Cross Sect. 0 0 0 939 61
6. Func. F.E. 0 0 206 63 675
7. Homogen. 995 0 4 1 0
8. Complete 0 0 267 66 667

One column represents an assumed DGP and defines the likelihood chosen.
One row adds up to 1000.
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Table 10: The AIC and BIC criteria

N 25, T = 25

The number of times a model chosen using AIC

DGP Homogen. (7) FE (4) EC (2) RCM/homo (1) RCM/het
1. Swamy 0 23 0 976 1
2. EC 0 1000 0 0 0
3. Func. E.G 0 915 1 * 75 9
4. FE 0 1000 0 0

,
0

5. Cross Sect. 0 0 0 37 963
6. Func. F.E. 0 0 0 0 1000
7. Homogen. 962 0 35 2 1
8. Complete 0 0 , 0 0 1000

The number of times a model chosen using BIC

DGP Homogen. (7) FE (4) EC (2) RCM/homo (1) RCM/het
1. Swamy 0 0 4 996 0
2. EC 0 0 1000 0 0
3. Func. E.G 1 0 783 216 0
4. FE 0 1000 0 0 0
5. Cross Sect. 0 0 0 53 947
6. Func. F.E. 0 0 1 0 999
7. Homogen. 997 0 3 0 ' 0
8. Complete 0 0 1 ' 0 999

One column represents an assumed DGP and defines the likelihood chosen.
One row adds up to 1000.

25



Table 11: The AIC and BIC criteria

N = 100, T = 10

The number of times a model chosen using AIC

DGP Homogen. (7) FE (4) EC (2) RCM/homo (1) RCM/het .
1. Swamy 0 17 7 976 0
2. EC 0 1000 0 0 0
3. Func. E.0 0 380 433 187 0
4. FE 0 1000 0 0 0
5. Cross Sect. 0 0 0 1000 0
6. Func. F.E. 0 0 0 0 1000
7. Homogen. 856 4 0 37 107 0
8. Complete 0 0 0 0 1000

The number of times a model chosen using BIG

DGP Homogen. (7) FE (4) EC (2) RCM/homo (1) RCM/het
1. Swamy 0 0 30 v 970 0
2. EC 0 0 1000 0 0
3. Func. E.0 3 0 932 65 0
4. FE 0 1000 0 0 0
5. Cross Sect. 0 0 0 1000 0
6. Func. F.E. 0 0 83 0 917
7. Homogen. 886 0 10 104 0
8. Complete 0 0 83 0 917

One column represents an assumed DGP and defines the likelihood chosen.

One row adds up to 1000.
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Table 12: The AIC and BIG criteria

N = 100, T = 25

The number of times a model chosen using AIC

DGP Homogen. (7) FE (4) EC (2) RCM/homo (1) RCM/het
1. Swamy 0 0 0 1000 0
2. EC 0 1000 0

'
0 0

3. Func. E.0 0
-

995 0 ' 5 0
4. FE 0 1000 0 0 0
5. Cross Sect. 0 0 0 1000 0
6. Func. F.E. 0 47 0 10 943
7. Homogen. 891 0 62 47 0
8. Complete 0 47 0 10 943

The number of times a model chosen using BIG

DGP Homogen. (7) FE (4) EC (2) RCM/homo (1) RCM/het
1. Swamy 0 0 0 1000 0
2. EC 0 0 1000 0 0
3. Func. E.0 0

'
0 808 192 0

4. FE 0 1000 0 0 0
5. Cross Sect. 0 0 0 1000 0
6. Func. F.E. 0 0 41 16 943
7. Homogen. 969 0 5 26 0
8. Complete 0 0 41 16 943

One column represents an assumed DGP and defines the likelihood chosen.

One row adds up to 1000.
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Table 13: Estimation results on Grunfeld's data

N = 10, T = 20

Estimator OLS Between Within FGLS-EC IGLS-EC

01 -43.024 -9.103 -57.869 -57.805

(9.498) (47.54) (28.81) (27.83)

02 0.115 0.134 0.109 0.109

,

0.109

(0.0058) (0.0288) (0.0119) (0.0105) (0.0104)

03 0.231 0.035 0.310 0.308 0.308

(0.0255) (0.1911) (0.0174) (0.0172) (0.0172)

Table 13: Estimation results on Grunfeld's data (continued)

N . 10, T . 20

Estimator FGLS-RCM/het FGLS-RCM ML-EC ML-RCM/het ML-RCM

01 -9.530 -22.32 -57.806 -2.406 -22.330

(17.148) (23.61) (27.62) (5.814) (na)

02 0.081 0.097 0.109 0.065 0.081

(0.0187) (0.0286) (0.0103) (0.018) (0.016)

03 0.203 0.202 0.309 0.224 0.219

(0.053) (0.070) (0.017) (0.051) (0.027)

Log L -1095.1 -844.6 -1130.3

.,.

t
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Table 14: Hypothesis testing for Grunfeld's data

N 10, T = 20

Test Fl LM2 LM1 LR* f*
Calc. value 51.63 797.72 ' 28.24 192.65 907.04
Distr. F(7,187) x2(1) N(0,1) 1/2x2(0) ± 1/2x2(1) 1 x2(27)

All tests reject the null hypothesis at 5% significance level.

Results for the LR and LR/igls tests are identical.

Table 14: Hypothesis testing for Grunfeld's data (continued)

N 10, T = 20

Test F2 F3 LM3 White
Calc. value 37.73 43.89 36785 91.36
Distr. F(20, 170) F(10, 187) x2(6) x2(5)

All tests reject the null hypothesis at 5% significance level.

Table 15: AIC and BIC results for Grunfeld's data

N .10, T = 20

Model AIC BIC
Homogen. -1195.4 -1202.0
FE -1083.6 -1105.1
EC -1100.1 1108.3
RCM/homo -1140.3 1156.8
RCM/hetero -847.5 -894.9

AIC = max Ei log Li k and BIC = max Ei log Li — k/2 log NT.
The RCM/hetero model is selected by both AIC and BIC.
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Table 15: Numerical problems during the simulations

N 25, T = 10

DGP FGLS—EC , -Li/hom ii/het ML/hom ML/het Grad
1. Swamy 18 860 669 322 255 31
2. EC 0 820 577 260 r 258 18
3. Func. E.0 14 845 702 571 388 44
4. FE 0 677 31 106 26 0
5. Cross Sect. 0 1000 612 657 463 2
6. Func. F.E. 0 787 89 57 72 3
7. Homogen. 528 873 855 961 461 61
8. Complete 0 789 89 58 79 2

N = 100, T = 10

DGP FGLS—EC a/hom ,a/het ML/hom ML/het Grad
1. Swamy 0 836 356 0 0 596
2. EC 0 689 200 3 0 636
3. Func. E.0 0 823 493 17 3 613
4. FE 0 383 0 0 0 766
5. Cross Sect. 0 1000 556 180 40 286
6. Func. F.E. 0 583 3 0 0 743
7. Homogen. 549 882 836 263 23 845
8. Complete 0 856 3 0 0 703

FGLS-EC: number of times 0 <0 for the FGLS—EC estimator.

a/hom: number of times a/homo is neg. def. for the FGLS/homo estimator.

a/het: number of times a/heter is neg. def. for the FGLS/heter estimator.
ML/hom: number of times when we have no convergence in 5 minutes for the ML—RCM/hom

estimator.

ML/het: number of times when we have no convergence in 5 minutes for the ML—RCM/het

estimator.

Grad: number of times with numerical problems when evaluating the gradient and/or the

log—likelihood for the ML—RCM/hetero estimator. No such problems noticed for the ML—

RCM/homo estimator.
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