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ABSTRACT

Testing for inequality restricted hypotheses has obtained increasing

attention in recent years in econometrics. While many tests have been proposed

for these testing problems, little is available on the power of these tests.

In this paper, we examine the power of two tests in the literature, the

locally most mean powerful invariant test and the Kuhn-Tucker test, in the

case of testing for quarter-dependent simple AR(4) errors in linear

regressions.
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1. INTRODUCTION

Economic theory and stylized statistical facts often suggest that the

range of certain parameters in a model are inequality restricted. For example,

we often expect the estimates of regression coefficients to have "right"

signs. Also in regression models based on undifferenced time series economic

data, one typically expects positive autocorrelation in the errors caused by

omitted variables that are positively correlated. Functional considerations

such as variances never being negative also lead to restrictions on

parameters.

It is well recognized that the incorporation of non-sample information

such as one-sided inequality restrictions on parameters can improve power. In

recent years, many multivariate one-sided tests have been proposed. For

example, Gourieroux, Holly and Monfort (1980, 1982) proposed one-sided

versions of the conventional likelihood ratio test, Wald test and Lagrange

multiplier (LM) test in a general framework and in the case of testing

regression coefficients. The one-sided LM test is also called the Kuhn-Tucker

(KT) test. These tests' statistics are asymptotically distributed under the

null hypothesis as a probability mixture of independent chi-squared

distributions with different degrees of freedom. When the number.of parameters

under test is large, calculation of the probability weights is very

complicated. As an alternative approach, King and Wu (1990) proposed the

locally most mean powerful (LMMP) test which maximizes the average slope of

the power curve at the null hypothesis. A great variety of other tests have

been proposed. A detailed review of this literature is given by Wu and King

(1994).

While each of the above tests has a theoretical justification, our

knowledge of their small-sample properties is quite limited. The purpose of

7.
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this paper is to investigate the performance of the KT test and the LMMP

invariant (LMMPI) test in the case of testing for quarter-dependent simple

AR(4) errors in the linear regression model. In the next section, we introduce

the two tests. We also present the point optimal invariant (POI) test whose

power can be used as a benchmark in the assessment of the power of •the KT and

LMMPI tests. Section 3 describes the set-up and results of the experiment.

Section 4 contains final remarks.

2. THE MODEL AND THE TESTS

Consider the linear regression model

y = xg + u (1)

where X is an n x k nonstochastic matrix of rank k < n, and u is an n x 1

error vector. Through the work of Thomas and Wallis (1971) and Wallis (1972)

among others, the simple AR(4) process has become an accepted way of modelling

seasonal autocorrelation in quarterly data. In its general form, it can be

viewed as four separate simple AR(4) processes, one for each quarter. These

processes can be expressed as

u = p u + E , quarter :for t from  i, i = 1, 2, 3, 4, (2)
i t-4 t

where
t 

IN(0, a
2
). In applications based on undifferenced quarterly data,

any correlation is typically expected to be positive. This leads to the

restrictions 0 s p
i 

< 1 for i = 1, 4, which we will assume for the

remainder of the paper. Largely for parsimonious reasons, the p. in (2) are

typically assumed to have the same value so p = p for all i. Clearly it mayi 

be more realistic to allow p to vary with i as implied by (2). Tests of the

parsimonious model have been proposed by Thomas and Wallis (1971), Wallis

(1972), Vinod (1973), King and Giles (1978) and King (1984).

Let p (p p
2
, p , p )'. Our interest is in testing

1 3 4
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H
o 

p 0 against 0 5 p < 1, p 0. (3)
a

Let G(p) be the n x n matrix whose (i,j)-th element is

(1-p
2
)
1/2

g..
1)

for i = j = 1, 2, 3, 4,

= j > 5,

i = 4p + q, j =4(p-1) +q,

with p = 1, 2, q = 1, 2, 3, 4,

other i and j.

Then (2) can be written in the vector form G(P)u = E. The covariance matrix of

the error is therefore V(u) = a20(p) with

c2(p) = G(p)-1G(p) (4)

The log-likelihood function for model (1) is

L(/3,a2,p) = - 1 a In(27ra2) - — 1n10(p)1 - 1
(y-XWO(p) (y-Xf3). (5)

2 2 2a
2

Then, for i = 1, 2, 3, 4,

alg(p)1 au(pri
1 .(y )43)' 

_ 10(p)-1 1
(y-xg). (6)

api 2 op 2a
2

op

Let 0 = a2, p, p, p, p P. It is easy to check that the information
2 3 4

matrix I = -E(a2L/a0a0,) under Ho is block diagonal among the elements of 0.

The inverse of the block corresponding to p = (pi,

. = diag(l/m, 1/m, 1/m, 1/m)

P2/ P3
t P

4
) 1 is

where m = ((n-4)/4], and [x] denotes the integer part of x.

(7)

From King and Wu (1990) (also see Wu and King (1994)), the general form

of the LMMPI test for testing 0 = 0 against 0 0 with 0 * 0 in the context of

(1) with error covariance matrix V(u) = a2C2(0) is to reject 0 = 0 for large

values of s = u'Au/u'u where A = ()um/a° 
' 

p is the dimension of 0 and
il0=0 

i=1

v
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u is the ordinary least squares residual vector from (1). Applying this to

(4), it can be shown that the LMMPI test statistic is

u'Au n
^2

s= = u
l
u
i-4

/ U
1.1 1 U i=5 i=1

(8)

where A is the matrix with elements on the fourth diagonal lines being -1 and

other elements being zero. This test is equivalent to the modified Wallis test

investigated by King (1984). Consequently, Wallis's test for simple AR(4)

disturbances is an approximately LMMPI test of H
o 
against H.

a

A general form of the KT test of 0 = 0 against 0 0 with 0 o 0 is to

reject 0 = 0 for large values of

w = (aL/aol - wool -)ixo I (aL/aol - -)o=0 o=o o=0 o=0 o=o

0 
where I is the inverse of the block in the information matrix that

corresponds to 0, and e is the inequality restricted (0 0, 0 o 0) maximum

likelihood (ML) estimate of 0. (See Gourieroux et al. 1980 or Wu and King

(1994)). Note that if the awaol 
0=0 
- term is removed, w becomes the

conventional LM test statistic. So the *KT test modifies the LM test by adding

the inequality restricted score aldoolej to take account of the one-sided

nature of the testing problem. In the case of (3), it can be shown, from (6)

and (7) that

A A 12
4 u'Au

1 a",w = — 
- 

i 
(9)2 A A

apilP=;3
i.1 WU

where A is the matrix whose elements on its fourth diagonal lines and
1.

(i+4p)-th rows, p = 0, 1, 2, • --, are -1, and all other elements are zero.

One way to assess the performance •of a test is to check how close its

. power is to the power envelope (PE), i.e., the maximum attainable power over
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the alternative parameter space. In testing the error covariance matrix V(u),

the PE for the class of invariant tests can be constructed from the point

optimal invariant (POI) tests (see King (1987b)). To test for (3), the point

optimal test that gives the power ceiling at p rejects H
o 
for large values of

*
u'Au

s(p ) = *
u'u

(10)

* - * - * - - * -
where A = 0(p )

1 
-0(p )

1 
X(X'0(p )

1 
X)

1 
X'Q(p )

1 
. The powers of the s(p)

test at p = p calculated at different points of p constitute the PE.

3. AN EMPIRICAL POWER STUDY

In order to compare the small-sample power of the KT and LMMPI tests with

the PE, we conducted an empirical power comparison. The form of the LMMPI test

statistic (8) and the POI test statistic (10) are similar to that of the

familiar Durbin-Watson (DW) test statistic. Thus their powers can be

calculated using the methodology developed for the DW test (see King (1987a)).

For our calculations, we used a modified version of Koerts and Abrahamse's

(1969) FQUAD subroutine.

Calculating power of the KT test is complicated as it involves finding

the inequality restricted ML estimate We used the following procedure based

- -
on King (1986) to find T.. Let 0(p) = QQ', y = Q

1 
y and X = Q

1 
X. Then (5)

can be written as

L(13,a
2
,p) = c 

-fl
lna

2 
-

2
nIQI

1 * *
(y -X a) I

2a
2

where c, as well as c below, are constants. Concentrating out (3 and a
2
, .we

have

* * * *= x sy ,

-* * **
n y ,X g,
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so (11) becomes

A. *

L(p) = c- in -iniQi
2

**

where n = Ti

= C1- — in Ti 'Ti
2

ii/ri
IQ' . Thus 7) can be found by minimizing Ti 'Ti

(12)

subject to H
a

in (3). We utilized the IMSL MATH/LIBRARY (1989) subroutine DBCONG to carry

^ " ...

out the minimization. We used p - = max (0, p = Z uu / Z u) as the
i i t t-4 t

t(i) t=1

starting point of the iterations, where indicates summation over those t
t(i)

that belong to the i-th quarter, i = 1, 2, 3; 4. Once p is found, (6) is used,

with fl, a
2 

and p being replaced by #3, a
2
 and p,- respectively, to find

aL/Op I -•p=p

Four data sets were used in the empirical comparisons. They are:

X1 (nx3). A constant dummy, the quarterly Australian Consumer Price

Index (ACPI) commencing from 1959(1), and the ACPI lagged one

quarter.

X2 (nx5). Xl, plus the ACPI lagged .two quarters and three quarters.

X3 (nx5). The full. set of quarterly seasonal dummy variables and

quarterly Australian retail trade commencing from 1968(1).

X4 (nx4). A constant dummy, quarterly Australian private capital

movements, government capital movements and retail trade. All

commence from 1968(1).

These X matrices represent a range of situations. The ACPI reveals a slow

smooth trend and a small seasonal pattern. X4 is a choppy data set because the

two capital movements series fluctuate wildly and are strongly seasonal.

Powers of the tests were calculated at points of combinations of p =i

0.0, 0.2, 0.4, 0:6, i = 1, 2, 3, 4, for n = 20, 60. We used 1000 repetitions

7



to calculate the power of the KT test at each point.

In order to avoid calculation of the probability weights, Kodde and Palm

(1986) provided bounds denoted c and c
u 
for the asymptotical critical values

of the KT test. Table 1 summarizes the performance of the bounds at the 596

significance level and also gives the exact 5% critical values obtained by

simulation for our data sets. Observe that using the asymptotic critical

values for n = 20 in the case of X3 leads to an actual size smaller than

0.016. With this exception, all the other figures are as expected. Our

estimated probabilities of the KT test statistic falling in the inconclusive

region under Ho are all below 0.17. Unlike the DW test, this probability shows

a tendency to widen as n increases. We also note that the size of a test based

on c
u 
tends to increase as n increases. This suggests there may be some merits

in a conservative test that uses c
u 
as the critical value when n is large.

We now turn our attention to the power of the LMMPI and KT tests. For a

fair comparison, exact or simulated critical values were used at the 5 level

of significance. The results are in table 2. Overall, the LMMPI test performs

very well and is always more powerful than the KT test except on the boundary

where one or more p value is zero. For example, except on the boundary ofi 

the parameter space, the LMMPI test has at least 77% of the PE power for X2

and n = 20, and 90% of the PE power for X2 and n = 60. The smallest power

difference for both sample sizes is 0.002 at p = (0.2,0.2,0.2,0.2)', while the

largest differences are 0.086 for n = 20 at p = (0.2,0.6,0.6,0.6)', .and 0.076

at p = (0.2,0.2,0.2,0.6)' for n = 60. On average, when the sample size is

large, the LMMPI test has power at a higher percentage of the PE. These

results suggest that the power of the LMMPI test converges to the PE as the

sample size becomes larger. These patterns carry over to Xl, X3 and X4. In

particular, we note that the LMMPI test always has power closest to the PE at
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p = (0.2,0.2,0.2,0.2)'. This reflects the fact that the LMMPI test is also the

locally best invariant test along the mid direction which in our case is pi .

p= p =p > 0 (see Wu and King (1994)). In fact our LMMPI test is identical
2 3 4

to the modified Wallis test discussed by King (1984).

The KT test is less powerful than the LMMPI test in general. Its power

advantage is greatest on the boundary of the parameter space, particularly for

the larger sample size. For X2 and 15 non-boundary points, the power of the KT

test is no less than 69% of the PE when n = 20 and 86% of the PE when n = 60

(recall the corresponding percentages for the LMMPI test are 77% and 9.0t). It

• is noticeable that as n increases, the power difference between the two tests

diminishes. At the three points on the boundary, both tests lack power

relative to the PE.

5. FINAL REMARKS

Limited though they are, the empirical sizes and powers reported above

suggest the following conclusions. Away from the boundary of the parameter

space, the LMMPI test dominates the KT test in terms of power. There is

evidence of this dominance declining as the sample size increases. This

together with its better performance on the boundary might lead one to have

faith in the KT test in very large samples. While Kodde and Palm's (1986)

bounds provide a partial solution to the problem of finding critical values of

the KT test, we recommend the use of simulation to find p-values or critical

values. Because the form of the LMMPI test is similar to that of the DW test,

either exact or approximate critical values can be found using the methodology

for the DW test (see King (1987a) for a survey).

Another issue addressed in this paper is that of modelling regression

error seasonality with quarter-dependent simple AR(4) processes. The normal

practice is to assume a common autoregressive parameter for each quarter. It

9



turns out that the LMMPI test for the former is the locally best invariant

test for the latter model. Hence our results suggest the power gains tend to

outweigh the losses when testing for the presence of the more parsimonious

model, particularly in small samples. We suspect there may be many other

situations in which parsimony in the parameters under test will yield similar

results.
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Table 1: Simulated critical. values of the KT test and sizes

of the KT test based on Kodde and Palm's bounds at 5t level

n = 20 n = 60
Design  

matrix Simulated Size Simulated Size

critical   critical  

value c c
u 

value c
u

X1 5.228 .165 .010 5.258 .179 .010

, X2 5.074 .156 .007 4.944 .164 .012

X3 1.374 .016 .000 3.986 .107 .005

X4 4.156 .096 '.007 4.800 .152 .009

c = 2.706, c = 8.761.
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Table 2: Calculated powers of the LMMPI and KT tests and the power

envelope against quarter-dependent simple AR(4) errors at 5% level

1

n = 20 n = 60

P
3 

Test X1 X2 X3 X4 X1 X2 X3 X4
4

.0 .0 .0 4 LMMPI .109 .087 .077 .086 .207 .200 .179 .199

KT .199 .077 .075 .078 .258 .270 .205 .244

PE .176 .145 .104 .134 .413 .397 .362 .396

.0 .0 .4 . 4 LMMPI ' .194 .138 .119 .170 .447 .430 .390 .437

KT .193 .120 .112 .158 .482 .499 .407 .465

PE .254 .198 .155 .224 .635 .614 .577 .622

.0 .4 .4 4 LMMPI .279 .205 .175 .235 .697 .670 .630 .681

KT .266 .169 .167 .209 .686 .685 .601 .666

PE ..322 .255 .204 .275 .788 .765 .732 .774

.2 .2 .2 . 2 LMMPI .167 .142 .127 .151 .410 .390 .379 .404

KT .158 .131 .115 .127 .335 .339 .297 .350

PE .168 .144 .127 .152 .411 .392 .379 .405

.4 .4 .4 4 LMMPI .399 .316 .247 .338 .880 .859 .832 .873

KT .354 .268 .224 .289 .822 .823 .733 .817

PE .407 .334 .252 .350 • .884 .866 .836 .876

.6 .6 .6 6 LMMPI .685 .555 .391 .577 .994 :991 .982 .993

KT • .608 .475 .330 .497 .981 .979 .953 .980

PE .709 .619 .406 .623 .995 .993 .984 .994

.2 .2 .2 . 4 LMMPI .220 .174 .149 .183 .567 .536 .508 .549

KT .205 .156 .135 .151 .488 .490 .417 .472 -

PE .236 .192 .154 .194 .594 .570 .540 .581

.2 .2 .4 .4 LMMPI .281 .212 .178 .243 .693 .667 .633 .681

KT .269 .180 .151 .207 .628 .623 .545 .609

PE .298 .235 .187 .258 .726 .703 .668 .715
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Table 2 (continued)

.2 .4 .4 .4 LMMPI .333 .253 .211 .282 .801 .774 .742 .788

KT .311 .214 .195 .238 .739 .735 .651 .719

PE .349 .279 .219 .297 .820 .798 ,764 .808

.2 .2 .2 .6 LMMPI .304 .225 .172 .225 .724 .701 .639 .708

KT .287 .215 .153 .187 .704 .699 .592 .682

PE .359 .293 .190 .271 .798 .777 .721 .784

.2 .2 .6 .6 LMMPI .451 .320 .235 .375 .898 .882 .830 .889

KT .420 .277 .203 .336 .890 .876 .789 .875

PE .501 .402 .265 .427 .937 .926 .888 .930

.2 .6 .6 .6 LMMPI .565 .422 .307 .460 .971 .962 .936 .966

KT .513 .358 .266 .400 .955 .939 .893 .950

PE .608 .508 .337 .517 .982 .977 .957 .978

.2 .2 .4 .6. LMMPI .365 .263 .204 .286 .819 .798 .744 .806

KT .342 .233 .173 .244 .790 .774 .690 .773

PE .409 .327 .222 .327 .867 .849 .803 .856

.2 .4 .4 .6 LMMPI .417 .306 .238 .326 .890 .871 .829 .878

KT .383 .261 .215 .279 .850 .854 .767 .834

PE .453 .366 .255 .362 .915 .900 .863 .905

.2 .4 .6 .6 LMMPI .501 .363 .272 .415 .942 .929 .893 .934

KT .454 .302 .236 .356 .916 .909 .832 .918

PE .540 .438 .296 .458 .960 .952 .923 .955

.4 .4 .4 .6 LMMPI .481 .368 .277 .383 .938 .924 .895 .932

KT .425 .311 .242 .325 .900 .890 .817 .895

PE .503 .415 .286 .412 ,946 .934 .905 .939

.4 .4 .6 .6 LMMPI .561 .425 .313 .469 .970 .961 .938 .966

KT .491 .342 .263 .414 .942 .936 .875 .947

PE .584 .483 .327 .502 .975 .969 .947 .971

.4 .6 .6 .6 LMMPI :621 .481 .350 .514 .986 .981 .965 '.983

KT .546 .402 .298 .438 .971 .955 .924 .966

PE .649 .551 .367 .558 .989 .985 .971 .986
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