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ABSTRACT

Until recently, a difficulty with applying the Durbin-Watson (DW) test

to the dynamic linear regression model has been the lack of appropriate

critical values. Inder (1986) used a modified small-disturbance distribution

(SDD) to find approximate criticl values. King and Wu (1991) showed that

the exact SDD of the DW statistic is equivalent to the distribution of the DW

statistic from the regression with the lagged dependent variables replaced by

their means. Unfortunately, these means are unknown although they could

be estimated by the actual variable values. This provides a justification for

using the exact critical values of the DW statistic from the regression with the

lagged. dependent variables treated as non-stochastic regressors. Extensive

Monte Carlo experiments are reported in this paper. They show that this

approach leads to reasonably accurate critical values, particularly when two

lags of the dependent variable are present. Robustness to non-normality is

also investigated.
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1. Introduction

The dynamic linear regression model plays an important role in econo-

metric modelling. The popular ordinary least squares (OLS) estimator is

inconsistent if the model's disturbances are autocorrelated. It is therefore

important to be able to test for autocorrelation in the disturbances of the

dynamic linear regression model. Much has been written on this. testing

problem. The literature up until 1987 is reviewed by King (1987) and recent

contributions include Dezhbakhsh (1990), Inder (1990) and King and Wu

(1991).

Whether the Durbin-Watson (DW) statistic should be used to test for

autocorrelation in this context has been an unusually controversial issue. As

Durbin (1970) observed, the difficulty is in finding appropriate critical values.

He suggested an adjustment to the DW statistic, which results, asymptoti-

cally, in a standard normal null distribution and which has become known as

Durbin's h test. The adjustment involves the square root of a variance esti-

mate and consequently breaks down when this estimate is negative. Durbin

also proposed an alternative artificial regression test known as Durbin's t test.

Based on Monte Carlo studies of the size and power properties of the DW, h

and t tests, Kenkel (1974, 1975, 1976) recommended the use of the DW upper

bound as a critical value for the DW statistic. This suggestion was reviewed

and rejected by Park (1976) who conducted his own Monte Carlo comparison

(Park, 1975) of the three tests. More recently, Dezhbakhsh (1990) warned

against the use of the DW test in the dynamic model with the dependent

variable lagged once and twice as regressors. His Monte Carlo results seem

to indicate that the DW test can lack power in this situation.

In contrast, Inder (1984, 1985) used Monte Carlo methods to show that

for a single lag and if appropriate critical values can be found, then the DW

test is typically more powerful than Durbin's h and t tests. He (Inder, 1985,

1986) suggested the use of small-disturbance asymptotics to find appropriate

DW critical values. This approach has considerable appeal because in the

static model, the small-disturbance distribution (SDD) of the DW statistic

is identical to its true small-sample distribution because of the statistic's

invariance to the disturbance variance. Inder showed that an approximate
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SDD critical value for the DW statistic is the true critical value of the statistic

for the corresponding regression with the lagged dependent variables omitted.

Using Monte Carlo methods, he found that these critical values generally

yield sizes closer to the nominal size than do Durbin's h and t tests.

More recently, King and Wu (1991) observed that the true SDD of the

DW statistic is identical to the exact distribution of the DW statistic for. the

corresponding regression with the lagged dependent variables replaced by

their expected values. This provides a justification for the use of the familiar

tables of bounds when the DW test is applied to a dynamic regression model.

It also mirrors an identical result reported by Nankervis and Savin (1987) for

testing linear coefficient restrictions in the dynamic regression model. They

found that the SDD of the F 'statistic is identical to the true distribution

of the F statistic from the regression with the lagged dependent variables

replaced by their expected values.

A difficulty with the King and Wu finding is that the expected values

of the lagged dependent variables are functions of the unknown regression

coefficients. They discussed how bounds for the SDD critical value could

be calculated. An alternative approach would be to estimate the expected

values of the variables. One possibility is to use the lagged dependent vari-

ables as estimates of their means. This then involves calculating exact DW

critical values with the lagged dependent variables treated as though they

are nonstochastic. The aim of this paper is to investigate this suggestion.

.The plan of the paper is as follows. The next section outlines the models

and the class of tests our suggestion can be applied to. It also observes the

true small-disturbance nature of the new procedure. Section 3 outlines an

extensive Monte Carlo experiment designed to compare the new procedure

with four existing tests in a range of circumstances including normal and

nonnormal error processes. Some concluding remarks are made in the final

section.

2. Theory

Consider the general linear dynamic regression model

yt = alyt—i + a2yt-2 + • • + apyt—p + xitfl + ut,

3
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t = 1, , n, where yt is the dependent variable, xt is a k x 1 vector of

exogenous variables, a = (ai, ,ap)' and f3 are p X 1 and k X 1 parameter

vectors, respectively, and ut is a disturbance term. If there are n observations

available on each variable, the parameters are estimated using the last n —p

observations. The model for these observations can be written as

(2)

where y and u are (n — p) X 1 vectors and Y._1 and X are (n — p) X p and

(n — p) X k matrices, respectively.

Suppose u N(0, cr2f2(9)), where 0,2 is an unknown scalar, 2(9) is a

positive definite symmetric matrix such that S2(0) = In—p and 0 is a q X

1 unknown parameter vector. Our interest is in testing Ho : 9 = 0. As

observed by King and Wu (1991), this parameterization covers a number of

important testing problems such as testing for, either separately or jointly,

various forms of autocorrelation, heteroscedasticity and stochastic coefficients

on the exogenous variables. In the context of the static model,

y = X,8 -F (3)

a locally most mean powerful invariant (LMMPI) test of Ho against Ha

91 > 0, i = . . . q, t9 0, is to reject Ho for small values of

s=z1AzIziz (4)

where z is the OLS residual vector from (3) and

A = — tafmovaei
0=0

(see King and Wu, 1990). When q = 1, this reduces to King and Hillier's

(1985) locally best invariant (LBI) test. Also (4) with A as the tridiago-

nal matrix whose main diagonal is (1, 2, 2, , 2,1) and whose leading off-

diagonal elements are —1, is the DW statistic.

With respect to testing Ho : 9 = 0 in (2), as King and Wu (1991) note,

an obvious approach is to use s as the test statistic where z is now the OLS
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residual vector from (2). They showed that the SDD of s is equivalent to the

exact distribution of s applied to the regression

= M-17 +..X8 u, (5)

where M_1 = E(Y_1). The exact form of M_1 depends on how the process

(2) starts up. King and Wu (1991) allowed for two different sets of starting-

up assumptions. Their proof also applies for any starting-up conditions that

imply

Y-1 = M-1 + 0(a). (6)

An obvious feature of (5) is that not all the regressors are known. The

elements of M_1 are functions of the unknown parameters a and /3 through

the recursive formula

rnt = airnt—i a2mt-2 + • • • + apmt—p xitfi, t = P +1, • • • ,n, (7)

where mt = E(yt) and the start-up conditions of (2) determine the values

of mi, i = 1, ,p, required to start up (7) (see King and Wu, 1991). We

also see that the SDD of s may depend on the nuisance parameters a and

through M_1. Thus, typically, a test based on (4) applied to (2) can be

expected to be nonsimilar. If we knew M_1, this potential nonsimilarity can

be removed by the calculation of critical values conditional on M_1, at least

in the neighbourhood of a = 0. Note that this nonsimilarity problem is not

solved by Inder's suggestion of ignoring M_1 or King and Wu's suggestion

of calculating bounds for the SDD critical values of s to take account of the

unknown regressors that make up M_1.

Our proposal is to use 17_1 as an estimate of M_1 and thus calculate

exact critical *values of s conditional on the observed Y_1 values. We are

replacing the expected value of a random matrix by its observed value; a

simplification that is often used in econometrics, particularly in estimating

information matrices. There is also a small-disturbance justification of this

approximation which can be argued as follows.

For any given realization of u and hence Y_1, the distribution of s treat-

ing Y_1 as nonstochastic but u as N(0, o-2/7,) is well defined. However, this

distribution changes with each realization of u because Y_i changes. The
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exact proof used by King and Wu (1991, pp. 148-149) can be used to prove

that each one of these distributions converges to the distribution of s applied

to (5) as a tends to zero, ceteris paribus. The fact that Y_i is now treated

as non-stochastic makes no difference. The key relationship is (6). In other

words, the distribution we suggest should be used to obtain critical values or

p-values converges to the SDD of s applied to (2) as a tends to zero. Thus

our approach has a small-disturbance justification. Furthermore, it results

in an approximately similar test for a close to zero.

In summary, therefore, our suggested procedure involves ignoring the fact

that Y_1 in (2) is stochastic and calculating either an exact critical value or

a p-value as we would if Y_1 were a non-stochastic matrix of regressors. Of

course, there is the obvious question of how well this procedure works in

practice, particularly when a is relatively large. The remainder of this paper

addresses this issue.

3. The Monte Carlo Experiment

A Monte Carlo experiment was conducted to compare the accuracy of

the above testing procedure in the context of testing

against

Ho : p = 0

Ha : p> 0

in (2) when the disturbances follow the stationary first-order autocorrelation

process,

ut = put—i + I p l< 1 ( 8 )

where the innovations, et, are mutually independent with mean zero and

variance cr2 . The experiment involved both one lag (p = 1) and two lags

(p = 2) of the dependent variable in (2). Both normal and non-normal

innovations of (8) were used.

3.1 The Tests

Two versions of the DW test were used in the study. The first, denoted

DWE, involved the procedure outlined in section 2. Observe that the critical
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value used in this procedure is a function of the realized values of yt_i and

hence of yt. It therefore has to be recalculated for each new sample; in other

words a separate critical value is needed for each iteration. An equivalent

method of applying the test is to calculate, using Imhof's (1961) algorithm,

an exact p-value for the DW statistic while treating the observed yt_i as

nonstochastic. In fact at each iteration, the calculated p-value can be viewed

as the test statistic and the desired significance level as the critical value. In

the study, we implemented the test in this manner by calculating the exact

p-value at each iteration using a modified version of Koerts and Abrahamse's

(1969) FORTRAN version of Imhof's algorithm.

The second version of the DW test, denoted DWI, is the application of

Inder's (1985, 1986) suggestion of using the exact .DW critical value from the

regression with the lagged dependent variables omitted. It may appear on

the surface that the DWE and DWI • tests are the same test with different

critical values and therefore different sizes. This is .not the case because the

critical values of the DWE test are calculated as a function of the yt values

while those of the DWI test are not and therefore remain constant from

iteration to iteration. This implies that the two tests do not share the same

set of critical regions. The DWI test is expected to be more nonsimilar than

the DWE test.

The third test is Inder's (1990) modified point optimal test denoted

IMPO. This involves first estimating (2) using OLS in order to obtain i =

1, ,p, the OLS estimates of the coefficients of the lagged dependent vari-

ables. Then King's (1985) point optimal invariant (POI) test is applied to

the static regression

y* = u (9)

where

Define •

Yt*= Yt — alyt—i —

gp+i = (1- Pi) +',
YtYt= — P14-1,

i'p+1 = — p?)1 xp+1,

= Xt P1Xt-1,



Then the test statistic is

where i(pi) is the OLS residual vector from the regression of '‘'t on it, t = p+

1,. . . , n, i is the OLS residual vector from (9), and p1 is a constant such that

0 <P1 <1. The test is made operational by a choice of pl value. We followed

Inder's suggestion of p1 = 0.5. Inder also showed that an approximate SDD

critical value for this test is the exact critical value of King's (1985) POI test

applied to (9). These critical values, calculated using the methodology in

King (1985), were used in our experiment.

The fourth test is Durbin's (1970) t test which is conducted as a test of

the significance of zt_i in the OLS regression of zt on zt—i Lit—i , • • • , Yt-p, Xt,

t = p + 2,... n, where zt are the OLS residuals from (2). The final test is

Durbin's (1970) h test. Its test statistic is

h = (1— d / 2)[(n — p)/{1 — (n — p)fr(oei)}]1/2

where d is the DW statistic calculated for (2), and V(6z1) is the usual estimate

of the variance of the OLS estimator of al from (2). Asymptotically under

Ho, h has a N(0, 1) distribution. Unfortunately, in small samples h sometimes

cannot be calculated because {1 — (n — p)T-'7(eri )} is negative. In this study,

we only use those replications where h can be calculated to estimate the

probability of the test rejecting Ho•

3.2 Experimental Design

The Monte Carlo experiment involved applying the five tests to data

generated according to (2) and (8) with p = 1 and p = 2. In order to generate

start-up values for (2), we followed Inder (1985, 1986, 1990) and assumed that

yi, • • . , Lip have constant mean equal to E(yp+i) and that deviations from this
mean follow the stationary AR(p) process

vt = aivt—i 4- a2vt-2 +... 4- apvt—p ut

in which ut is generated as (8).

The following data sets and parameter values were used:
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Xl: The exogenous regressors are those from Durbin and Watson's (1951) an-

nual U.K. consumption of spirits example including the constant dummy.

k = 3;o- = 0.1, 500 for n = 30 and o- = 0.25,2000 for n = 69.

X2: The exogenous regressors are a constant dummy, quarterly Australian

private capital movements commencing 1968(1), Australian Government

capital movements and these latter two variables lagged one quarter.

k = 5;a = 500, 1000 for n= 30 and a = 1500, 5000 for n = 60.

X3: The exogenous regressors are a constant dummy, real US GNP com-

mencing 1947(1) (see Maddala and Rao, 1973). k = 2; a = 50,500 for

both n = 30 and n = 70.

X4: The exogenous regressors are the eigenvectors corresponding to the five

smallest eigenvalues of the DW A matrix. Note that the constant dummy

is the eigenvector corresponding to the smallest (zero) root. k = 5; a =

2,50 for both n = 30 and n = 70.

X5: The exogenous regressors are the eigenvectors corresponding to the zero

and four largest eigenvalues of the DW A matrix. k = 5; a = 0.5,500 for

n = 30 and a = 0.5,5 for n = 70.

X6: The exogenous regressors are a constant dummy and four independent

AR(1) regressors generated artificially via

xit = 0.95x1t-i git

.where

qii N(0,1), t = 0,1,... ,n

and xio N(0,1.333). k = 5; a = 2.5,10 for both n = 30 and n = 70.

All values were set to one and when p = 1, a was set to 0.25, 0.5, 0.75,

0.99. We also set a = 1.0 in the case of p = 1 with yo having a starting value

of zero. For p = 2, the a values used were (al, a2) = (0.25,9.25), (0.5,0.25)

, (0.9,0.09), (1.25, —0.5). The a values were chosen so that the range of

average R2 values span 0.5 and 0.9.

The above data sets were chosen because they exhibit a range of be-

haviour. X1 and X3 have been used in a number of earlier studies. X2 was

chosen because its regressors exhibit large fluctuations and a strong degree
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of seasonality. The regressors of X4 and X5 correspond to the upper and

lower bounding distributions of the DW statistic in the static model. They

were included in the hope that they would show extremes in behaviour of the

various tests. All tests were conducted at nominal significance levels of 0.10,

0.05, 0.025 and 0.01. Sizes and powers were calculated at p = 0, 0.3, 0.6, 0.9.

In all cases, the random innovations, et, of (8) were generated as N(0, a-2)

variates by applying the Box-Muller transformation to [0,1] uniform random

variables as outlined by King and Giles (1984). 2000 replications were used

throughout.

For p = 1, the experiments were repeated with non-normal pseudo-

random innovations generated by the algorithm proposed by Ramberg and

Schmeiser (1972, 1974). This algorithm is

r(p) = + (1303 —(1 — 13)04)/92, 0 <p< 1,

where r(p) is the generated pseudo-random innovation, p is a uniform pseudo-

random variate, 01 is a location parameter, 02 is a scale parameter and 93 and

94 are shape parameters. Tables of 0 values that allow for a wide variety of

distributions are provided by Ramberg, Tadikamalla, Dudewicz and Mykytka

(1979). Following Lee (1992) and Brooks and King (1994), the non-normal

distributions we used are:

(i) the distribution with zero skewness and kurtosis of six,

9 = (0, —0.1686, —0.0802, —0.0802)',

(ii) .the distribution with zero skewness and kurtosis of nine,

9 = (0, —0.3203, —0.1359, —0.1359)' and

(iii) the distribution with skewness of one and kurtosis of six,

= (-0.379, —0.0562, —0.0187, —0.0388)'.

3.3 Results

Because the complete experiment involved the calculation of 9600 test

sizes and 28,800 test powers in the case of stationary a values and a further

1440 sizes and 4320 powers in the case of a = 1, p = 1, we have attempted to

focus on the main patterns, placing particular emphasis on the size results.

We began by calculating the absolute differences between the estimated sizes
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and the nominal sizes. Average values of these absolute differences, the max-

imum absolute difference plus a decomposition of this average into deviations

above and below the nominal level for stationary a values are presented in

Tables I-III. The average differences above (below) the nominal level were cal-

culated by setting all deviations below (above) the nominal level to zero and

then recomputing the average. In this way, the average deviations above and

below the nominal level add up (allowing for rounding errors) to the average

absolute differences from the nominal level. Each table contains the average

values for each data set as well as overall values for small (30) and moderate

(60 — 70) sample sizes. Because the results for each of the non-normal error

distributions are very similar, only those for symmetric disturbances with a

kurtosis of 9 are presented.. The greatest variability of sizes when the error

distributions vary, occur for the h test and for design matrix X6. An im-

portant issue is whether the accuracy of the DWE procedure decreases as cr

increases. Table IV presents the overall averages decomposed by small and

large a values. Results for the nonstationary case of p = 1 and a = 1 are

presented in Table V. Ideally, all numbers in Tables I to V should be zero (no

difference from the nominal level) so the closer they are to zero the better.

We shall first consider the size results for one lag (p = 1) , I al < 1 and

normal disturbances given in Table I. An obvious feature is that the average

accuracy of each of the three SDD based tests (DWE, DWI and IMPO)

is almost always better than that of either of the large sample asymptotic

tests (Durbin's h and t tests). The DWI and IMPO tests have very similar

average accuracies with the DWE test not far behind. Durbin's h test is

always the least accurate test. For X4 and X5, the two data sets chosen to

show extreme results, the gap in accuracy between the two classes is greatest,

particularly for X5. Typically, the average accuracy of all tests improves as

the sample size increases, although X2 provides a clear exception. As might

be expected, the improvement in accuracy is greatest for the large sample

asymptotic tests. We also see from Table IV that average accuracies of the

five tests decrease as the variance .72 increases. A somewhat unexpected

finding is that when o2 increases, the actual increase in average absolute

differences of estimated and nominal sizes is greatest for Durbin's h and t

tests.
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TABLE I

Average absolute differences of estimated and nominal sizes, their decomposition to contribu-
tions of estimated sizes above and below the nominal size and maximum absolute differences

for p = 1, I a I < 1 and normal disturbances.

n = 30 n = 60 - 70

DWE DWI IMPO t h DWE DWI IMPO t h

X1
Average .036 .027 .028 .046 .111 .034 .030 .030 .051 .105
Above .030 .017 .016 .042 .107 .020 .015 .015 .047 .102

Below .006 .010 .012 .004 .004 .014 .015 .015 .004 .003
Maximum .200 .134 .134 .146 .257 .148 .108 .107 .131 .254

X2
Average .016 .015 .015 .018 .059 .025 .020 .020 .027 .062

Above .008 .002 .002 .015 .057 .014 .008 .007 .026 .062

Below .008 .013 .013 .003 .002 .011 .012 .013 .001 .000
Maximum .051 .066 .067 .056 .177 .083 .084 .088 .088 .185

X3
Average .032 .026 .028 .062 .135 .030 .027 .028 .035 .084
Above .021 .011 .012 .059 .132 .014 .010 .010 .032 .082
Below .011 .015 .016 .003 .003 .016 .017 .018 .003 .002
Maximum .154 .094 .100 .160 .275 .111 .096 .098 .090 .227

X4
Average .178 .136 .137 .194 .196 .110 .092 .092 .138 .208
Above .178 .135 .136 .194 .196 .101 .082 .081 .138 .208
Below .000 .001 .001 .000 .000 .009 .010 .010 .000 .000
Maximum .544 .464 .469 .404 .358 .429 .384 .380 .283 .331

X5
Average .026 .029 .030 .236 .308 .031 .030 .030 .117 .182
Above .009 .006 .007 .236 .308 .012 .008 .008 .117 .182
Below .017 .023 .023 .000 .000 .019 .022 .022 .000 .000
Maximum .095 .096 .098 .411 .533 .098 .099 .100 .222 .360

X6
Average .033 .020 .019 .026 .052 .020 .015 .014 .028 .051
Above .032 .017 .015 .011 .039 .014 .007 • .006 .014 .039
Below .001 .003 .004 .015 .012 .006 .008 .008 .014 .012
Maximum .168 .119 .110 .084 .147 .142 .102 .096 .070 .180

All X
Average .054 .042 .043 .097 .143 .042 .036 .036 .066 .116
Above .046 .031 .031 .093 .140 .029 .022 M21 .062 .113
Below .008 .011 .012 .004 .003 .012 .014 .014 .004 .003
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TABLE II

Average absolute differences of estimated and nominal sizes, their decomposition to contribu-
tions of estimated sizes above and below the nominal size and maximum absolute differences
for p = 2 and normal disturbances.

n = 30 n = 60 - 70

DWE DWI IMPO t h DWE DWI IMPO t h

X1
Average .024 .031 .032 .024 .057 .037 .040 .041 .022 .073
Above .006 .004 .005 .007 .055 .006 .006 .006 .010 .072
Below .018 .027 .027 .017 .002 .031 .034 .035 .012 .001
Maximum .060 .072 .077 .074 .158 .094 .097 .098 .070 .232

X2
Average .023 .033 .034 .014 .071 .034 .038 .039 .017 .062
Above .004 .005 .005 .007 .071 .005 .006 .006 .006 .062
Below .019 .028 .029 .007 .000 .029 .032 .033 .011 .000
Maximum .072 .081 .085 .047 .166 .094 .096 .096 .062 .208

X3
Average .028 .036 .037 .025 .079 .038 .041 .042 .015 .078
Above .005 .005 .006 .013 .078 .006 .006 .006 .009 .078
Below .023 .031 .031 .012 .001 .032 .035 .036 .006 .000
Maximum .076 .085 .089 .060 .217 .096 .096 .100 .059 .198

X4
Average .045 .029 .028 .028 .036 .028 .030 .032 .056 .134
Above .041 .017 .015 .013 .026 .008 .006 .006 .045 .129
Below .004 .012 .013 .014 .009 .020 .024 .026 .011 .005
Maximum .260 .152 .147 .089 .090 .068 .073 .090 .164 .284

X5
Average .036 .039 .040 .143 .233 .043 .044 .045 .033 .105
Above .005 .005 .006 .143 .233 .006 .006 .006 .032 .105
Below .031 .034 .034 .000 .000 .037 .038 .038 .001 .000
Maximum .098 .098 .098 .416 .450 .100 .100 .100 .108 .216

X6
Average .014 .024 .024 .036 .028 .025. .031 .032 .024 .029
Above .004 .003 .003 .005 .011 .004 .004 .005 .003 .020
Below .010 .021 .021 .031 .017 .021 .027 .027 .021 .009
Maximum .034 .054 .058 .087 .080 .072 .080 .081 .066 .111

All X
Average .028 .032 .033 .045 .084 .034 .038 .038 .028 .080
Above .011 .007 .007 .032 .079 .006 .006 .006 .018 .078
Below .017 .025 .026 .013 .005 .028 .032 .032 .010 .002
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TABLE III

Average absolute differences of estimated and nominal sizes, their decomposition to contribu-

tions of estimated sizes above and below the nominal size and maximum absolute differences

for p = 1, I a I < 1 and symmetric disturbances with kurtosis = 9.

n = 30 n = 60 - 70

DWE DWI IMPO t h DWE DWI IMPO t h

X1
Average .035 .024 .025 .043 .102 .031 .028 .029 .037 .087

Above .031 .017 .016 .038 .098 .018 .012 .012 .033 .084

Below .004 .007 .009 .005 .004 .013 .016 .017 .004 .003

Maximum .187 .128 .125 .124 .213 .140 .105 .104 .103 .219
X2

Average .016 .017 .021 .025 .071 .023 .019 .020 .026 .066

Above .009 .003 .003 .021 .069 .013 .008 .007 .024 .066

Below .007 .014 .017 .004 .002 ,010 .011 .013 .002 .000

Maximum .074 .066 .079 .075 .193 .089 .078 .086 .088 .214
X3

Average .030 .022 .025 .058 .122 .027 .026 .027 .029 .075

Above .022 .011 .010 .055 .119 .012 .008 .008 .026 .073

Below .009 .011 .014 .003 .003 .015 .018 .019 .003 .002

Maximum .148 .086 .082 .138 .240 .092 .092 .096 .076 .201
X4

Average .167 .131 .130 .176 .180 .098 .080 .079 .123 .194

Above .167 .131 :130 .176 .180 .092 .072 .069 .123 .194

Below .000 .000 .000 .000 .000 .006 .008 .010 .000 .000

Maximum .530 .468 .470 .381 .346 .405 .351 .350 .254 .310
X5

Average .024 .028 .030 .216 .278 .032 .030 .032 .109 .173

Above .008 .005 .005 .216 .278 .012 .008 .008 .109 .173

Below .016 .023 .025 .000 .000 .020 .022 .024 .000 .000

Maximum .092 .094 .098 .388 .511 .098 .098 .099 .198 .328
X6

Average .047 .028 .025 .019 .067 .023 .019 .021 .030 .076

Above .046 .026 .023 .016 .067 .015 .008 .007 .022 .069

Below .001 .002 .002 .003 .000 .008 .011 .014 .008 .007

Maximum .144 .095 .085 .038 .113 .102 .076 .068 .068 .165
All X

Average .053 .042 .042 .089 .137 .039 .034 .034 .059 .112

Above .047 .032 .031 .087 .135 .027 .019 .018 .056 .110

Below .006 .010 .011 .002 .002 .012 .015 .016 .003 .002
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TABLE IV

Average absolute differences of estimated and nominal sizes and their decomposition to

contributions of estimated sizes above and below the nominal size classified by error variance

and sample size.

n = 30 n = 60 - 70

DWE DWI IMPO t h DWE 'DWI IMPO t h

p = 1, Normal Errors, I a I <1
Small a

Average .043 .036 .036 .076 .106 .033 .029 .029 .054 .091
Above .036 .024 .024 .068 .099 .022 .016 .016 .048 .086
Below .007 .012 .012 .008 .007 .011 .013 .013 .006 .005

Large a
Average .065 .049 .049 .118 .181 .050 .042 .042 .078 .140
Above .057 .039 .038 .118 .181 .036 .027 .027 .076 .139
Below .008 .010 .011 .000 .000 .014 .015 .015 .001 .001 •

p = 2, Normal Errors
Small °-

Average .028 .032 .033 .053 .062 .034 .037 .038 .027 .055
Above .010 .006 .006 .036 .054 .006 .006 .006 .014 .051
Below .018 .026 .027 .017 .008 .028 .031 .032 .013 .004

Large a
Average .028 .032 .032 .037 .106 .035 .038 .039 .028 .106
Above .012 .007 .007 .027 .104 .006 .006 .006 .021 .105
Below .016 .025 .025 .010 .002 .029 .032 .033 .007 .001

p = 1, Symmetric Errors, kurtosis = 9, I a I < 1
Small a

Average .044 .037 .038 .066 .102 .034 .030 .031 .051 .096
Above .039 .027 .026 .062 .100 .022 .015 .015 .046 .092

Below .005 .010 .012 .004 .002 .012 .015 .016 .005 .003
Large a

Average .062 .046 .047 .112 .171 .045 .037 .038 .067 .128
Above .055 .037 .036 .112 :171 .032 .023 .022 .066 .127

Below .007 .009 .011 .000 • .000 .013 .014 .016 .001 .001
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TABLE V

Average absolute differences of estimated and nominal sizes, their decomposition to contribu-
tions of estimated sizes above and below the nominal size and maximum absolute differences
for p = 1, a = 1 and normal disturbances.

n = 30 n = 60 - 70

DWE DWI IMPO t h DWE DWI IMPO t h

X1
Average .051 .039 .040 .048 .073 .038 .031 .032 .036 .042
Above .049 .031 .031 .030 .056 .038 .027 .028 .021 .029
Below .002 .008 .009 .018 .017 .000 .004 .004 .015 .013
Maximum .198 .131 .136 .092 .164 .143 .106 .108 .066 .098

X2
Average .005 .016 .014 .021 .020 .020 .010 .010 .012 .014
Above .005 .000 .000 .000 .000 .020 .009 .008 .004 .008
Below .000 .016 .014 .021 .020 .000 .001 .002 .008 .006

Maximum .019 .034 .029 .051 .044 .061 .034 .030 .036 .028
X3

Average .014 .010 .010 .022 .016 .014 .006 .007 .014 .009
Above .013 .003 .003 .000 .001 .014 .004 .005 .000 .001
Below .001 .007 .007 .022 .015 .000 .002 .002 .014 .008
Maximum .052 .029 .029 .069 .060 .043 .020 .020 .047 .036

X4
Average .215 .159 .158 .208 .159 .143 .114 .113 .094 .116

Above .215 .159 .158 .208 .159 .143 .114 .113 .089 .110
Below .000 .000 .000 .000 .000 .000 .000 .000 .005 .006
Maximum .546 .460 .464 .391 .354 .427 .376 .372 .278 .327

X5
Average .018 .013 .014 .153 .179 .015 .008 .007 .058 .073
Above .018 .005 .006 .153 .179 .015 .006 .005 .058 .073
Below .000 .008 .008 .000 .000 .000 .002 .002 .000 .000
Maximum .074 .032 .035 .131 .154 .041 .016 .016 .131 .154

X6
Average .018 .013 .016 .032 .025 .006 .006 .006 .032 .030
Above .018 .010 .010 .000 .000 .006 .000 .000 .000 .000
Below .000 .003 .006 .032 .025 .000 .006 .006 .032 .030
Maximum .064 .039 .042 .082 .082 .011 .020 .015 .068 .060

All X
Average .054 .042 .042 .081 .078 .039 .030 .029 .041 .047
Above .053 .035 .035 .065 .066 .039 .027 .026 .029 .037
Below .001 .007 .007 .016 .012 .000 .003 .003 .012 .010
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When critical values are required to control the size of a nonsimilar test,

the conventional approach is to control the maximum probability of a Type I

error. Therefore, many would only regard true sizes above the nominal level

as bad. If we focus only on that part of the average caused by estimated

sizes above the nominal size, we see that the relative performance of the

DWE, DWI and IMPO tests is even better than that of Durbin's two tests.

The only exception to this observation occurs for the artificial data set X6.

There is also a slight decline in the relative average accuracy of the DWE

test compared with the DWI and IMPO tests. These conclusions should

be tempered slightly by the maximum differences between estimated and

nominal sizes. They suggest that there can be circumstances in which the

DWE test is the least accurate in terms of actual size. On the other hand, we

see that for X2 and X5 it is the most robust test because it has the smallest

maximum differences for these design matrices.

For two lags and normal disturbances (Table II), there is a noticeable and

somewhat unexpected improvement in accuracy of both of Durbin's tests. In

particular, the DWE and Durbin's t tests have reasonably similar levels of

accuracy with the DWE test having an advantage for n = 30 while Durbin's

t test is almost always the most accurate test for larger sample sizes. Table

IV suggests that increasing o-2 typically does not affect the average accuracy

of the DWE, DWI, IMPO and Durbin's t tests but does result in a significant

drop in accuracy for Durbin's h test.

Of the SDD based tests, the DWE .test is typically the more accurate

while the DWI and IMPO tests have almost identical levels of accuracy.

The relative improvement of the DWE test going from p = 1 to p = 2 is

not unexpected because the DWE approach attempts to take account of the

effects of all regressors on the test statistic's null distribution. If we focus

only on that part of the average caused by estimated sizes above the nominal

size, the relative performance of the SDD based tests looks much better. Also

the relative performance of the DWI and IMPO tests compared to the DWE

test shows a slight improvement.

The results for p = 1, lal <1 and the three non-normal disturbances are

almost identical and therefore only one set is given in Table III. Overall the
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ranking and patterns are similar to those in Table I, indicating that the sizes

of all five tests are rather robust to the particular nonnorrnal distributions

considered in this study.

• Table V summarizes the size results for the unit root case, a = 1, when

p = 1 under normal disturbances. In general there is little difference between

the a = 0.99 and a = 1 results. Overall, the average accuracy of each of

the three SDD based tests is better than that of the large sample asymptotic

tests although the differences are much smaller than for lal <1. Also average

accuracy continues to increase as n increases. The true size of the DWE test

is nearly always higher than the nominal size. This is true to a lesser degree

for the DWI and IMPO tests while for large n, Durbin's h and t tests have

true sizes below the nominal size on a greater proportion of occasions. As

one might expect, relative average, accuracy of the three SDD based tests is

greatest for small a values. In fact for large n and large a, there is very little

difference between the average accuracies of all five tests.

With respect to comparing the powers of the five tests, the task is com-

plicated by the fact that different tests have different sizes which vary with

values of the coefficients of the lagged dependent variable. The best we can

do is to look for tests that have lower sizes and higher powers than other

tests. Our main aim is to check whether the new DWE procedure results in

a loss of power compared to the other tests. Tables VI-IX provide selected

sizes and powers for X1 at the 5% nominal level for p = 1 and p = 2.

For p = 1 and normal disturbances, we could not find a case where

the DWI test has lower size and higher power than the DWE test. In all

circumstances, DWE never has a lower probability of rejecting the null than

the DWI test. Therefore, we could find no evidence to suggest our test

procedure results in a reduction in power. A comparison of the DWE and

IMPO tests reveals a similar picture for X1 — X5. Only for X6 could we

find evidence that the IMPO test is more powerful than the DWE test. The

differences appear to be small but significant. The comparison of the powers

of Durbin's tests and the DWE test is made very difficult in some cases

because of the rather high sizes of Durbin's tests. Nevertheless, we were able

to find evidence that the DWE test has a power advantage over both Durbin's

18
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t and h tests, particularly when a = 0.75,0.99 or 1.0. The evidence was more

conclusive in the case of the h test. These conclusions apply equally for both

small and large values of u.

For the case of p = 2 and normal disturbances, the DWE test is always

more powerful than the DWI test. An obvious explanation is that the DWE

test has higher size. However for X5, we did notice some evidence suggesting

the DWE procedure has a steeper sloping power curve than DWI when a =

0.25,0.5 and a is small. As for p = 1, we found the DWE test to always have

higher power than IMPO, except for X6. In the situations for X6 where

IMPO is more powerful than DWE, the differences are generally smaller

than those found for p = 1. Again the comparison of the DWE test with

Durbin's tests, particularly the h test, is complicated by the inflated sizes of

these latter tests. However, we found evidence of greater power for DWE in

many cases, especially for large p. In only one situation, for X6 and small

a, did DWE lose power compared to t.

4. Concluding Remarks

This paper provides a small-disturbance justification for applying the

DW test to the dynamic linear regression model and using critical values

calculated by treating all regressors as exogenous. Our Monte Carlo results

support this suggestion. They show that the new procedure provides rea-

sonably accurate critical values although there can be situations in which

its accuracy is questionable. While slightly less accurate than the DWI and

IMPO critical values for one lag of the dependent variable, our study suggests

the new procedure results in slightly more accurate critical values when two

lags are present. The sizes of all five tests for autocorrelation appear to be

relatively robust to nonnormality in the disturbances.

We also found that the new procedure does not result in a loss of power.

In the case of the dynamic linear regression model with two lags of the

dependent variable, our results again support the use of the DW test. This

contradicts the findings of Dezhbakhsh (1990) who warned against the use

of the DW test in this situation.
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TABLE VI

Estimated sizes and powers of the five tests for Xl, p = 1, n = 30, cr = 0.1, normal distur-

bances and a nominal level of 5% .

0.25

0.50

0.75

0.99

1.00
0.3
0.6
0.9

0.3
0.6

.0.9

0.3
0.6
0.9

0.3
0.6
0.9

0.3
0.6
0.9

Test

DWE DWI IMPO

0 0.020
0.110
0.352
0.542

0 0.060
0.294
0.663
0.818

0 0.095
0.461
0.826
0.940

0 0.050
0.392
0.827
0.964

0 0.044
0.365
0.795
0.957

0.014
0.086
0.271
0.467

0.043
0.237
0.594
0.774

0.077
0.392
0.785
0.924

0.039
0.323
0.776
0.948

0.033
0.306
0.756
0.942

0.010
0.082
0.281
0.466

0.041
0.243
0.600
0.779

0.072
0.400
0.788
0.925

0.039
0.330
0.779
0.948

0.032
0.310
0.760
0.942

0.070
0.222
0.366
0.438

0.074
0.303
0.581
0.717

0.051
0.336
0.716
0:878

0.012
0.176
0.632
0.892

0.009
0.147
0.592
0.869

0.168
0.305
0.428
0.484

0.153
0.371
0.625
0.739

0.080
0.371
0.742
0.883

0.014
0.191
0.656
0.900

0.012
0.160
0.613
0.887

Frequency of
no h test

379
223
81
16

177
77
15
1

29
13
3
0

Average R2

0.752
0.756
0.767
0.810

0.868
0.867
0.865
0.882

0.958
0.956
0.946
0.943

0.996
0.996
0.994
0.986

1.000
1.000
1.000
1.000
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TABLE VII

Estimated sizes and powers of the five tests. for Xl, p = 1, n = 69, a = 2000, normal

disturbances and a nominal level of 5% .

al

0.25

0.50

0.75

0.99

1.00
0.3
0.6
0.9

0.3
0.6
0.9

0.3
0.6
0.9

0.3
0.6
0.9

0.3
0.6
0.9

Test

DWE DWI IMPO

0 0.002
0.066
0.420
0.738

0 0.022
0.374
0.886
0.988

0 0.090
0.736
0.992
1.000

0 0.135
0.851
0.999
1.000

0 0.135
0.843
0.999
1.000

0.001
0.053
0.371
0.704

0.017
0.328
0.853
0.985

0.076
0.694
0.990
1.000

0.112
0.817
0.997
1.000

0.112
0.805
0.997
1.000

0.002
0.055
0.376
0.705

0.016
0.337
0.859
0.986

0.078
0.696
0.989
1.000

0.116
0.819
0.998
1.000

0.117
0.810
0.998
1.000

0.129
0.290
0.507
0.668

0.141
0.515
0.873
0.977

0.135
0.722
0.985
0.999

0.102
0.763
0.995
1.000

0.101
0.754
0.993
1.000

0.272
0.381
0.561
0.699

0.227
0.564
0.887
0.981

0.175
0.748
0.989
1.000

0.119
0.787
0.996
1.000

0.117
0.784
0.996
1.000

Frequency of
no h test

346
19

36

3

Average .1i2

0.094
0.261
0.513
0.817

0.251
0.458
0.677
0.890

0.516
0.688
0.831
0.949

0.856
0.917
0.960
0.991

0.870
0.925
0.964
0.992
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TABLE VIII

Estimated sizes and powers of the five tests for X1, p = 2, n = 30, c = 0.1, normal distur-
bances and a nominal level of 5%.

Test
Frequency of

(cei, a2) P DWE DWI IMPO t h no h test Average R2

(0.25,0.25) 0 0.013 0.010 0.009 0.037 0.106 360 0.866
0.3 0.014 0.009 0.008 0.049 0.147 505 0.867
0.6 0.023 0.012 0.008 0.052 0.184 513 0.865.
0.9 0.340 0.285 0.276 0.103 0.451 264 0.871

(0.5,0.25) 0 0.010 0.007 0.006 0.020 0.073 321 0.955
0.3 0.015 0.009 0.007 0.031 0.134 442 0.955
0.6 0.108 0.064 0.051 0.032 0.216 345 0.950
0.9 0.560 0.498 0.487 0.144 0.566 106 0.937

(0.9,0.09) 0 0.024 0.013 0.013 0.026 0.036 117 0.995
0.3 0.211 0.144 0.143 0.053 0.168 113 0.995

0.6 0.609 0.517 0.521 0.081 0.471 62 0.994

0.9 0.895 0.857 0.859 0.406 0.797 6 0.986

(1.25,-0.5) 0 0.033 0.013 0.013 0.019 0.048 109 0.967

0.3 0.161 0.083 0.081 0.069 0.115 27 0.969
0.6 0.442 0.291 0.288 0.181 0.280 7 0.971

0.9 0.760 0.629 0.622 0.430 0.552 5 0.975

TABLE IX

Estimated sizes and powers of the five tests for X1, p = 2, n = 69, a = 2000, normal
disturbances and a nominal level of 5%.

Test
Frequency of

(cti, a2) P DWE DWI IMPO t h no h test Average R2

(0.25,0.25) 0 0.000 0.000 0.000 0.091 0.228 440 0.184
0.3 0.000 0.000 0.000 0.146 0.304 612 0.379
0.6 0.001 0.001 0.000 0.090 0.215 550 0.645
0.9 0.280 0.253 0.216 0.090 0.483 146 0.886

(0.5,0.25) 0 0.000 0.000 0.000 0.084 0.227 436 0.424

0.3 0.001 0.001 0.000 0.087 0.238 621 0.628
0.6 0.038 0.024 0.017 0.012 0.207 213 0.819

0.9 0.492 0.472 0.447 0.106 0.560 16 0.949

(0.9,0.09) 0 0.026 0.017 0.016 0.037 0.147 215 0.827
0.3 0.320 0.280 0.273 0.033 0.456 64 0.903
0.6 0.717 0.694 0.682 0.062 0.754 2 0.956
0.9 0.935 0.929 0.925 0.447 0.935 0 0.990

(1.25,-0.5) 0 0.009 0.004 0.004 0.017 0.044 5 0.760
0.3 0.205 0.136 0.136 0.187 0.246 0 0.860
0.6 0.719 0.641 0.638 0.591 0.678 0 0.928

0.9 0.981 0.967 0.967 0.946 0.968 0 0.973

22



Acknowledgements

This research was supported by an ARC grant. We are grateful to Fong

Lai, Vladimir Rouderfer and Alan Morgan for research assistance and to

Aman Ullah and two referees for constructive suggestions.

References

Brooks, R.D. and M.L. King, (1994), Testing Hildreth-Houck against return
to normalcy random regression coefficients, Journal of Quantitative Eco-
nomics 10, 33-52.

Dezhbakhsh, H., (1990), The inappropriate use of serial correlation tests in
dynamic linear models, Review of Economics and Statistics 72, 126-132.

Durbin, J., (1970), Testing. for serial correlation in least squares regression
when some of the regressors are lagged dependent variables, Economet-
rica 38, 410-421.

Durbin, J. and G.S. Watson, (1951), Testing for serial correlation in least
squares regression II, Biometrika 38, 159-178.

Imhof, P.J., (1961), Computing the distribution of quadratic forms in normal
variables, Biometrika 48, 419-426.

Inder, B.A., (1984), Finite-sample power of tests for autocorrelation in mod-
els containing lagged dependent variables, Economics Letters 14, 179-185
and 16, 401-402.

Inder, B.A (1985), Testing for first order autoregressive disturbances in
the dynamic linear regression model, Unpublished Ph.D. Thesis (Monash
University, Clayton).

Inder, B.A., (1986), An approximation to the null distribution of the Durbin-
Watson statistic in models containing lagged dependent variables, Econo-
metric Theory 2, 413-428.

Inder, B.A., (1990), A new test for autocorrelation in the disturbances of
the dynamic linear regression model, International Economic Review 31,
341-354.

Kenkel, J.L., (1974), Some small-sample properties of Durbin's tests for serial
correlation in regression models containing lagged dependent variables,
Econometrica 42, 763-769.

Kenkel, J.L., (1975), Small-sample tests for serial correlation in models con-
taining lagged dependent variables, Review of Economics and Statistics
57, 383-386.

23



Kenkel, J.L., (1976), Comment on the small-sample power of Durbin's h-test,
Journal of the American Statistical Association 71, 96-97.

King, M.L., (1985), A point optimal test for autoregressive disturbances,
Journal of Econometrics 27, 21-37.

King, M.L., (1987), Testing for autocorrelation in linear regression models:
A survey, in M.L. King and D.E.A. Giles, eds., Specification analysis in
the linear model (Routledge and Kegan Paul, London) 19-73.

King, M.L. and D.E.A. Giles, (1984), Autocorrelation pre-testing in the linear
model: Estimation, testing and prediction, Journal of Econometrics 25,
35-48.

King, M.L. and G.H. Hillier, (1985), Locally best invariant tests of the error
covariance matrix of the linear regression model, Journal of the Royal
Statistical Society B47, 98-102.

King, M.L. and P.X. Wu, (1990), Locally optimal one-sided tests for multi-
parameter hypotheses, paper presented at the 6th World Congress of the
Econometric Society, Barcelona.

King, M.L. and P.X. Wu, (1991), Small-disturbance asymptotics and the
Durbin-Watson and related tests in the dynamic regression model, Jour-
nal of Econometrics 47, 145-152.

Koerts, J. and A.P.J. Abrahamse, (1969), On the theory and application of
the general linear model, (Rotterdam University Press, Rotterdam).

Lee, J.H.H., (1992), Robust Lagrange multiplier and locally-most-mean-
powerful based score tests for ARCH and GARCH regression distur-
bances, mimeo, Monash University.

Maddala G.S. and A.S. Rao, (1973), Tests for serial correlation in regression
models with lagged dependent variables and serially correlated errors,
Econometrica 41, 761-774.

Nankervis, J.C. and N.E. Savin, (1987), Finite sample distributions 'of t and
F statistics in an AR(1) model with an exogenous variable, Econometric
Theory 3, 387-408.

Park, S., (1975), On the small-sample power of Durbin's h test, Journal of
the American Statistical Association 70, 60-63.

Park, S., (1976), Rejoinder to 'Comments on the small-sample power of
Durbin's h-test', Journal of the American Statistical Association 71, 97-
98.

Ramberg, J.S. and B.W. Schmeiser, (1972), An approximate method for gen-
erating symmetric random variables, Communications of the Association
for Computing Machinery 15, 987-990.

24



Ramberg, J.S. and B.W. Schmeiser, -(1974), An approximate method for
generating asymmetric random variables, Communications of the Asso-
ciation for Computing Machinery 17, 78-87.

Ramberg, J.S. P.R. Tadikamalla, E.J. Dudewicz and E.F. Mykytka, (1979),
A probability distribution and its uses in fitting data, Technometrics 21,
201-215.

25




