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1. INTRODUCTION

The fact that business and economic time series often possess seasonal cycles with

increasing amplitudes together with random fluctuations dependent on movements in

underlying levels is a compelling reason to study nonlinear statistical models. Most

nonlinear behaviour commonly observed in time series plots can be represented by

nonlinear state space models. Being dynamic, the latter have the capacity to reflect

many forms of inter temporal dependency encountered in economic time series. Like

their linear counterparts (Ansley & Kohn,1985; Harvey and Todd, 1983), nonlinear

state space models can be adapted to accommodate the non stationary features of most

economic time series.

Dynamic nonlinear models are traditionally presented with more than one disturbance

source in their measurement and transition equations. They are usually estimated using

quasi-maximum likelihood methods in conjunction with an extended Kalman filter - for

example, see Harvey (1990, p160). In contrast, a class of nonlinear dynamic models is

introduced in this paper with only one primary disturbance source. We exploit this

special structural feature to develop an inherently simpler estimation procedure based

on regression methods rather than the more complex extended Kalman filter.

The paper is the outcome of research originally directed to uncovering the statistical

foundations of the nonlinear version of the Holt-Winters method of forecasting

(Winters, 1960), a method originally designed to handle time series displaying level

dependent seasonal and irregular components. The aim was to employ such a model in

the generation of prediction intervals to accompany the usual point predictions which

emerge from the use of the Holt-Winters method. Although an ARIMA model has

been found for the additive version, previous attempts to find the model for the

nonlinear Holt-Winters method have not been fully successful (McKenzie, 1984;
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Abraham & Ledolter, 1986). It is not possible to find an ARIMA model that implies

the same forecast function as the same updating equations as those used in the Holt-

Winters multiplicative method (Abraham & Ledolter, 1986). The search for

procedures to construct statistically correct prediction intervals, including ones for the

nonlinear Holt-Winters method, has been thoroughly documented by Chatfield (1993).

Even the most recent procedure for the nonlinear Holt-Winters method (Chatfield &

Yar, 1991) leaves one with imprecise rules for choosing the variance of the forecast

errors.

Our work directed to eliminating this gap eventually succeeded with the discovery of a

model which underpins the nonlinear Holt-Winters method. In our attempt to simplify

the associated mathematics, we also uncovered a generalisation that forms the

dynamic, nonlinear framework of this paper. Both models are introduced in the next

section. The associated theory of estimation and prediction is presented in section 3.

The results of a simulation study on the special case of the Holt-Winters method to

guage the statistical properties of the resultant estimates and predictions is given in

section 4. Finally, in section 5, we illustrate the methodology in an application

involving the prediction of Canada's total retail sales.

2. THE FRAMEWORK

We adopt the convention, illustrated in Figure 1, that typical period t ends at point of

time t. Thus the start of period t occurs at point of time period t —1. Whatever

happens to the underlying process during period t is assumed to depend on the state of

the system at the beginning of period t, denoted by the random p-vector x,_1. It is also

assumed to depend on a disturbance e, from an NID(0,a2) time series. More

specifically, it is envisaged that the outcome )1, of the process in period t is governed

by a measurement equation

yi =h,(x,_,)+Ict(x,_1)e„ ( 2.1 )
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where ht and k, are known continuous functions with continuous derivatives mapping

from 911) . Transitions of state are governed by the recurrence relationship

xt = ft (xt_i )+ gt (xt_l)e„ ( 2.2)

where ft and gt are known continuous mappings with continuous derivatives from

3t" ER". A distinguishing feature of this univariate framework is that both

measurement and transition relationships depend on only one primary source of

randomness: the e1. It is assumed that et is independent of l}. Linear

models with a single random error have been developed systematically by

Snyder(1985), as illustrated in the following example.

Example 2.1

When all the functions are time invariant and independent of x1_1, the disturbances are

homoscedastic (ie k1 (xt_1) =1), and the framework reduces to

yt + et ( 2.3)

xt = Fxt_i + ae, ( 2.4)

h being a fixed p-vector, F a fixed px p transition matrix and a a fixed p-vector of

parameters. This framework mirrors the most general integrated form of the

forecasting functions associated with ARMA and ARIMA processes (Box and Jenkins,

1976). It possesses close connections to the most general linear form of exponential

smoothing (Box and Jenkins, 1976). For example, the integrated form of the

ARIMA(0,2,2) model is

yt =.6.14-bt.1+ et

tt= 4-1-1- bt-i+aiet

bt = bt-i+a2et •

Here the state variables can be given a structural interpretation, tt being an underlying

level and k an underlying growth rate. Both level and rate drift over time in response

to unanticipated structural changes, the magnitude of the drift being governed by the

a vector. It is, in fact, a model underpinning trend corrected exponential smoothing

(Holt,1957)



Example 2.2

An extension of the linear framework to accommodate heteroscedastic disturbances is

= ±kt(xt-i)et

xt = Fxt_, + alc,(x,_,)et.

( 2.5 )

( 2.6 )

This is the most general integrated Box-Jenkins model with heteroscedastic

disturbances. A heteroscedastic form of the ARIMA(0,2,2), for example, is

Yt = + b1-1+(tt-1± b1)7 e (measurement equation)

tt = b1-1+ a1(tr-i± b1-1 )r et (level equation)

bt =bt-i± a,(tt-/ bt-1)7 et, (rate equation)

r being a parameter determining the magnitude of the heteroscedasticity. An

advantage of the integrated form of the ARIMA framework is that it not only explicitly

shows the structural features of a time series hidden by the difference equation form,

but it enables us to model the commonly occurring form of heteroscedastity where the

disturbances of a process depend on its underlying level. Heteroscedasticity is

imbedded directly into the model and the parameter r can be estimated simultaneously

with other model parameters using a single estimation procedure. This scheme

contrasts with the conventional approach where Box-Cox transformations are relied

upon to stabilise the variance before estimation. It is assumed in the Box-Cox

transform approach that the model is linear in the transformed variables. The approach

outlined here, however, retains the structure of the original variables, like ARCH

models. Thus it is preferable because we can model the mean level and variance

structures separately if needed (even though we do not do that for the Holt-Winters

case).

Example 2.3

Level dependent seasonal indexes ct may be incorporated into a model with relative

errors as follows:

Yt = (tt-/ bt-i) ct-. + et) (measurement equation) ( 2.5 )
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t, = (t,_1+b1.1)(1+a1et) (level equation) ( 2.6)

b1 =b1.1+(t,_1 +b )a 2e1 (rate equation) ( 2.7)

c, = ci_m(l+a,3e,), (seasonal index equation) ( 2.8)

m being the number of seasons in a year. It is also assumed that the seed seasonal

indexes satisfy the normalising condition0
IC, =M.
1=1-m

Although the equations in this model are not first-order Markovian, they may be

converted to this form with appropriate extensions to state variables - for example see

Harvey (1990) for the details in the context of linear models.

Example 2.4

A simple seasonal model, belonging to the framework after an appropriate definition of

the state vector, is the following generalisation of a random walk:

y,=yi_m(l+et). (2.9)

This forms a convient benchmark against which to compare the performance of other

models in any forecasting exercise.

ESTIMATION, PREDICTION AND COMPUTATION

3.1. Point Estimates and Predictions

Consider the general framework (2.1)-(2.2) in period t after observing the sample

{yr- • y,_1}. The following theorem is crucial to the method of estimation to be

outlined below.

Theorem 1

Given the seed state vector xo and given the sample = y,,}, the state vectors

xl...x„ are all fixed and may calculated with the recurrence relationship



xt 
=gt(xt-i)(  Yt ht(xt-i)) (t ( 3.1)

This recurrence relationship has a closed form solution which depends on the seed

state vector xo and the sample Y. = . The closed form solution is written

accordingly as

x,, = Fn (X0 , Y,). ( 3.2 )

Proof

When t = 1 and xo and yl are given, equation (2.1) may be solved for a fixed value of

e1. The result may be substituted into (2.2) to obtain a fixed value of x1. This process

may be repeated for t = 2,...,n . Equation (3.2) follows from the successive

application of (3.1).

Example 3.1

The recursions for Example 2.1 reduce to

xt = Fx,_, + ( 3.3 )

This is the most general linear, error correction form of exponential smoothing (Box

and Jenkins, 1976). It includes simple exponential smoothing (Brown, 1959), trend

corrected exponential smoothing (Holt, 1957) and the extension incorporating additive

seasonal effects. The closed fthin solution of (3.3) is
I-1

xt = Di; Djay,_i ( 3.4 )
j=0

where

D = F — . ( 3.5 )

The equation (3.4) is a generalisation of the exponentially weighted average associated

with simple exponential smoothing. D is the matrix generalisation of the discount

factor. Provided its characteristic roots all lie within the unit circle the influence of the

past behaviour of a time series on the current state of the process declines with age.

This is an alternative form of the classical invertibility conditions; see Appendix B.
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Example 3.2

The recurrence relationship (3.1) also reduces to (3.3) in Example 2.2. This result

indicates that the error correction formulae for exponential smoothing apply without

change in the presence of heteroscedastic disturbances. Thus, in this sense,

exponential smoothing is a more general methodology than the Box-Jenkins approach.

This finding may explain, in part, why the exponential smoothing methods perform so

well in forecasting competitions (Makridakis et. al., 1982).

Example 3.3

The error correction equations obtained for Example 2.3 are

= ti-i+k-i+a 1 He1-1 k-1
ci_m

= c,_m +a yt
t,_ +h,_1

Using (3.6), and assuming that .a 1 > 0 , the equation (3.7) can be written as

b,=b,_1 +E-C2 (t, —t,_, —b,_,) (3.9)

where "Ce2 = a 2 /a . The equations (3.6), (3.9) and (3.8) are almost identical to the

error correction equations in Holt-Winters (1960). The only difference is that the

trend adjustment term in (3.8) is (Et._, +4_1) rather than t,. The practical difference is

slight and (3.8) has the benefit that the trend estimate for time t does not depend on

Thus, for the first time, we effectively have in example 2.3, a model underlying the

Holt-Winters method. .

The equation (3.2) summarises all the information in the transition equations (2.2).

Substituting into (3.1) gives a relationship of the form



conditional univariate distributions are normal, (y,,...,y,i) does not follow the usual

multivariate normal distribution because of the nonlinear structure of equations (2.1) "

and (2.2). Note that equation (3.11) is completely general, given that the errors are

independent, so that non-normal structures could be specified.

Since normal random variables are unbounded in both directions, model (3.11) is

justified only if we are willing to let the state variables range over the whole real line.

In applications, yr is usually non-negative and the level and seasonal state variables

would be taken to be non-negative also. These restrictions do not pose a problem in

practice as the Holt-Winters scheme would only be used when the process was well

away from the origin. The possibility that the process becomes negative, however,

poses a real problem for the simulations described in section 4. Our solution was to

eliminate from the analysis any runs for which yr became non-positive.

The functions in the equations (2.1) and (2.2) of the general framework potentially

depend on a q-vector 9 of parameters in addition to the variance (72. To illustrate, in

the Example 2.2, 9 consists of the four parameters a,,a2,a3,7 . Hence (3.11) can be

used as the basis of a conditional likelihood function given by

-1 12
- n/2 

L(9,x0f.Yn) = (27ro-2) (n 1c7(x0,9,Y,)) exp -E 
t.i r.1 2k7(x„,e,1/,.:320-2 ( 3.12 )

The values of xo and 0, denoted by 10 and 9, which maximise (3.12) will be called

maximum conditional likelihood estimators.

To understand the nature of maximum conditional likelihood estimators, consider the

ARMA(1,1) scheme derived from Example 2.1 when p= 1, h =1 and F = f. The

model reduces to:

Y,=.frt-1 —(f —a)et_i+et.
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To understand the nature of maximum conditional likelihood estimators, consider the

ARMA(1,1) scheme derived from Example 2.1 when p =1, h =1 and F = f. The

model reduces to:

y, = 5',- —(f +e.

When If 1<1, the process is stationary and the marginal density for yo may be

determined. The conditional maximum likelihood estimator conditions on the value of

yo but does not make use of the marginal density, whereas the (unconditional)

maximum likelihood estimator incorporates the marginal density of the likelihood

function. When f = 1, the process is nonstationary and the marginal density for yo is

not defined, so we must use a conditional form of the likelihood.

It is assumed that a nonlinear optimisation procedure, such as the Gauss-Newton

method, is employed to find those values of xo and 0 which maximise (3.12). Each

stage of the search procedure employed by the optimisation routine conditions on trial

values of xo and 0. The recurrence relationships (3.1) are employed in conjunction

with (3.12) to evaluate the conditional likelihood. In the case of Example 2.3, this is

tantamount to embedding the Holt-Winters method in the optimisation routine.

It is not always practicable to implement the estimation procedure exactly as described

because of high computational loads. In the case of the Holt-Winters model on

monthly time series data, for example, it would be necessary to maximise the

conditional likelihood with respect to a total of 17 quantities. Computational loads

can be reduced significantly if the seed vector xo is chosen using a method that is

independent of the parameter vector 0. The Holt-Winters method, for example, is

often seeded with quantities obtained with Winters (1960) heuristic; for further details,

see Bowerman and O'Connell(1993, pp403-407). This device leaves only the three

smoothing parameters a, ,oc.2,a 3 to be optimised. Traditionally, the optimisation has

been done using a sum of squared errors criterion. The model in Example 3.3 clearly

indicates, however, that a criterion based on relative errors et = — 9, rather
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than the conventional absolute errors should be used. The conditional likelihood

(3.12) has the required orientation in this context.

Once the estimates, denoted by io and 0 , are obtained in this way the standard
In

deviation a can be estimated with a = 1 2 (n— p), p being the number ofr
i.1

elements in both xt and 0. Point predictions can be generated with the equations

S't =h(.1,0)

= fr (it-1,6)

(t=n+1,...n+h)

(t=n+1,...,n+h)

h being the prediction horizon.

(3.12)

(3.13)

3.2 Prediction Intervals

One of our objectives for identifying the model underpinning the Holt-Winters method

was to establish a reliable procedure for determining prediction intervals for time series

displaying level dependent seasonal and irregular components. The aim, in particular,

was to devise a method for obtaining prediction intervals which depend on the seasonal

effects, something that is of considerable practical importance (Chatfield,1993). Four

strategies are developed and compared.

3.2.1 'Operations Research' Approach

The Holt-Winters method is often used in inventory control to predict aggregate

demand over the next h periods (the lead time). The root mean squared error for a

iit 

n

single period is estimated by s= I(y1 — 9t)
2
/n.  Then the root mean squared error

^ .

t=1

of total lead time demand is assumed to be sli; . The practice is based on the

approximation that the future values of a time series are uncorrelated and that the

prediction error does not increase with h. The assumptions are incompatible with the

structure of the exponential smoothing methods and the approach leads to serious
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errors (Johnston & Harrison,1986, Harvey & Snyder,1990) for common linear forms

of exponential smoothing. We examine this albeit flawed, approach, because of its

widespread use in practice.

3.2.2 Linear Approximation Method (LAM)

It is tempting to base estimates of the root mean squared errors on the Hessian of the

conditional log-likelihood function. The conditional log-likelihood function, however,

is not optimised with respect to the seed factors because they are determined by

Winter's seeding heuristic. The Hessian cannot be guaranteed, in these circumstanes,

to be positive semi-definite and so this strategy is not viable.

An alternative approach involves the application of first-order Taylor series expansions

to the equations of the nonlinear model (2.1) and (2.2) with respect to the vector

[x,_, ej about the point formed from the conditional maximum likelihood estimates

ê,] for given e . This yields a so-called linear pseudo-model

y, = d, + hx,.1 + Icte,

x, =a, +F,x,_, + g,e, .

(3.15)

(3.16)

Example 3.4

We illustrate the procedure by revisiting Examples 2.1-2.3.

Example 2.1

Equations (3.15-3.16) are exact, with a, = 0 , d, = 0, h, = 1, F, = F, k, =1

where

a = [al 1, 1 = [11 and F = [1 11
La 2J 1 1

Example 2.2
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Going as far as first-order terms in both m,_, = +b,_, and e, we find, after

some reduction, that d,==yrk_le„ a, = ad„ h, = (1—d, )1 , F, = F —d,ar ,

k,=712,7 and g, = ak, .

Example 2.3

The equations for the Holt-Winters model may also be written in the form of

(3.15-3.16), but is more instructive to write them down directly. The

derivation for (3.15) is as follows. Write the observation equation (2.7) as

Yt -=[tht-1+(nit-i — tht-1)][el-1 4. (Cr-1 — e,_1)][i+a,_1+(e,_1—

Collecting terms as far as the first order, we obtain

y, = 2e, )+ m,_,E,_m (1 + e,) + c,_./31,_1(1+ +

Likewise

it '—aiAt-let +mt-1(1+alet)+ain41,-iet

b, = —a2th, le, +b,_, + (1+ a 2e,)+a2thi_1e,

(3.17)

c, = + ct_m +ci_m(1-i-a3e,)+a3e,_me,

As expected, the leading term in the zero'th order Taylor series expansion in

equations like (3.17) corresponds to replacing each term by its estimate; in

effect, this is the procedure followed by Winters (1960) and many others from

the operations research profession.

If we ignore the prediction errors in the coefficients d„ h„ k„ a„ F,, g, in

equations (3.15-3.16), on the grounds that they will be Op (n-112 ) for long series, we

may determine expressions for the j-step ahead prediction mean squared error of y,

PSME(t,j), as follows. Let h, (j) denote the j-step ahead point prediction of

with similar notation for the other unknowns in (3.15-3.16). Then, from (3.16), the j-

step ahead variance for x,43, V(t, j) say, is given recursively by

V(t,j)= F, j)V(t, j— 1)FA j) + cT2g,(j)Cj) ,

whence

PSME(t, j) =h;(j)V(t, j—l)h,(j)+a2k,2(j);

where V(t,0) a-- 0 .
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The scalars d,, k,, the vectors h,, g, and the matrix F, in equations (3.15-3.16) can

be generated numerically with computing routines for constructing first-order Taylor

approximations of the nonlinear equations. This is inherently simpler than the

analytical approach just described.

Using the theory associated with Theorem 3.1 and equation (3.10), this linear system

can resolved into a linear 'regression' with the general form
*

y, = h; x0 +kiet. (3.18)

The details may be found in Appendix A. The vector of 'regression' coefficients xo is

stochastic. Duncan and Horn (1972) indicate, when considering regressions with

stochastic coefficients, that the conventional weighted linear least squares solution

denoted by io satisfies a generalised version of the Gauss-Markov theorem. If a

denotes the estimate of a obtained using conventional weighted least squares methods

and H is the matrix formed by stacking the row vectors h: the covariance matrix is

given

E(xo —R0)(x0 --ko) = 2(!' . (3.19)

Root mean squared prediction errors, conditional on 6 , depend on the covariance

matrix in (3.19) and can be obtained using the standard methods associated with the

conventional theory of linear regression. We adopted a different but equivalent

strategy to expedite the development of the associated computer programs. The

strategy is based on the observation that the measurement equations associated with

the future periods t = n +1,...n+ h can be rewritten as

0 = d, —y, + kie, . (3.20)

The state vectors were augmented to include the unknown future series values and the

pseudo-linear model expanded to

= d,+ + kie, (3.21)

= + (3.22)

where
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{ 

y, for t = 1,2,... , n

57, = 0 for t = n+1,...,n+h

ii; = 
{0 h'i] if t = 1,2,...,n

[-8,, h] if t=n+1,...,n+h

5"..: =[Yni-i• • • Y n+h ft i
at = F 0 1 .g., = roi .E.,t,=ri . -I

[at] [g1] k ) Lo F(t)]

5i being a unit h- vector with the ith element equal to 1. This enlarged model is

converted to its equivalent regression form (3.18). Then conventional weighted- least

squares methods are used to estimate the enlarged seed state vector conditional on 0.

The top h elements of the error vector Fc — k" correspond to the unknown prediction

errors yn+i — 9. (i) for i steps ahead from origin n. The first h diagonal elements of

the enlarged covariance matrix (3.19) therefore conveniently correspond to the

required prediction mean squared errors. Because of the conditioning on Ei , however,

these results ignore the effect of errors associated with the estimation of 0 , as do the

interval estimates for ARIMA models.

3.2.3 Bootstrap Method

Bootrapping is another alternative for obtaining estimation and prediction intervals.

This technique, devised by Efron (1979, 1982), has been applied in a time series

context to ARIMA processes, the most recent example being McCullough (1994). Its

use for exponential smoothing remains largely unexplored.

The conventional bootstrap approach, when applied to the model (2.1) and (2.2),

involves the following steps:

1. The estimation of x0, a and the disturbances el ,...,en using the method outlined

in section 3.1, the results being denoted by x(0°) , 0) and er,...,e(°) .

2. The repetition of the following steps for trials = 1,...,T
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where k is the number of quantities being estimated in the state vector xo and the

parameter vector a .

(e) The recursive generation for lead times j = of the time series

predictions, state vector estimates and the prediction errors respectively using the

equations:

yn(r)(j) = hn±i( (nr)(j 1))

X(nr)(i) = fn+i(x(:)(j —1))

e(nr) = (.Y(nr+) 
y(T)

(i)) Y(nr) (j)

where x(:)(0) = x(r) .

3. The selection of the prediction intervals for lead times j = 1,...,h as follows:

(a) the ranking of each sample en(1)(j),...,en(r)(j) to give entii(j),...,enITJ(j) where

5_ e n[21( j), ,e1,T -11( j) 5_ eV] (j) .

(b). the selection of the lower and upper limits of the prediction intervals using

Lj = e'1(j) and Uj = e 21(j) where r, = [(1-pr)T/2] and r2 =[(1+pr)T 12],

Pr being the nominal interval probability.

. 3.2.4 Semi Parametric Method

A semi parametric method for interval estimation represents a fourth possibility. It is

similar to the bootstrap method. Letting

E(e(t°1-
3;(70)  t=i 

n — k

denote the standard deviation of the errors generated in step 1, instead of step 2a we

generate the sample of disturbances en,...,en[r] from a normal distribution with mean

0 and standard deviation s0). The rest of the algorithm remains unchanged.
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4. SIMULATION STUDY OF HOLT-WINTERS METHOD

4.1. General Simulation Strategy

We undertook simulation studies on an 80486 desktop computer to gauge the

effectiveness of the above methods. All programs were written in Microsoft Fortran

5.1, the final results being collated with Microsoft Excel 5. Each study consisted of

1000 repetitions of an experiment. The typical experiment K began with the

generation of the disturbances using the normal pseudo-random number generator

RNOR from the NSWC Fortran subroutine library (Morris, 1993). The formulae in

Example 2.3 were then used with the parameter and seed values shown in the "Actual

Value" column in Table 1 to compute a synthetic quarterly time series

y(K),y,(K),...yn(K),,y,...,y,7(k+1 Time series with non-positive values were

discarded in accordance with our discussion in section 3.1. Estimates of the seed
(K)values, denoted by io , were obtained using the Holt-Winters heuristic (Bowerman

and O'Connell, 1993) applied to only the first three years of the series.

Estimates of the smoothing parameters a, denoted by ix(K), were obtained with the

unconstrained nonlinear optimization routine OPTF from the NSWC Fortran

subroutine library using the first 11 values of the synthetic time series. The nonlinear

nature of the model precluded us from identifying and imposing stability conditions on

. It was found, however, that the optimization routine could fail to converge

without the imposition of nonnegative conditions on the elements ofa . This was done

in the context of the unconstrained optimizer by optimizing with respect to their square

roots. To discourage redundant, distant probes of the parameter space by the

optimizer, a penalty of 1020 was incorporated into minus the log-likelihood function

when the sum of the values of the elements of a exceeded of 6.0. The final optimized

values never seemed to reach this bound. The predictions were obtained for periods

n +1,...,17 +8 and compared with the corresponding synthetic series values.
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nature of the model precluded us from identifying and imposing stability conditions on

a. It was found, however, that the optimisation routine could fail to converge

without the imposition of nonnegative conditions on the elements of a. This was done

in the context of the uncontrained optimiser by optimising with respect to their square

roots. To discourage redundant, distant probes of the parameter space by the

optimiser, a penalty of 1020 was incorporated into minus the log-likelihood function

when the sum of the values of the elements of a exceeded of 6.0. The final optimised

values never seemed to reach this bound. The predictions were obtained for periods

ri + 1,...,n +8 and compared with the corresponding synthetic series values.

4.2. Simulation of Point Estimates and Predictions

The first simulation focussed on the statistical preperties of the point estimates and

predictions that emerge from the nonlinear optimisation routine. The results are shown

in Table 1 for three values of the sample size n. The average and root mean squared

errors of the predictions are defined relative to the averages of the generated series

values by the formulae:

E(y.)-9rc))/i000
1000 Il

K=1 

if(y.)-5-)K))2/l000
and

L. yr° /1000 .Yrc) 1000
1000 1000

K=1 K=1

(t=n+1,...,n+h).

The corresponding formulae for the smoothing parameters are:
1000 1000 ..\IVai —6(iK) 2/1000
K=1  and  K

ai ai
(i=1,...,3)

while similar formulae apply for the seed estimates. Note that all numbers in the table

are presented in relative terms correct to two decimal places. The zeros in the table

therefore correspond to numbers that are smaller than 0.005.
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A striking feature of the results is that the predictions for y, are effectively unbiased;

further, as expected, the PSME increases with the forecasting horizon. The root mean

squared errors also increase with sample size. At first sight, this result is paradoxical.

There are two sampling effects, however, to be considered. As the sample size

increases, the estimated state values converge to their true values, so that the

prediction errors are purely driven by the e, term at time t. Secondly, in large

samples, the risk of the process taking on negative values is increased, as we can see

from the numbers of the rejected trials in Table 1. Thus it would appear that larger

values of n served only to make the assumptions of normality and non-negativity

come more sharply into conflict.

The results for the seed level are reasonable. Given that rates are usually relatively

more unstable than levels in economic forecasting, the poor results for the seed rate are

not surprising. It should be recalled that this figure is the rate at t = 0 , so that

inaccurate estimates will have little impact on predictions unless n is small. The

smoothing parameter estimates are biased but the biases, together with their relative

root mean squared errors, decline with increases in the sample size. The seasonal

index estimates were surprisingly reliable. Estimates of the standard deviation of the

disturbances were also effectively unbiased, becoming more accurate with increases in

sample size. Overall, one interesting finding is that the initialisation heuristic

recommended by Winters (1960) provides, with the exception of the seed rate,

remarkably good results. Optimisation of the seed values appears to be unnecessary

from a practical perspective.

4.3 Simulation of Estimation and Prediction Intervals

A simulation study was also undertaken of the four methods for establishing estimation

and prediction intervals described in section 3.2. All intervals in the study were based
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on nominal confidence levels .and probabilities of 90 percent. The simulated

proportions, shown in Table 2, should consequently be as close as possible to 0.9.

It transpired that the simulated proportions for the traditional operations research

approach were quite low. Although it was anticipated that prediction intervals based

on this approach would prove to be too narrow, the seriousness of the problem was

not expected. This result complements and reinforces the findings of Johnston &

Harrison (1986) and Harvey & Snyder (1990). There is, as a consequence, an urgent

need to review current practices in sales forecasting for inventory control.

The linear approximation method (LAM), as described in this paper, conditions on the

a's. Thus, no estimation intervals could be established for these parameters, a

situation reflected by corresponding blank cells in the LAM columns of Tables 2. The

simulated proportions display an upward drift with increases in sample size. The

prediction intervals appear to become quite reliable in large samples.

The simulation of the bootstrap method yielded disappointing results. Although

matters improved with increases in sample size, this method displayed a tendency to

produce intervals that are too narrow.

With the exception of the a's, the results for the semi-parametric method were quite

plausible. The improved performance of this method over the bootstrap method can be

traced to the fact that (a) the simulated time series, as described in section 4.1, are

generated from a normal density, and (b) the method uses a normal distribution in

place of an empirical distribution of the residuals in its internal simulation. It is

unlikely that this performance could be maintained in the presence of disturbances from

other distributions without a corresponding adjustment to the distribution used in the

internal simulation..
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Despite the qualifications, the last three methods for interval predictions were superior

to the traditional OR approach. The differences became quite stark with increases in

the forecast horizon.

5. AN APPLICATION

Canadian Quarterly Total Retail Sales(source:OECD Main Economic Indicators

Database) are plotted from 1960 to 1991 in Figure 2. The time series contains•

seasonal and irregular components which grow with the underlying level. The change

in trend after 1988 suggests the need for a model that allows for structural change.

The time series is therefore a suitable candidate for the Holt-Winters method and the

extensions outlined in this paper.

To help gauge the performance of the Holt-Winters method, we used the naive,

relative seasonal random walk model in Example 2.4 as a benchmark. Predictions from

this model, based on a sample of size n, are given by yn (im + j) = . for

i = 0,1,... and j = 1,...,m . The associated prediction mean squared errors are

computed quite simply with PMSE(72,im+ j) = yn(im+ j)ia 2 for i = 0,... and

j=1,...,m.

The available data extended beyond 1991 to 1993. The final two years of data were

reserved for evaluating the forecasting capacitites of the models. Only the data for the

years 1960 to 1991 were used for the estimation. Predictions for 1992 and 1993 were

therefore conditioned on the sample up to 1991. These together with the associated

prediction errors are shown in Table 3. On this basis the seasonal random walk model

performs best. However, the situation is clouded by the fact that the 90 percent

prediction intervals associated with the Holt-Winters approach, obtained by the linear

approximation method, are smaller. It is likely that the apparent advantage of the
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seasonal random walk would be short lived in the longer term. The estimates obtained

from the Holt-Winters method are shown in Table 4.

6. CONCLUDING REMARKS

We have, in the paper, outlined the advantages to be gained from considering general

integrated forms of AMNIA processes. The integrated form not only facilitates model

specification and identification by enabling us to incorporate explicitly structural

features that are hidden in the difference equation form. We also have demonstrated

that they provide a convenient, flexible basis for heteroscedastic generalisations. We

have shown in this more general context that exponential smoothing transcends the

usual ARIMA with constant error variance processes, thereby identifying a potential

reason for the success of these simple forecasting methods in practice.

The main contribution of this paper has been the discovery of a model underlying the

Holt-Winters method. Another framework involving contemporaneously independent

multiple disturbance sources :

y1 =(e1.1+b,.,)c,-,n(1+6,) (measurement equation) ( 6.1 )

.et = (e1_14-b1.,)(1+,) (level equation) ( 6.2 )

bt = b,.1+ (t11 +k_1)11, (rate equation) ( 6.3 )

ct = ci.,„(1+0)1) (seasonal index equation) ( 6.4 )

is another possibility. The extended Kalman filter for the pseudo-linear counterpart of

this model seems to converge to a steady state. When it does, it can be shown that the

steady state form of the algorithm corresponds to the Holt-Winters method. A

preliminary exploration of these ideas may be found in Ord & Koehler (1990). We

have excluded this alternative from current consideration because the approach is

inherently more complex and involves greater levels of approximation than the single

source of error scheme.
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It has been demonstrated how the model for the Holt-Winters method enables us to

obtain more reliable prediction intervals than methods currently used in practice. It is

anticipated that it will also provide the basis for the development of proper diagnostic

test procedures in the future. The model therefore presents opportunities for an

improvement forecasting practice. Without it such an opportunity would not exist.

We conclude the paper with a possible improvement to the Holt-Winters method. A

problem with the method is that the seasonal indexes, as they adapt over time, loose

their normalisation property. The traditional response to this problem has been rather

ad hoc, users of the method being encouraged to occasionally renormalise the indexes

when deemed to be necessary. A better possibility, which ensures that the seasonal

indexes automatically remain normalised in terms of conditional means, is to replace

the seasonal equation (2.8) by

( 
m-i

c, = m—Ici_i (1+a3et).

This modification yields an enhanced model which warrants serious consideration as a

replacement for the traditional approach.



24

APPENDIX A

In this appendix the details of the derivation of (3.18) from (3.15) and (3.16) are

presented. The relationship (3.1) for (3.15) and (3.16) specialises to

xt = at +Dtxt_i +gt(y, —dt)fict (Al)

where

Di = F, —gth't/lc, (A2)

The closed form solution of (Al) corresponding to (3.2) has the general linear form

xr = Prx0+ zt

Where

(A3)

Pt = DtPt_, , (A4)

the matrix P0 = I, the vector

zt = at +Ftzt_, +gt y://ct (A5)

and

y: = yt —d1 — ht zt_, . (A6)

That (A3) is the solution to (Al) can be seen by induction. Substitution of a lagged

(A3) into (3.15) gives (3.18) where

ht* = ht Pt_, . (A7)



25

APPENDIX B: STABILITY CONDITIONS

Using the backward shift operator, B, we may solve equation (3.3) for xt to give

x, = (I— . This may be substituted into (2.3) to give

[I— =et (B1)

which is the ARIMA representation.

For example, the level-only model has D = 1—a , h = 1 (scalars) and (B1) reduces to

the AREVIA(0,1,1) scheme. The stability condition is Hal < 1 or 0 <cx <2. The

Holt (level-plus-rate) scheme has

D=ra, 1—a11, h=[11
—a 2 1 - a 2 1

and (B1) reduces to the ARIMA(0,2,2) scheme. The stability conditions are a, > 0,

a2 >0 and 2a1 +a,2 <4.
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APPENDIX C: ROOT MEAN SQUARED PREDICTION ERRORS

If we ignore the prediction errors in the coefficients d„ h„ k„ at, F, gt in

equations (3.15-3.16), on the grounds that they will be 0,(n-1/2) for long series, we

may determine expressions for the j-step ahead prediction mean squared error of syn ,

PSME(n,j), as follows. Let h( j) denote the j-step ahead point prediction of

with similar notation for the other unknowns in (3.1.5-3.16). Then, from (3.16), the j-

step ahead variance for x,, 3, V(n,j) say, is given recursively by

V(n, j) = F I)V(n, j-1)F,:( j)+ 0-2g,7( Ag(j),

whence

PsmE(n,j). hin(j)V(n,j-1)h,7(j)+0-2k,(j).

If we compute the PMSE conditionally upon 'e values, an appropriate starting value is

to set V(n,0) 0. It is more correct, however, to use the extended Kalman filter

covariance matrix at time?? as the start value for V(n,0) .
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Figure 2. Quarterly Total Retail Sales: Canada

• 60000

50000

40000 —

Iv
•...
E 30000 -
4a

20000 —

10000 -

Quarters
1960-1991



31

Table 1. Point Predictions and Estimates: Simulation Results

.

Quantity
Actual
Value

Average
Error

32
Standard

Error

Sample Size
80

Average Standard
Error Error

200
Average Standard
Error Error

Prediction 1
, ,

0.00 0.04 0.00 0.04 0.00 0.05
Prediction 2 0.00 0.04 0.00 0.05 0.00 0.06
Prediction 3 0.00 0.05 0.00 0.06 0.00 0.07
Prediction 4 0.00 0.06 0.00 0.06 0.00 0.08
Prediction 5 • 0.00 0.07 0.00 0.08 0.00 0.10
Prediction 6 0.00 0.08 - 0.00 0.09 0.00 0.11
Prediction 7 0.00 0.09 0.00 0.10 0.00 0.12
Prediction 8 0.00 0.10 0.00 0.11 0.00 0.14
Seed Level 100 -0.01 0.03 0.00 0.03 0.00 0.03
Seed Rate 1.00 0.04 1.08 -0.13 1.01 -0.23 1.08
Seed Index 1 1.20 0.00 0.01 0.00 0.01 0.00 0.01
Seed Index 2 0.95 0.00 0.01 0.00 0.01 0.00 0.01
Seed Index 3 0.80 0.00 0.01 0.00 0.01 0.00 0.01
Seed Index 4 1.05 0.00 0.01 0.00 0.01 0.00 0.01
Alpha 1 0.50 0.23 0.52 0.05 0.24 0.01 0.14
Alpha 2 0.10 0.21 0.94 0.17 0.50 0.10 0.29
Alpha 3 0.10 -0.11 1.21 -0.13 0.63 -0.06 0.36
Std Devn 0.03 -0.02 0.15 -0.01 0.09 0.00 0.05
Rejected Trials 1 191 1434

,

..
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Table 2. Ninety Percent Intervals: Simulation Results

Quantity
32 •

Trad LAM Boot Semi

Sample Size
80

Trad LAM Boot Semi Trad
200

LAM Boot Semi,
Prediction 1 0.67 0.85 0.81 0.91 0.73 0.89 0.88 0.92 0.64 0.90 0.88 0.90
Prediction 2 0.70 0.84 0.79 0.88 0.74 0.88 0.86 0.90 0.66 0.90 0.88 0.91
Prediction 3 0.72 0.82 0.77 0.88 0.76 0.86 0.86 0.89 0.70 0.90 0.88 0.91
Prediction 4 0.54 0.81 0.75 0.84 0.59 0.87 0.85 0.88 0.55 0.89 0.86 0.88
Prediction 5 0.40 0.77 0.73 0.85 0.50 0.84 0.85 0.88 0.45 0.88 0.86 0.91
Prediction 6 0.44 0.78 0.71 0.81 0.53 0.84 0.83 0.86 0.46 0.89 0.84 0.89
Prediction 7 0.46 0.77 0.70 0.82 0.56 0.83 0.84 0.85 0.48 0.88 0.84 0.88
Prediction 8 0.32 0.73 0.70 0.80 0.42 0.82 0.83 0.86 0.38 0.86 0.82 0.91
Alpha 1 0.78 0.76 0.83 0.86 0.87 0.89
Alpha 2 0.78 0.71 0.75 0.69 0.80 0.76
Alpha 3 1.00 1.00 . 1.00 0.99 0.98 0.98
Seed Level 0.79 0.71 0.84 0.88 0.82 0.84 0.88 0.86 0.86
Seed Rate 0.61 0.65 0.74 0.82 0.83 0.85 0.85 0.86 0.88
Seed Index 1 0.81 0.81 0.92 0.79 0.88 0.94 0.77 0.90 0.91
Seed Index 2 0.81 0.81 0.91 0.79 0.90 0.92 0.79 0.91 0.89
Seed Index 3 0.80 0.82 0.91 0.78 0.87 0.93 0.81 0.91 0.89
Seed Index 4 0.79 0.85 0.94 0.79 0.87 0.90 0.76 0.90 0.91,
Trad = Traditional Stationary Approximation Method
LAM = Linear Approximation Method
Boot = Bootstrap Method
Semi = Semi-Parametric Method



Table 3. Predictions of Canadian Total Retail Sales

Holt-Winters Method Naive Seasonal Method

Lower Upper Error Actual Lower Upper Error Actual
Date Actual Prediction Limit Limit Margin Error Prediction Limit Limit Margin Error 

Mar Qtr 1994 39416 38817 37020 40614 5% 2% 38567 32264 44869 16% 2%
Jun Qtr 1994 47683 47373 44585 50161 6% 1% 47548 39739 55356 16% 0%
Sep Qtr 1994 46901 45221 41957 48484 7% 4% 45869 38575 53164 16% 2%
Dec Qtr 1994 51049 48729 44528 52931 9% 5% 49225 41486 56963 16% 4%
Mar Qtr 1995 41004 38409 34303 42516 11% 7% 38567 29654 47480 23% 6%
Jun Qtr 1995 50009 46875 41170 52579 12% 7% 47548 36505 58590 23% 5%

Sep Qtr 1995 49405 44744 38598 50889 14% 10% 45869 35553 56186 22% 8%

Dec Qtr 1995 53398 48214 40799 55628 15% 11% 49225 38280 60169 22% 8%

Note: Error Margin = 100*(UpperLimit-LowerLimit)/(2*Prediction)
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Table 4. Canadian Total Retail Sales: Holt-Winters Model Estimates

Lower Upper Error
Quantity Estimate Limit Limit Margin
Seed Level 4089 3918 4259 4%
Seed Rate 18 -59 96 422%
Seed Index (Mar) 0.88 0.87 0.90 2%
Seed Index (Jun) 1.04 1.02 1.06 2%
Seed Index (Sep) 0.98 0.96 0.99 2%
Seed Index (Dec) 1.10 1.08 1.12 2%
Alpha 1 0.67
Alpha 2 0.11
Alpha 3 0.23
Std Devn 0.03
Note: Error Margin = 100*(UpperLimit-LowerLimit)/(2*Estimate)




