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A PARSIMONIOUS AUTOCORRELATION CORRECTION

FOR SINGULAR DEMAND SYSTEMS

Keith R. McLaren

1. Introduction

The deterministic specification of a system of budget share equations will

satisfy a number of restrictions derived from economic theory. Similarly, the stochastic

specification must also satisfy a number of restrictions. Two approaches appear to

have emerged to handle these restrictions on the stochastic component in estimation.

In what may be referred to as the "traditional" or additive errors approach, the

stochastic term is added to the deterministic specification of the shares. Adding up

then implies that these errors add identically to zero across equations, and this
singularity is accommodated in estimation by deleting one of the equations. Barten
(1969) and Powell (1969) have shown the conditions under which parameter estimates
are invariant to the equation deleted. This adding up property was shown by Berndt
and Savin (1975) to imply strong restrictions on any autocorrelation structure of a set

of additive errors. In applications this has been taken to imply a choice between a
diagonal system with a common scalar autoregressive parameter, or a "full"
autoregressive system with number of parameters equal to the square of the number of
independent equations. In the second approach, which may be referred to as the
compositional data analysis (CODA) approach, (see, for example, Aitchison (1986)),
or more usually in econometrics as the logit approach, the shares are transformed to
logratios before the stochastic error is introduced, in order for the normality
assumption to be consistent with the requirement that budget shares be constrained to
the unit interval. In this approach singularity of the errors is implicit, because the
system is usually specified by normalizing on a particular share. For this alternative
stochastic specification of share equations, Chavas and Segerson (1986) have noted
that such a specification has different implications for autocorrelation structure than
the Berndt and Savin result for the case of additive errors.

This paper attempts to unify the results of these two approaches, and provide a
parsimonious and easily estimated autocorrelation structure even for "standard"
singular systems. In Section 2 the normalisation implicit in the CODA approach is
applied in the additive errors framework, and it is shown how this normalization allows
the specification of a non-scalar diagonal autoregressive structure for the transformed
model. In Section 3 the errors of the CODA approach are specified in a way analogous
to that used in the additive errors approach. The similarities are then clarified, and the
Chavas-Segerson result is shown to be due to the particular interpretation of the set of
unidentified stochastic variables. The issue of invariance is discussed in Section 4, and
its meaning in these cases clarified. Finally, Section 5 proposes a general but
parsimonious autocorrelation structure for such models.
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2. Additive Errors Form

Consider the system of equations with the "traditional" stochastic specification

(2.1) w, = W(x, ,13) + u,

where w, is an Nx 1 vector of observed shares, W is an Nx 1 vector of share

equations which are functions of the data vector x, and parameter vector 0, and u, is an
Nx 1 vector of multivariate normal errors, with mean zero and variance-covariance

matrix Z. Assuming that the w, and W, satisfy the adding up conditions
=land t'147, =1, where t is the vector of ones, then it is well known that t'u, =0

and is singular of rank n = N-1. In addition, if the error term is autoregressive

(2.2) 141 = Rui_i+ e,

then Berndt and Savin(1975) have shown that the adding up conditions imply that

l'et = 0
and

t'R =

where k is a scalar constant, implying that the columns of R sum to the same constant.
In practice, this restriction has usually been taken to imply either of the following two
cases:

(a) R is diagonal, with only one free parameter, the common diagonal element
k, or
(b) R is "full", in which case R has nN+1 free parameters, of which only n2

parameters are identified.
It would be convenient for empirical work to have available a parsimonious

specification in which R had a number of free parameters of the order of the number of
equations, n, and to have available a simple estimation method. Such an implied
specification can be motivated and derived as follows.

In order to estimate (2.1) it is common to delete an equation, say the last. This
corresponds to premultiplying (2.1) by the known nx N matrix

A=

."..1 0 ••.• 0 0

0 1 •••• 0 0

••••
0 0 1 0

Following McLaren(1990) it is more transparent to consider the non-singular
transformation induced by premultiplying by the (nonsingular) N xN matrix
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B=

which is A converted to a square matrix by the addition of a row of ones. This
replaces the last (degenerate) stochastic equation by an identity, and makes transparent
both the equivalence to (2.1) of the resulting specification, (being related by a
nonsingular, known, transformation), and the legitimacy of deleting an arbitrary
equation (for this particular transformation, the Nth, which has been mapped into an
identity) for the purposes of estimation. All that is really happening with this
transformation is that one particular singular N-dimensional representation of a
nonsingular n-dimensional error process is being replaced by another.

Consider now the alternative transformation, motivated by the CODA
approach, of normalizing on the Nth share, which can be generated by premultiplying
by the nx N matrix (in Aitchison's notation)

F=

1 0 0 —1

0 1 0 —1••

0 0

• •

1 —1

i.e. each of the wi is replaced by wi — wN , i=1,...,n, and each of the ui is replaced by

- UN , to give the model

(2.3) Wi — wN = — WN —U,,, (i =1,...,n)

Again, this is merely an alternative representation of the error process, and is made
transparent if the transformation is in terms of the nonsingular N x N matrix

c=

-1 0 0 —1-

0 1 ••• 0 —1

•••

0 0 ••• 1 —1

00 ••• 0 1

which preserves the last equation of (2.1) in the system. The system can then be
represented in terms of the transformed variables wi — wN , the functions

— WN , and the errors ui — UN by the "structural" system:
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(2.4)

_ ...... ••,, ... ..... , - -
1 0 ... 0 0 w1 — W N 1 0 ... 0 0 Wi —WN lii — UN

0 1 ... 0 0 w2 — wN 0 1 ... 0 0 W2 —WN U2— UN

• - • •• • •• + • • •

0 0 ... 1 0 Wn —WN 0 0 ... 1 0 Wn —WN Un — UN
1 1 ... 1 N W N 1 1 • • • 1 N WN 0-- -

• • •

Defining D to be the matrix premultiplying the system above, the role of D has been to
annihilate the last error from the system. Thus it is clear that the last equation can be
deleted, and that there is a known nonsingular transformation back to (2.1), assuring
invariance of parameter estimates based on maximum likelihood. Thus a nonsingular n
dimensional system equivalent to deleting the last equation from (2.1) is obtained by
successively premultiplying (2.1) by C, then D, and then deleting the last (clearly
redundant) equation. When estimated in this form, the resulting system can be
embedded in the above structural system, and mapped directly back to (2.1) in a one-
to-one manner.

To motivate the type of structure this allows on the autocorrelation term,
consider a simple example with N=3 , and how the transformation of variables can be
accomplished. Then premultiplying (2.2) by F gives:

[Liu U3t R31

U2t U3t R21 R31

R12 — R32 R13 -- R33

R22 — R32 R23 — R33

U1,-1

u2I-1 ÷
[elt e3t

e2r — e3t
-u3:-1-

This can be written as a difference equation in the transformed variables ui —uN as

(2.5) [uit U3t [RI --R

U2t 143t R21 — R31
][R22 R32 U2t -1 U3t -1 e2, — e3t

uu-1 — u31-1 eit — e31R12 — R32

provided the following restrictions are satisfied:

R13 — R• 33 +R11 R31 +R12 -R32 = 0

R23 R• 33 + R21 — R31 + R-22 — R32 =0.

Now if the coefficient matrix in (2.5) is specified to be diagonal, the adding up
restrictions do not require that these coefficients be equal, i.e. there are 2 (= n) free
coefficients. If these two free coefficients are denoted a and b, then the elements of the
original R matrix are further restricted as

R11 — R• 31 = a

R12 — R32 =

R21 R31 =

R22 R32 = b •

By the results of Berndt and Savin, these restrictions are not sufficient to identify all of
the elements of the R matrix. In particular, the scalar k is not identified, in common
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with case (b) above. Setting k to zero for simplicity, the implied structure of the R
matrix is

R=

2a —b a+b

3 3 3
—a 2b a+b

—b
3 3 3
—a —b a+b

3 3 3

(In general, k/3 can be added to each of the elements of R.)
For arbitrary N, this structure for R generalizes to

(2.6)
N

nal —a2 —a3 ••• yai — Nal

—a na21 —a3 ••• 

i=1

Na2

—a1 —a2 na3 ai —Na3
i=1

• • •

•• •

— 3 •••—a1 —a2 aEai

Estimation is simple, being in terms of the transformed variables wi — wN and the
transformed deterministic components W( z, 0)- WN (Z, pi), and lagged values of these
for each i.

In general this structure can be represented by transforming (2.1) by
premultiplying through by

to give

where

I —CI
E=DC=

[t.' 1

Ew,=EW,+Eu,

Eur =ERuz_i +Ee,

=ERE-'Eut_i +Ee,

or, selecting the first n rows (since D annihilates the N th error term),

v,=Sv,_1 +1,

where
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S = the nxn upper left block of ERE-'

u, — UN el — eN
U2 - UN e2 - eN

vt = and f=
• • •

UN_i - UN

• •

_eN-1 - eN

If R has the structure (2.6), then S will be diagonal with unequal diagonal terms.

3 Logratio Form

It can be argued that a more appropriate statistical model for shares is the
logratio form

(3.1) yi =log(wi I wN)=log(Wi IWN)+vi (i =1,...,n)

with v modelled as multivariate normal. For a discussion of this specification, see Fry,
Fry and McLaren (1993), Aitchison (1986), Considine and Mount (1984)). In fact
Chavas and Segerson (1986) argue that the errors in such a system can be more freely
specified than the errors in (2.1), and relate these restrictions to what they call the
"structural" model

(3.2) = N
E
'
.(z, Nexp(u.i.)

EE;(z,p)exp(up);=1

for which the errors u: are unconstrained, and where the Ei indicate expenditures.
The analogy with the results of Section 2 is, however, more transparent if (3.1) is
compared with the centered logratio model

(3.3) z = log(wi /) = log(Wi /117)+u , (i =1,...,N)

where IT and 1,1-7 are the geometric means across elements i of the w and W. (This
structure is provided in Aitchison (1986) pp. 78-79). In fact the u in this model are
completely analogous in their properties to the errors in (2.1), the only difference being
that the data and the deterministic terms add identically to zero rather than unity, and
the vi of (3.1) are constructed as ui — UN from the errors of (3.3), so are analogous to
the errors of (2.3). In particular, there is from the previous section a known one-to-
one mapping between the system consisting of (3.1) and an appended identity and
(3.3), in exactly the same way as the mapping between (2.1) and (2.4) can be carried
out. (Aitchison (1986) notes (in a problem on p. 89) a similar, but not one-to-one,
mapping between the logratios and the centered logratios : y = Fz and
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z = F'(FFT y ).

In terms of the errors of (3.2), note that if the numerator and denominator in
(3.2) are multiplied by exp(a) , where it may be an independent error, (or indeed, Ii
could be any of the ui) then the resulting model is observationally equivalent to (3.2).
The errors of (3.2) are hence of full rank N, and while it may be of interest to note that
the degeneracy comes from the ratio form of (3.2), the presence of this extra error
term leads to an essential nonidentifiability. But this independent error disappears
when differences are formed, so the vi of (3.1) can just as well be identified either with
— UN or with ui* — um* . Thus it can be argued that the apparent generality of the

form (3.1) argued by Chavas and Segerson is in fact an artifact introduced by the
relationship to the non-identified error term a , and specification of autocorrelation
structure in terms of this unidentified error. Comparison instead with the centered
logratio form (3.3) clarifies the structure of the autocorrelation properties, and shows
that they are perfectly analogous to the Berndt and Savin results.

4. Invariance

The expression "invariance to deleted equation" seems to have at least two
interpretations in the literature, and the parameterization of the R matrix considered
above is invariant in terms of one. of these, but not the other. The first interpretation is
most easily understood by its implicit use in Berndt and Savin , and essentially requires
that it be possible to estimate a transformed model in such a way as to preserve
parameter estimates and likelihood values. Invariance in this sense depends critically on
the imposition of the condition that the R matrix have equal column sums. In this case,
if S is parameterized as a diagonal matrix , then the model that results from normalizing
on other than the Nth equation would have to be estimated with the correspondingly
transformed (nondiagonal) S matrix. In fact the R matrix structure considered above is
quite analogous (in implications, not in structure) to the examples given by Berndt and
Savin (compare their Models 2, 3, 4 and 5 on p.949 for which it is stated that
parameter estimates are invariant to the equation deleted).

A second, and probably more appealing, interpretation of the concept of
parameter invariance is most clearly explained in Aitchison (1986), p.95-96. Define a
matrix P to be a permutation matrix if it is constructed by interchanging the columns of
an identity matrix. Then applying P to a set of budget shares amounts to a reordering
of these shares in the same way that the identity matrix was reordered to give P.
Define

w = Pw.
Statistical procedures are then said to be invariant if they are invariant to the
application of such permutations, i.e. if the same parameter estimates and likelihood
values result if the procedure is applied to w or wp. Now if a particular structure such
as the diagonality of a matrix is considered part of a statistical procedure, as distinct
from a property of the particular element, then the question of such invariance is
nontrivial. In general, if S is diagonal for w, it will not be diagonal for wp. From (2.2)

Pu, = PRP-1 Pu, + Pe,.

Then
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EPut = EPRP-1E-1EPui_1+ EPei

It can be shown by counter-example that ERE-' having the top left nxn matrix

diagonal does not ensure that EPRP-1E-1 has the same structure. Thus if the diagonal
structure of the S matrix is considered part of the statistical model, there are N such
models depending on the normalizing share. The problem with specification (2.6) is
the asymmetric treatment of the Aith column of R.

5. A Fully Invariant Specification

Diagonality of the R matrix is analogous to diagonality of the variance-
covariance matrix. Because of adding up, the variance-covariance matrix cannot be
diagonal, and hence diagonality cannot be equated with independence. Similarly,
adding up ensures certain structure on R, and diagonality of R is not the neutral case.
Consider now the following specification of R, which unlike that of Section 2, treats

the Nth column in a symmetric way. For N parameters ai, let a = ai.
i.1

Define

(5.1) R=

nal a— a2 ... a— a N

a— a1 na21 ... a— a N

a—a1 a —a2

• • •

•• na

Such a structure for R is clearly invariant to permutations, and contains N free
parameters, of the same order as the number of equations. By the reasoning above this
structure could be applied either to the additive error structure, (2.1), or to the
centered logratio form, (3.3). While there is no obvious transformation to make
estimation simple, as with the structure in Section 2, estimation by constrained
maximum likelihood would be straightforward.

The structure for R in (5.1) is clearly inconsistent with the result from Chavas
and Segerson (1986) that the rows of R should sum to the same constant. Two points
can be made to clarify this relationship. First, the structure in (5.1) applies to the
stochastic process ut which has dimension N but rank n, not to u: which has dimension
and rank N. It is this degeneracy that has been used in Section 2 in setting up the
transformation from u, to the process v, that has the same rank. Secondly, the Chavas
and Segerson result is based on the relationship in their equation (20a), which in the
notation of this paper is

(5.2) SF = FR.

This relation implies nN linear equations among the n2 elements of S, and the N2
elements of R. Clearly for any given S their are many possible solutions for R, and for
arbitrary R there is not necessarily a solution for S (this relates to the discussion on
identification in Berndt and Savin (1975)), but if an unrestricted (rank N) process
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= Rut_i+

is to be transformed to the rank n process

v, = Svi_i +

then rank reducing restrictions will have to apply in some form. In general, apart from
the fact that the particular structure of F implies that any solution R of (5.2) is
determined only up to an additive constant, any solution to (5.2) can be written in the
form

R= F9 SF

where F. is a generalized inverse of F (one possibility is F'(FF') 1). But this implies
that Rt =0, since Ft =0, which is effectively a rank reducing transformation, and
another interpretation of Lemma 1 of Chavas and Segerson. With this reduced rank
structure for R it is then clear that Rut_, can be rewritten as Rv1-1 where R1 is the first
n columns of R. Thus the implied structure for R is really just another aspect of the
non-identifiability of the u*, the rank N error process.

6. Conclusion

It has been argued that the apparent difference in implications of an
autocorrelation structure applied to the additive errors model or to the logratio model
is more a matter of interpretation than substance. As a byproduct, two alternative
parsimonious specifications of the autocorrelation structure in such models have been
suggested, which allow the number of autocorrelation parameters to be proportional to
the number of equations. One of these specifications satisfies only a limited definition
of invariance, but the other is fully invariant.
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