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ABSTRACT
Given that the Euclidean distance between the parameter estimates of
autoregressive expansions of autoregressive moving average models can be
used to classify stationary time series into groups, a test is proposed
to determine whether or not two stationary time series in a particular
group have significantly different generating processes. The results of

computer simulations are given.

INTRODUCTION

The classification of time series has applications in various fields,
some of which are geology, economics, oceanography, psychology and
engineering. In particular classification of time series using cluster

analysis has been demonstrated by various authors.

Bohte et al. (1980) defines a number of distance measures which are based

on autocorrelations and/or cross correiations of empirical time series.
The time series are classified into groups according to one of the
distance measures and occurs over several stages. At each stage a group
is separated from the rest of the time series and a specific ARIMA model
is then adopted for that group. The model 1is then fitted to one
representative of that group. This method of clustering avoids having to

fit ARIMA models to a large number of time series.

Piccolo (1990) proposes fitting ARIMA models to all time series in a
given set and then classifying these fitted time series into groups

according to a distance measure that is based on the coefficients of the




AR(w) operator of the fitted ARIMA model. Tong et al. (1990) uses
various measures of similarity and dissimilarity based on the residuals
of the fitted ARIMA and bilinear models and uses them to classify various
time series. Shaw et al. (1992) determines power spectra of various
time series and then obtains Euclidean distances between the power
spectra using 256 frequency values. Cluster Analysis is then applied to

these Euclidean distances.

In this paper we will consider the distance measure proposed by Piccolo
(1990) but base it instead on stationary and invertible ARMA models and

develop a related test of significance.

DEFINITIONS
2.1 Distance Measure

Let Zt be a =zero mean univariate stochastic process and a, be a

univariate Gaussian white noise process i.e a, ~ IN(O,c” ). Then Zt is
a

such that Zt € L, where L is the class stationary and invertible ARMA
models. Using the standard notation of Box and Jenkins (1976), such a
model is defined as

¢(B)Zt = G(B)at

¢(B)

e(B)




where TI(B) is the the AR(w) operator and is defined as

#(B)e ' (B) =1 - nB - n282

By Piccolo (1990) a measure of structural diversity between Xt € L and
Yt € L can be obtained by comparing respective sequences and this

assigns a metric on L, which is the distance measure

where njx and n‘y are the coefficients of the AR(») operators of XL and
j

Yt respectively.

Given several time series to be classified, instead of ARMA modelling of
each time series, automatic modeling of AR structures by means of a
definite criterion like Akaike’s Information Criterion 1is reasonable.
Hence time series can be clustered by grouping fitted AR models directly

from a matrix of distance measures of the form d(X,Y).

Define the vector of AR(kl) and AR(kZ) parameters for the processes Xt

and Yt respectively as

m

X

I [ n respectively,
y ly

and the vector of AR(kl) and AR(kz) parameter estimates of the series X,

and Y, respectively as

and

respectively,




Hence the distance measure d(X,Y) becomes

~

[~ R
d(X,Y) _(nx my' (Mo M)

where k = max (kl, k2) and k1 and k2 are the orders of the AR models

fitted to the series X, and v, respectively.

~

k then w2, = O for j
1 Jjy

~

k then n, = O for j
2 jx

2.2 Test of Hypothesis

We now propose a significance test to determine whether or not two finite
stationary series in a particular group have significantly different
generating processes. If there is no significant difference between the
generating processes of all the series in a particular group, then any
series in the group can be regarded as a représentative of the group.

The test is of the hypotheses:

HO: There 1is no difference between the generating processes of two

stationary series i.e. T = TI.
X y

H1: There is a difference between the generating series of two stationary

series i.e. M = T1I.
x y

Berk (1974) has truncated the infinite order AR process to order k and
has obtained the AR estimates by the method of least squares. This has

been done by assuming that k is chosen as a function of T, such that




as T > o , where T is the length of the stationary series xL to which

the AR(k) model is fitted.

Using the results of Berk (1974), Bhansali (1978) has derived the
asymptotic normal distribution of the AR estimates which is

VI (T - m) - N(O, oij;‘(k))

X

where oix is the variance of a o the white noise process associated with
X
the series X, and R (k) 'is the wupper kxk submatrix of an infinite
X

dimensional covariance matrix

For two independent series to which truncated AR(k) models are fitted

- A 2 -1
Mmoo 2 N, of R(k)/T)

X

~ 2 -1
T N(TT ,
y ( ;' Ty Ry (k)/ T)

Therefore

T-m0 %2 NOm-1 , V)
x y X y

V=1/T (¢ R1'(k) + o
ax x ay

R (k)
y




X

(k) are both positive definite. Therefore V is

Hence follows a noncentral chi-squared
distribution with k degrees of freedom and noncentrality parameter

T -1
(Hx Hy).

A 2
~ x(k,T) .

Hence the proposed test statistic is

_ s -~ T -1 -
D(X,Y) = (ITx Hy) \Y (1’[x Hy)

Now since V is nonsingular and

plim V \Y

D(X,Y) Pk, 1) .

A

Under Ho T = 0, therefore D(X,Y) xz(k).

Hence Ho is rejected at the 100a% level of signifigance if D(X,Y) >
xi(k), where xi(k) is the (1-a)th quantile of the chi-square distribution
with k degrees of freedom. If Ho is rejected, we conclude that the
generating processes of the series X, and y, are significantly different

from each other.

Since D(X,Y) satisfies the properties of non-negativity and symmetry it

can also be used as a distance measure by which series may be clustered.




ILLUSTRATION

To illustrate the use of this test statistic both in hypothesis testing
and as a measure of <classification, twenty one series of 200
observations each were simulated from AR(1), MA(1), AR(2), MA(2) and
ARMA(1,1) models. Each of these series was then fitted with truncated
AR(k) models, with the order k- selected using Akaike’s Information
Criterion. For every pair of series, the Euclidean distance measures
d(X,Y) and value of the test statistic D(X,Y) were calculated. Clustering
was performed using the d(X,Y) as well as the D(X,Y) values.

Hierarchical methods of clustering such as average, simple and complete

methods and the Ward method were considered.

The series were labelled as follows: if a series was simulated from an
MA(1) model with parameter 0.3, then the label was MA13; if a series was
simulated from an ARMA(1,1) model, with parameters -0.2 and 0.5, then

the label was ARMA_2S.

Power calculations for « = 0.05 and @ = 0.01 were performed for the test

when series were generated from the following pairs of models:

AR(1) ¢ = -0.3 and‘MA(l) 6 =0.3

AR(1) ¢ -0.3 and AR(1) 6 = 0.3.

3.1 Results

The estimates of the series after they were fitted with truncated AR(k)
models, the Euclidean distance values d(X,Y) and the test statistics
D(X,Y) for comparing every pair of series appear in Tables 1,2 and 3 in
the Appendix. Agglomeration schedules for each of the four methods of
clustering performed on d(X,Y) and D(X,Y) measures appear in Tables 5 to

11. The corresponding dendrograms appear in Figures 1 to 8 and the




graphs of the power functions are shown in Figures 9 to 12 in the
Appendix.

3.2 Comments.

By examining the dendrograms in the Appendix, it 1is clear the two
distinct clusters form, regardless of which method of clustering was used
and regardless of whether d(X,Y) of D(X,Y) was used. These clusters are
as a result of the amalgamation of 5 to 7 smaller clusters. We shall
examine these smaller clusters to determine whether or not therer are
significant differences between the generating processes of the series in

these clusters.

Consider for example the clusters obtained by the average linkage method
using d(X,Y) and D(X,Y). These appear in Figures 1 and 5.In what follows
the series shall be referred to by their numbers instead of their

generating processes.

Measure Clusters

d(X,Y) (1,2,3) (4,5) (6,7,8) (9,10) (11,12,13)
(14,15,16,17) (18,19,20,21)

D(X,Y) (18,19,20,11,12,21) (14,15,16,17) (13)
(6,8) (1,2,3,4,9,5,7) (10)

Consider the cluster (18,19,20,11,12,21) which forms using the D(X,Y)
measures. From the agglomeration schedule it can be seen that this
cluster forms at stage 14. Comparing the D(X,Y) values with the
appropriate chi square critical values, it can be seen :that there is no
significant difference between the generating processes of the following
pairs in this cluster: (18,19), (18,20), (18,11), (18,21), (19,20),
(21,12) and (11,12). However there is a significant difference between

the generating processes of each of the series 1in the cluster




(18,19,20,21,11,12) and all the other series in the other clusters. At
stage 14, when using the d(X,Y) measure, the series 18,19,20,21,11,12
appear in two clusters,i.e. (11,12,13) and (18,19,20,21). As well as
there being no significant difference in generating processes between
some pairs in each cluster, there 1is also no significant difference
between the generating processes of one or more series of (11,12,13) and
one or more series of (18,19,20,21) at this stage. For example, there is
~no significant difference between the generating process of 18 and 11,
but they appear in two different clusters. However these clﬁsters merge

at stage 16.

Consider the cluster (1,2,3,4,9,5,7) which forms when using the D(X,Y)
measures. From the agglomeration schedule it can be seen that this
cluster forms at stage 13. Comparing the D(X,Y) values to the appropriate
chi-square critical values, it can be seen that there is no significant
difference between the generating processes of the following pairs in
this cluster: (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (5,9) and (5,7).
However there 1is a significant difference between the generating
processes of each of the series in the cluster (1,2,3,4,9,5,7) and all
the series in the other clusters. However at stage 13, when using the
d(X,Y) measures, the_ series 1,2,3,4,9,5,7 appear 1in four clusters
(1,2,3), (4,5), (6,7,8) and (9,10). A number of pairs of series which
have no significant difference in their generating processes appear 1in
different clusters at this stage. However these clusters merge at stage

19.

Consider the cluster (14,15,16,17) which forms when using the D(X,Y)

measures. From the agglomeration schedule it can be seen that this

cluster forms at stage 12. Comparing the D(X.Y) values to the




appropriate chi-square critical values, it can be seen that there 1is no
significant difference between the generating process of the pairs
(14,15) and (15,16). However there is a significant difference between
the generating processes of each of the series in the cluster
(14,15,16,17) and all the other series in the other clusters. Using the

d(X,Y) measures this cluster forms at stage 10.

Consider the cluster (6,8) which forms when using the D(X,Y) measure.
There 1is a significant difference between the generating processee of
these series. There 1is also a significant difference between the
generating processes of each of the series in the cluster (6,8) and all
the other series in the other clusters. Using the d(X,Y) measure these

two series appear together in the cluster (6,7,8).

Using the D(X,Y) measure, the series 10 and 13 each appear on their own.
There is a significant difference between each of these series and every

other series in the other clusters. Using the d(X,Y) measure, 10 appears

in the cluster (9,10) and 13 appears in the cluster (11,12,13).

It is clear from the above results that in some cases it is possible to
identify more homogeneous clusters at an earlier stage using the D(X,Y)
rather} than the d(X,Y) measure. More or less similar results were

obtained when the other methods of clustering are used.

From the graphs of the power functions in the Appendix, it can be seen
that, for the pairs of generating processes considered, the test Iis

reasonably powerful.




4. CONCLUSION

This simulation study shows that

i) the test statistic D(X,Y) has the ability to test for significance
since any two series whose generating processes are quite
different from each other, for example AR(1), ¢ = 0.3 and AR(1),
¢ = -0.3, are deemed to have significantly different generating
processes whereas many series with like generating processes, for
example AR(1), ¢ = -0.3 and MA(1),6 = 0.3, are deemed to have
generating processes that are not significantly different from

each other.

when either the d(X,Y) or D(X,Y) measures are used, there are

pairs of series in some clusters when Ho is rejected.

when the D(X,Y) measure is used, it is possible to identify more

homogeneous clusters, in some cases at earlier stages, than when

the d(X,Y) measure is used.

If given a large number of series, one just wishes to identify groups of
similar series, then clustering using the distance measure based on
parameter estimates of. ARIMA models as suggested by Piccolo (1990) is
sufficient. However we believe that if there is a need to use one of the
series in a cluster as a representative of that cluster, on which further
analysis is to be carried out, then there should not be a significant
difference between the generating processes of all pairs of series in

that cluster.
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APPENDIX

TABLE 1

AR ESTIMATES OF THE 21 SIMULATED SERIES

WO d WN P

|
[eNeoNeNeoNoNolNoNoNoNoNeNe)

.3123
.3693
. 4883
.5162
.7139
.9192
. 7546
.9078
.6463
L7214
.3942
.5145
.6950
. 7360
.7936
.9001
.9348
.3392
.4378
.4723
.2150

.0000
.0000
.0000
.2531
.4224
.0000
.2194
. 1335
.4836
. 7660
.2848
.3849
.5824
.0000
.0000
.0000
.2982
.0000
.0000
. 1366
. 1501

[eNeoNeoNeoNeoNeoNoNeolNoNeoloNoolNeNeoNoNoNoNoNo o]

.0000
.0000
.0000
. 1810
.2332
.0000
.0000
. 3265
.3875
.5668
.1446
.1974
.0000
.0000
. 0000
.0000
.0000
.0000
.0000
.0000
.1769

|
[eNeoNeoNeoNeoNeoNoNeoNoNolNeoNoNoNeNoNoNoNolNoNo o]

.0000
.0000
.0000
.1830
.0000
. 0000
.0000
. 1816
.2753
. 3884
.0000
.1613
.0000
. 0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

eNeoNoNoNeoNeoNoNeNoNoNoNoNeNeNoNoNolNeNoNoNe)

.0000
.0000
.0000
. 0000
.0000
.0000
.0000
.0000
. 1528
. 1308
.0000
.0718
. 0000
.0000
.0000
.0000
. 0000
.0000
.0000
. 0000
.0000

TABLE 2

EUCLIDEAN DISTANCES d(X,Y)

MA13

AR1

S

MA1S

ARMA_25

CO0O0OrRrPRPLPFPLFPLOORLPO0OO000000O0

leNeoNeNeN IS NeNe N NoNoNeNeoNoNeNe)

CO0OO0O0ORRPPEPPEPPLPORPLPOO0OO0OO0O0O0O

ORr P OFRrPRrPPLPPL,PL,O000000O0
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= R e 2 O 00

S e N N N e e Ne)
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.5838
.5907
.6175
.3719
. 6825
.6367
.4983
.8934

PRRes s e e O
iatalalalalol e el e el
b ababalalalabal el
©ccoooo00000
©ooooo00000

[eNeNeNeNoNeNeoNeol

AR15

0.6661

0.5796

0.4899 0.1409

0.8662 0.3217 0.4239

[eNeoNeoNeNeNoNe

TABLE 3

TEST STATISTICS D(X,Y)

AR1_5 MA1S ARMA_25 AR1_9




MA28_6 MAl6 MA19 MA1_3 MA1_6 AR28_7

381.6780

84.5307 .6288
196. 4700 1680
288.6310 9630
325.7460 8290
283.3830 2160
291.8240 6600
343.6950 2050
362.4210 9170
168.9920 9300
191.8890 3150
208.2340 4860
126.6640 1350

AR15 MA1_S

22.1573

57.8994 37.0860

42.2288 25.9216 0.1412

49.1927 23.9095 2.6482 1.9401

55.1550 60.4560 7.6475 9.5138 17.3889

TABLE 4

AGGLOMERATION SCHEDULE USING AVERAGE LINKAGE FOR d(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

5

4

6
10
15
11
14
13
15
17
16
19
18

1 2 .057000
14 15 .057600
18 19 .098600
14 16 .135300

1 3 . 147500
18 20 . 165806
11 12 . .241770

6 7 .274280

4 5 .322431
14 17 .329515
18 21 .336238

9 10 .361682

6 8 .404868
11 13 .411815 16

1 4 .486616 18
11 18 .502209 17
11 14 .521962 _ 20

1 6 .532803 19

1 9 .817640 20

1 1.308777 0

NN00OOPOOOWLrNOOO
' NeNeNoNeNeNeNoNoNoNoNoNoNoNo)




FIGURE 1

DENDROGRAM USING AVERAGE LINKAGE FOR d(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE 15 20

Label Seq } i

AR1_3
MA13
AR1_5
MA15
ARMA_25
AR1_9
MA27 4
MA28_6
MA16
MA19
AR17
AR18
AR19
AR29_2
AR13
AR15
MA1_S
ARMA63
MA1_3
MA1_6
AR28_7

VOO WN -

TABLE S

AGGLOMERATION SCHEDULE USING SINGLE LINKAGE FOR d(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next
Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

1 .057000 S
14 .057600 4
18 .098600 6
14 . 106500 11

1 .119000 15
18 - .140889 7
11 .221296 8
11 .241770 9
11 .263153 11

6 .274280 13
11 .296980 12
11 .300212 18

' .311846 14
.322431 15
.345039 17
.361682 17
.362300 19
.371852 20
.396904 20
.576081 0
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—
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FIGURE 2

DENDROGRAM USING SINGLE LINKAGE FOR d(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE S 10 15 20
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AR28_7
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TABLE 6

AGGLOMERATION SCHEDULE USING COMPLETE LINKAGE FOR d(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

1 2 .057000 S
14 15 .057600 4
18 19 .098600 6
14 16 .164100 10

1 3 . 176000 16
18 20 .190723 13
11 12 .241770 14

6 7 .274280 12

4 5 .322431 16
14 17 . 358392 15

9 10 .361682 19

6 8 .412832 17
18 21 . 423903 18
11 13 .447164 15
11 14 .617459 18

1 4 .627763 17

1 6 . 747090 19
11 18 .893448 20

1 9 1.254908 20

1 1.924901 0
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FIGURE 3

DENDROGRAM USING COMPLETE LINKAGE FOR d(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE 10 15

] |
! |

Label

AR1_3
MA13
AR1_S
MA15
ARMA_25
AR1_9
MA27_4
MA28_6
MA16
MA19
AR13
AR15
MA1_S
ARMA63
AR17
AR18
AR19
AR29_2
' MA1_3
MA1_6
AR28_7
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TABLE 7

AGGLOMERATION SCHEDULE USING THE WARD METHOD FOR d(X,Y) MEASURES

Clusters Combined ~Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

1 2 .001625 5
14 15 .003283 4
18 19 .008144 6
14 16 .020348 16

1 3 .034853 17
18 20 .051974 12
11 12 .081200 14

6 7 .118815 13

4 5 .170796 15

9 10 .236203 15
13 17 .305340 14
18 21 . 387946 18

6 8 . 484728 17
11 13 .662879 16

4 9 .900812 19
11 14 . 226860 18

1 6 .603029 19
11 18 .034028 .20

1 4 .993703 20

1 11 .967413 0
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FIGURE 4

DENDROGRAM USING THE WARD METHOD FOR d(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE S 10 15

Label Seq | } }

AR1_3
MA13
AR1_5
AR1_9
MA27_4
MA28_6
MA15
ARMA_25
MA16
MA19
AR13
AR15
MA1_5
ARMA63
AR17
AR18
AR19
MA1_3
MA1_6
AR28_7
AR29_2
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TABLE 8
AGGLOMERATION SCHEDULE USING AVERAGE LINKAGE FOR D(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

4

5

7
10
13
10
12
11
11
14
13
17
16
17
19
19
18
20
20

0

18 19 . 140000
1 2 . 370000
14 15 ~.800000
18 20 .295000
1 3 . 735000
11 12 .870000
14 16 . 080000
4 9 .230000
5 7 . 950000
11 18 .471666
4 S .570001
14 17 . 166667
1 4 . 326666
11 21 .672001
6 8 .080002
1 10 .240002
11 14 . 580830
11 13 . 171997
1 6 .369370
T .701462
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FIGURE 5
DENDROGRAM USING AVERAGE LINKAGE FOR D(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE 0 10 15 20

Label Seq 4 | | |

AR13 18
AR15 19
MA1_S 20
MA1_3 . 11
MA1_6 12
ARMA63 21
AR17 14
AR18 15
AR19 16
AR29_2 17
AR28_7 13
AR1_9
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AR1_3
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AR1_5
MA1S
MA16
ARMA_25
MA27_4
MA19
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TABLE 9

AGGLOMERATION SCHEDULE USING SINGLE LINKAGE FOR D(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

5

4

7
12

8

8
15
13
10
11
12
14
17
16
17
19
18

18 . 140000
1 : . 370000
14 . 800000
1 ' . 730000
18 . 940000
11 .870000
14 . 980000
11 .050000
4 .230000
4 .020000
4 .630000
1 .630000
11 .650000
1 . 950000
14 . 360000
1 .110000
11 .070000
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FIGURE 6

DENDROGRAM USING SINGLE LINKAGE FOR D(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE 10 15

Label Seq ! |

| I
AR13 18
AR15 19
MA1_S 20
MA1_3 11
MA1l_6 12
ARMA63 21
AR17 14
AR18 15
AR19 16
AR29_2 17
AR28_7
AR1_3
MA13
AR1_5
MA1S
MA16
ARMA_25
MA19
MA27_4
MA28_6
AR1_9
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TABLE 10

' AGGLOMERATION SCHEDULE USING COMPLETE LINKAGE FOR D(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

ge Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

18 19 .140000 4
1 2 . 370000 5
14 15 . 800000 9
18 20 . 650000 10
1 3 . 740000 13
11 12 . 870000 10
4 9 . 230000 11
5 7 . 950000 11
14 16 . 180000 12
11 18 .010000 15
4 . 5 . 600000 13
14 17 . 160000 18
1 4 . 309999 16
6 . 8 .080002 19
11 21 . 590000 17
1 10 .049999 19
11 13 .239998 18
11 . 440002 20
1 6 .679993 , 20
1 .750000 ° 0
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FIGURE 7
DENDROGRAM USING COMPLETE LINKAGE FOR D(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE
Label Seq

AR13 18
AR15 19
MA1_5 20
MA1_3 11
MA1_6 12
ARMA63 21
AR28_7 13
AR17 14
AR18 15
AR19 16
AR29_2
AR1_9
MA28_6
AR1_3
MA13
AR1_5
MA15
MA16
ARMA_25
MA27_4
MA19
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TABLE 11
AGGLOMERATION SCHEDULE USING THE WARD METHOD FOR D(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster Coefficient Cluster 1 Cluster 2 Stage

4

S

8
11
16
14
10
12
10
13
14
17
16
18
19
19
18

18 19 .070000
1 2 . 255000
14 15 . 655000
18 20 .161667
1 3 .923333
11 12 .858333
4 9 .973333
14 16 .893333
5 7 .868334
4 5 .893333
18 21 . 136665
14 17 .681664
4 10 . 486664
11 18 .363327
6 8 .403328
1 4 .399162
13 .834167

—
OO0 NOoOWOON~OOO

— —
NWOFRr OO0 WOODODOOODOOoOo




FIGURE 8
DENDROGRAM USING THE WARD METHOD FOR D(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE 10
Label Seq {

AR13 18
AR15 19
MA1_S 20
ARMA63 21
MA1_3 11
MA1_6 12
AR17 14
AR18 15
AR19 16
AR29 2 17
AR28_7
AR1_9
MA28_6
AR1_3
MA13
AR1_S
MA15
MA16
ARMA_25
MA27_4
MA19
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