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A SIGNIFICANCE TEST FOR CLASSIFYING ARMA MODELS

By ELIZABETH ANN MAHARAJ

Department of Econometrics

MONASH UNIVERSITY

ABSTRACT

Given that the Euclidean distance between the parameter estimates of

autoregressive expansions of autoregressive moving average models can be

used to classify stationary time series into groups, a test is proposed

to determine whether or not two stationary time series in a particular

group have significantly different generating processes. The results of

computer simulations are given.

1. INTRODUCTION

The classification of time series has applications in various fields,

some of which are geology, economics, oceanography, psychology and

engineering. In particular classification of time series using cluster

analysis has been demonstrated by various authors.

Bohte et al. (1980) defines a number of distance measures which are based

on autocorrelations and/or cross correlations of empirical time series.

The time series are classified into groups according to one of the

distance measures and occurs over several stages. At each stage a group

is separated from the rest of the time series and a specific ARIMA model

is then adopted for that group. The model is then fitted to one

representative of that group. This method of clustering avoids having to

fit ARIMA models to a large number of time series.

Piccolo (1990) proposes fitting ARIMA models to all time series in a

given set and then classifying these fitted time series into groups

according to a distance measure that is based on the coefficients of the
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AR(m) operator of the fitted ARIMA model. Tong et al. (1990) uses

various measures of similarity and dissimilarity based on the residuals

of the fitted ARIMA and bilinear models and uses them to classify various

time series. Shaw et al. (1992) determines power spectra of various

time series and then obtains Euclidean distances between the power

spectra using 256 frequency values. Cluster Analysis is then applied to

these Euclidean distances.

In this paper we will consider the distance measure proposed by Piccolo

(1990) but base it instead on stationary and invertible ARMA models and

develop a related test of significance.

2. DEFINITIONS

2.1 Distance Measure

Let
t 

be a zero mean univariate stochastic process and a
t 

be a

univariate Gaussian white noise process i.e a
t 

IN(0,c2 ). Then
t 

is

such that Z
t 
E L, where L is the class stationary and invertible ARMA

models. Using the standard notation of Box and Jenkins (1976), such a

model is defined as

0(B)2 =
t 
 0(B)a

t

where

01B - 0282  

0(B) = 1 -0B-0B2 - - 0 .
1 2

Z
t 
can be expressed as

co
Z
t 
=EnZ + a

j t- j
j=1
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where TUB) is the the AR(m) operator and is defined as

IT(B) = 0(3)0-1(B) = 1 - n1B - n2B2 - 

By Piccolo (1990) a measure of structural diversity between Xt E L and

Y
t 

E L can be obtained by comparing respective sequences and this

assigns a metric on L, which is the distance measure

d(X,Y) =
]1/2

n )
2

iY

where it and it are the coefficients of the AR(03) operators of X and
ix jy t

Y respectively.

Given several time series to be classified, instead of ARMA modelling of

each time series, automatic modeling of AR structures by means of a

definite criterion like Akaike's Information Criterion is reasonable.

Hence time series can be clustered by grouping fitted AR models directly

from a matrix of distance measures of the form d(X,Y).

Define the vector of AR(k) and AR(k) parameters for the processes X
1 2

and Y
t 
respectively as

= [ Tr   n
T

lx 2x k x
1

11 = [rr it   it 
T 

,
ly 2y ky

2

and

respectively,

and the vector of AR(k ) amd AR(k ) parameter estimates of the series x
1 2 t

and yt respectively as

11 =[ n it
lx 2x

11 =
.ly 2y

3

T
Tr],
k y
2

and

respectively,



Hence the distance measure d(X,Y) becomes

d(X,Y) - TT )
T 

(TTx
Ti)]

[ k

E (njx - TT )
2

iY
j=1

1/2

1/2

where k = max (k , k ) and k and k are the orders of the AR models
1 2 1 2

fitted to the series x
t 
and y

t 
respectively.

If k = k then it = 0
1 iY

for j = k2+ 1, k
2
+2,   , k.

If k = k then it 0 for j = 1(+ 1, k+ 2,   , k.
2 jx 

1 1

2.2 Test of Hypothesis

We now propose a significance test to determine whether or not two finite

stationary series in a particular group have significantly different

generating processes. If there is no significant difference between the

generating processes of all the series in a particular group, then any

series in the group can be regarded as a representative of the group.

The test is of the hypotheses:

H
o
: There is no difference between the generating processes of two

.stationary series i.e. IT = •

H: There is a difference between the generating series of two stationary

series i.e. = .

Berk (1974) has truncated the infinite order AR process to order k and

has obtained the AR estimates by the method of least squares. This has

been done by assuming that k is chosen as a function of T, such that

3

- 40 and VT- E Injx
j=k+1
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as T -4 m , where T is the length of the stationary series xt to which

the AR(k) model is fitted.

Using the results of Berk (1974), Bhansali (1978) has derived the

asymptotic normal distribution of the AR estimates which is

where c
2

2 -
( fix —

x
) N( 0 , T

ax 
R

1

x 
(k)

is the variance of a , the white noise process associated with
ax xt

the series x
t 

and R (k) is the upper kxk submatrix of an infinite

dimensional covariance matrix

0' . .. . CT .
11 12 lk

0' 0- . . .
21 22 2k

0' .
kl k2 kk

For two independent series to which truncated AR(k) models are fitted

-1
'T
x 

N(1Tx, T
a

2 

x 
R
x 
(k)/ T)

Therefore

where

A
N(TT, 

Cr2ay 
R-1 (kg T)

y y

ft - ft NOT - IT , V)
x y x y

V = 1/T 
(T2 R-1(k) 4. (72 R-1(k))

V ax x ay y
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-1 -1
R (k) and R (k) are both positive definite and since

2
> 0 and 

2
c > 0

ax ay

2 -1(k) and 
2
R
-1
(k) are both positiT R c ve definite. Therefore V is

ax x aY Y

positive definite.

Hence
)T

x y
V ( - follows a noncentral chi-squared

distribution with k degrees of freedom and noncentrality parameter

I.e. (TT -
x

V-1 (TIx2(k,T)
x y

Hence the proposed test statistic is

D(X,Y) = (fix- H

Now since V is nonsingular and

plim V = V

A 2
D(X,Y) x (k,T) .

Under H
o 

T = 0, therefore D(X,Y)

Hence H
o 

is rejected at the 100a% level of significance if D(X,Y) >

where X
2

 (k) is the (1-a)th quantile of the chi-square distribution
a a

with k degrees of freedom. If H
o 

is rejected, we conclude that the

generating processes of the series xt and yt are significantly different

from each other.

Since D(X,Y) satisfies the properties of non-negativity and symmetry it

can also be used as a distance measure by which series may be clustered.



•

3. ILLUSTRATION

To illustrate the use of this test statistic both in hypothesis testing

and as a measure of classification, twenty one series of 200

observations each were simulated from AR(1), MA(1), AR(2), MA(2) and

ARMA(1,1) models. Each of these series was then fitted with truncated

AR(k) models, with the order k selected using Akaike's Information

Criterion. For every pair of series, the Euclidean distance measures

d(X,Y) and value of the test statistic D(X,Y) were calculated. Clustering

was performed using the d(X,Y) as well as the D(X,Y) values.

Hierarchical methods of clustering such as average, simple and complete

methods and the Ward method were considered.

The series were labelled as follows: if a series was simulated from an

MA(1) model with parameter 0.3, then the label was MA13; if a series was

simulated from an ARMA(1,1) model, with parameters -0.2 and 0.5, then

the label was ARMA_25.

Power calculations for a = 0.05 and a = 0.01 were performed for the test

when series were generated from the following pairs of models:

AR(1) 0 = -0.3 and MA(1) 0 = 0.3

AR(1) 0 = -0.3 and AR(1) 0 = 0.3.

3.1 Results

The estimates of the series after they were fitted with truncated AR(k)

models, the Euclidean distance values d(X,Y) and the test statistics

D(X,Y) for comparing every pair of series appear in Tables 1,2 and 3 in

the Appendix. Agglomeration schedules for each of the four methods of

clustering performed on d(X,Y) and D(X,Y) measures appear in Tables 5 to

11. The corresponding dendrograms appear in Figures 1 to 8 and the
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graphs of the power functions are shown in Figures 9 to 12 in the

Appendix.

3.2 Comments.

By examining the dendrograms in the Appendix, it is clear the two

distinct clusters form, regardless of which method of clustering was used

and regardless of whether d(X,Y) of D(X,Y) was used. These clusters are

as a result of the amalgamation of 5 to 7 smaller clusters. We shall

examine these smaller clusters to determine whether or not there are

significant differences between the generating processes of the series in

these clusters.

Consider for example the clusters obtained by the average linkage method

using d(X,Y) and D(X,Y). These appear in Figures 1 and 5.In what follows

the series shall be referred to by their numbers instead of their

generating processes.

Measure Clusters

d(X,Y)

D(X,Y)

(1,2,3) (4,5) (6,7,8) (9,10) (11,12,13)
(14,15,16,17) (18,19,20,21)

(18,19,20,11,12,21) (14,15,16,17) (13)
(6,8) (1,2,3,4,9,5,7) (10)

Consider the cluster (18,19,20,11,12,21) which forms using the D(X,Y)

measures. From the agglomeration schedule it can be seen that this

cluster forms at stage 14. Comparing the D(X,Y) values with the

appropriate chi square critical values, it can be seen .that there is no

significant difference between the generating processes of the following

pairs in this cluster: (18,19), (18,20), (18,11), (18,21), (19,20),

(21,12) and (11,12). However there is a significant difference between

the generating processes each of the series in the cluster



(18,19,20,21,11,12) and all the other series in the other clusters. At

stage 14, when using the d(X,Y) measure, the series 18,19,20,21,11,12

appear in two clusters,i.e. (11,12,13) and (18,19,20,21). As well as

there being no significant difference in generating processes between

some pairs in each cluster, there is also no significant difference

between the generating processes of one or more series of (11,12,13) and

one or more series of (18,19,20,21) at this stage. For example, there is

• no significant difference between the generating process of 18 and 11,

but they appear in two different clusters. However these clusters merge

at stage 16.

Consider the cluster (1,2,3,4,9,5,7) which forms when using the D(X,Y)

measures. From the agglomeration schedule it can be seen that this

cluster forms at stage 13. Comparing the D(X,Y) values to the appropriate

chi-square critical. values, it can be seen that there is no significant

difference between the generating processes of the following pairs in

this cluster: (1,2), (1,3), (1,4), (2,3), (2,4), (3,4), (5,9) and (5,7).

However there is a significant difference between the generating

processes of each of the series in the cluster (1,2,3,4,9,5,7) and all

the series in the other clusters. However at stage 13, when using the

d(X,Y) measures, the series 1,2,3,4,9,5,7 appear in four clusters

(1,2,3), (4,5), (6,7,8) and (9,10). A number of pairs of series which

have no significant difference in their generating processes appear in

different clusters at this stage. However these clusters merge at stage

19.

Consider the cluster (14,15,16,17) which forms when using the D(X,Y)

measures. From the agglomeration schedule it can be seen that this

cluster forms at stage 12. Comparing the D(X.Y) values to the
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appropriate chi-square critical values, it can be seen that there is no

significant difference between the generating process of the pairs

(14,15) and (15,16). However there is a significant difference between

the generating processes of each of the series in the cluster

(14,15,16,17) and all the other series in the other clusters. Using the

d(X,Y) measures this cluster forms at stage 10.

Consider the cluster (6,8) which forms when using the D(X,Y) measure.

There is a significant difference between the generating processes of

these series. There is also a significant difference between the

generating processes of each of the series in the cluster (6,8) and all

the other series in the other clusters. Using the d(X,Y) measure these

two series appear together in the cluster (6,7,8).

Using the D(X,Y) measure, the series 10 and 13 each appear on their own.

There is a significant difference between each of these series and every

other series in the other clusters. Using the d(X,Y) measure, 10 appears

in the cluster (9,10) and 13 appears in the cluster (11,12,13).

It is clear from the above results that in some cases it is possible to

identify more homogeneous clusters at an earlier stage using the D(X,Y)

rather than the d(X,Y) measure. More or less similar results were

obtained when the other methods of clustering are used.

From the graphs of the power functions in the Appendix, it can be seen

that, for the pairs of generating processes considered, the test is

reasonably powerful.
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4. CONCLUSION

This simulation study shows that

i) the test statistic D(X,Y) has the ability to test for significance

since any two series whose generating processes are quite

different from each other, for example ARM, 0 = 0.3 and AR(1),

= -0.3, are deemed to have significantly different generating

processes whereas many series with like generating processes, for

example AR(1), 0= -0.3 and MA(1),0 = 0.3, are deemed to have

generating processes that are not significantly different from

each other.

ii) when either the d(X,Y) or D(X,Y) measures are used, there are

pairs of series in some clusters when H
o 
is rejected.

iii) when the D(X,Y) measure is used, it is possible to identify more

homogeneous clusters, in some cases at earlier stages, than when

the d(X,Y) measure is used.

If given a large number of series, one just wishes to identify groups of

similar series, then clustering using the distance measure based on

parameter estimates of ARIMA models as suggested by Piccolo (1990) is

sufficient. However we believe that if there is a need to use one of the

series in a cluster as a representative of that cluster, on which further

analysis is to be carried out, then there should not be a significant

difference between the generating processes of all pairs of series in

that cluster.
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APPENDIX

TABLE 1

AR ESTIMATES OF THE 21 SIMULATED SERIES

1 AR1_3 -0.3123 0.0000 0.0000 0.0000 0.0000

2 MA13 -0.3693 0.0000 0.0000 0.0000 0.0000

3 AR1_5 -0.4883 0.0000 0.0000 0.0000 0.0000

4 MA15 -0.5162 -0.2531 -0.1810 -0.1830 0.0000

5 ARMA_25 -0.7139 -0.4224 -0.2332 0.0000 0.0000
6 AR1_9 -0.9192 0.0000 0.0000 0.0000 0.0000

7 MA27_4 -0.7546 -0.2194 0.0000 0.0000 0.0000
8 MA28_6 -0.9078 -0.1335 0.3265 0.1816 0.0000
9 MA16 -0.6463 -0.4836 -0.3875 -0.2753 -0.1528

10 MA19 -0.7214 -0.7660 -0.5668 -0.3884 -0.1308

11 MA13 0.3942 -0.2848 0.1446 0.0000 0.0000

12 MA1_6 0.5145 -0.3849 0.1974 -0.1613 0.0718

13 AR28_7 0.6950 -0.5824 0.0000 0.0000 0.0000
14 AR17 0.7360 0.0000 0.0000 0.0000 0.0000
15 AR18 0.7936 0.0000 0.0000 0.0000 0.0000
16 AR19 0.9001 0.0000 0.0000 0.0000 0.0000
17 AR29_2 0.9348 -0.2982 0.0000 0.0000 0.0000
18 AR13 0.3392 0.0000 0.0000 0.0000 0.0000
19 AR15 0.4378 0.0000 0.0000 0.0000 0.0000
20 MA15 0.4723 -0.1366 0.0000 0.0000 0.0000

21 ARMA63 0.2150 0.1501 0.1769 0.0000 0.0000

TABLE 2

EUCLIDEAN DISTANCES d(X,Y)

AR13 MA13 AR1_5 MA15 ARMA_25 AR1_9 MA27_4

MA13 0.0570
AR1_5 0.1760 0.1190
MA15 0.4146 0.3897 0.3621
ARMA_25 0.6278 0.5929 0.5326 0.3224
AR1_9 0.6069 0.5499 0.4309 0.5410 0.5244
MA27_4 0.4937 0.4434 0.3450 0.3524 0.3118 0.2743
MA28_6 0.7156 0.6689 0.5774 0.7471 0.6836 0.3969 0.4128

MA16 0.7712 0.7483 0.7128 0.3802 0.3623 0.7468 0.5752

MA19 1.1151 1.0954 1.0632 0.7165 0.6304 1.0560 0.8883

MA1_3 0.7753 0.8276 0.9385 0.9845 1.1788 1.3517 1.1597

MA1_6 0.9497 0.9997 1.1063 1.1084 1.3141 1.5079 1.3070

AR28_7 1.1635 1.2132 1.3189 1.2813 1.4370 1.7161 1.4944

AR17 1.0483 1.1053 1.2243 1.3032 1.5281 1.6552 1.5067

AR18 1.1059 1.1629 1.2819 1.3586 1.5828 1.7128 1.5637

AR19 1.2124 1.2694 1.3884 1.4616 1.6846 1.8193 1.6692

AR29_2 1.2823 1.3378 1.4540 1.4743 1.6697 1.8778 1.6912

AR13 0.6515 0.7085 0.8275 0.9284 1.1584 1.2584 1.1156

AR15 0.7501 0.8071 0.9261 1.0200 1.2487 1.3570 1.2124

MA1_5 0.7964 0.8526 0.9703 1.0281 1.2422 1.3982 1.2297

ARMA63 0.5761 0.6287 0.7406 0.9267 1.1657 1.1577 1.0526
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MA28_6 MA16 MA19 MA1_3 MA1_6 AR28_7

MA16 0.9658
MA19 1.2549 0.3617
MA1_3 1.3357 1.2266 1.4663
MA1_6 1.4918 1.3277 1.5327 0.2418
AR28_7 1.7059 1.4346 1.5903 0.4472 0.3765
AR17 1.6910 1.5472 1.7889 0.4678 0.5171 0.5838
AR18 1.7470 1.5989 1.8361 0.5114 0.5442 0.5907
AR19 1.8509 1.6954 1.9249 0.5983 0.6058 0.6175
AR29_2 1.8873 1.6684 1.8577 0.5598 0.5043 0.3719
AR13 1.3086 1.2060 1.4835 0.3241 0.4990 0.6825
AR15 1.4029 1.2878 1.5555 0.3224 0.4735 0.6367
MA1_5 1.4298 1.2732 1.5200 0.2213 0.3655 0.4983

ARMA63 1.1817 1.2494 1.5611 0.4715 0.6384 0.8934

AR17 AR18 AR19 AR29_2 AR13 AR15 MA1_5

AR18 0.0576
AR19 0.1641 0.1065
AR29_2 0.3584 0.3299 0.3002
AR13 0.3968 0.4544 0.5609 0.6661
AR15 0.2982 0.3558 0.4623 0.5796 0.0986
MA1_5 0.2970 0.3491 0.4491 0.4899 0.1907 0.1409
ARMA63 0.5703 0.6234 0.7233 0.8662 0.2632 0.3217 0.4239

TABLE 3

TEST STATISTICS D(C,Y)

AR1_3 MA13 AR1_5 MA15 ARMA_25 AR1_9 MA27_4

MA13 0.3660
AR1_5 3.7441 1.7325
MA15 9.8624 7.6324 8.4464
ARMA_25 22.5608 18.5458 15.7344 10.2739
AR19 69.2090 58.9670 40.2047 55.8865 44.1818
MA27_4 19.9282 15.2225 10.2311 11.3855 7.9497 32.9655

MA28_6 46.3183 40.0623 26.7249 42.2334 33.9738 32.0773 10.1108

MA16 25.3122 21.6465 20.8010 6.2253 7.0230 61.1761 17.5964

MA19 51.0537 48.1274 49.3625 20.9524 17.0741 97.6873 38.4936

MA1_3 57.1314 66.5841 88.9541 89.7197 127.0540 208.3570 139.5760

MA1_6 75.3375 86.5357 110.5490 108.6710 151.9040 237.0410 166.2750

AR28_7 160.3040 169.5880 189.5000 222.2790 308.8770 312.6110.293.9150

AR17 160.6220 183.7710 244.2020 173.3190 237.0200 885.9760 237.0780

AR18 191.2540 218.0880 288.7500 328.4380 250.4200 192.0710 258.3760

AR19 266.1230 302.3450 266.7180 229.1270 302.5280 1865.7500 305.8700

AR29_2 163.2890 179.0700 215.3530 218.1680 292.2330 394.0450 305.2210

AR13 47.2576 57.1213 82.7206 79.4615 119.5010 303.6550 122.2910

AR15 65.3561 77.4092 108.4920 98.5649 143.3220 378.9330 146.3640

MA1_5 62.6606 69.0674 95.5856 100.8510 146.0130 206.9780 154.2570

ARMA63 34.0681 38.5621 55.2863 75.3253 112.4480 147.2510 97.3383
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MA28_6 MA16 MA19 MA1_3 MA1_6 AR28_7 AR17

MA16
MA19
MA1_3
MA1_6
AR28_7
AR17
AR18
AR19
AR29_2
AR13
AR15
MA1_5
ARMA63

AR19
AR29_2
AR13
AR15
MA1_5
ARMA63

Stage 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

381.6780
84.5307
196.4700
288.6310
325.7460
283.3830
291.8240
343.6950
362.4210
168.9920
191.8890
208.2340
126.6640

7.6288
112.1680
132.9630
287.8290
218.2160
230.6600
281.2050
263.9170
107.9300
129.3150
138.4860
102.1350

135.4170
161.2190
385.5470
276.1630
284.8820
349.7240
316.0740
143.2090
166.2840
164.3330
139.3650

3.8684
25.4920
35.6465
40.7754
65.0075
42.6361
7.8528
9.7610
5.0507
21.2158

18.7242
34.6535
43.4134
64.7981
121.4440
13.2457
14.0132
6.9134
32.5862

47.3619
44.6588 0.7966
40.8713 8.1757
93.1458 9.3639
72.2692 23.3190
64.8537 17.0698
85.2442 59.6413
79.1096 30.6013

AR18 AR19 AR29_2 AR13 AR15 MA1_5

3.9843
10.9834
32.7485
20.0783
27.7051
35.5314

22.1573
57.8994
42.2288
49.1927
55.1550

37.0860
25.9216
23.9095
60.4560

0.1412
2.6482
7.6475

TABLE 4

1.9401
9.5138 17.3889

AGGLOMERATION SCHEDULE USING AVERAGE LINKAGE FOR d(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Cluster 1 Cluster 2 Coefficient

1 2 .057000
14 15 .057600
18 19 .098600
14 16 .135300
1 3 .147500

18 20 .165806
11 12 .241770
6 7 .274280
4 5 .322431
14 17 .329515
18 21 .336238
9 10 .361682
6 8 .404868
11 13 .411815
1 4 .486616

11 18 .502209
11 14 .521962
1 6 .532803
1 9 .817640
1 11 1.308777

Cluster 1 Cluster 2 Stage

O 0 5
O 0 4
O 0 6
2 0 10
1 0 15
3 0 11
O 0 14
O 0 13
O 0 15
4 0 17
6 0 16
O 0 19
8 0 18
7 0 16

5 9 18
14 11 17

16 10 20

15 13 19

18 12 20

19 17 0
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FIGURE 1

DENDROGRAM USING AVERAGE LINKAGE FOR d(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE 0 5 10 15 20 25

Label Seq

AR1_3 1
MA13 2
AR1_5 3
MA15 4
ARMA_25 5
AR1_9 6
MA27_4 7
MA28_6 8
MA16 9
MA19 10
AR17 14
AR18 15
AR19 16
AR29_2 17
AR13 18
AR15 19
MA1_5 20
ARMA63 21
MA1_3 11
MA1_6 12
AR28_7 13

TABLE 5

AGGLOMERATION SCHEDULE USING SINGLE LINKAGE FOR d(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

1 1 2 .057000 0 0 5

2 14 15 .057600 0 0 4

3 18 19 .098600 0 0 6

4 14 16 .106500 2 0 11

5 1 3 .119000 1 0 15

6 18 20 .140889 3 0 7

7 11 18 .221296 0 6 8

8 11 12 .241770 7 0 9

9 11 21 .263153 8 0 11

10 6 7 .274280 0 0 13

11 11 14 .296980 9 4 12

12 11 17 .300212 11 0 18

13 5 6 .311846 0 10 14

14 4 5 .322431 0 13 15

15 1 4 .345039 5 14 17

16 9 10 .361682 0 0 17

17 1 9 .362300 15 16 19

18 11 13 .371852 12 0 20

19 1 8 .396904 17 0 20

20 1 11 .576081 19 18 0
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FIGURE 2

DENDROGRAM USING SINGLE LINKAGE FOR d(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE 0 5 10 15 20 25

Label Seq

AR1_,3 1
MA13 2
AR1_5 3
AR1_9 6
MA27_4 7
ARMA_25 5
MA15 4
MA16 9
MA19 10
MA28_6 8
AR17 14
AR18 15
AR19 16
AR13 18
AR15 19
MA1_5 20
MA1_3 11
MA1_6 12
ARMA63 21
AR29_2 17
AR28_7 13

TABLE 6

AGGLOMERATION SCHEDULE USING COMPLETE LINKAGE FOR d(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

1 1 2 .057000 0 0 5

2 14 15 .057600 0 0 4

3 18 19 .098600 0 0 6

4 14 16 .164100 2 0 10

5 1 3 .176000 1 0 16

6 18 20 .190723 3 0 13

7 11 12 .241770 0 0 14

8 6 7 .274280 0 0 12

9 4 5 .322431 0 0 16

10 14 17 .358392 4 0 15

11 9 10 .361682 0 0 19

12 6 8 .412832 8 0 17

13 18 21 .423903 6 0 18

14 11 13 .447164 7 0 15

15 11 14 .617459 14 10 18

16 1 4 .627763 5 9 17

17 1 6 .747090 16 12 19

18 11 18 .893448 15 13 20

19 1 9 1.254908 17 11 20

20 1 11 1.924901 19 18 0
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FIGURE 3

DENDROGRAM USING COMPLETE LINKAGE FOR d(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE 0 5 10 15 20 25

Label Seq

AR1_3 1
MA13 2
AR1_5 3
MA15 4
ARMA_25 5
AR1_9 6
MA27_4 7
MA28_6 8
MA16 9
MA19 10
AR13 18
AR15 19
MA1_5 20
ARMA63 21
AR17 14
AR18 15
AR19 16
AR29_2 17
MA1_3 11
MA1_6 12
AR28_7 13

TABLE 7

AGGLOMERATION SCHEDULE USING THE WARD METHOD FOR d(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

1 1 2 .001625 0 0 5

2 14 15 .003283 0 0 4

3 18 19 .008144 0 0 6

4 14 16 .020348 2 0 16

5 1 3 .034853 1 0 17

6 18 20 .051974 3 0 12

7 11 12 .081200 0 0 14

8 6 7 .118815 0 0 13

9 4 5 .170796 0 0 15

10 9 10 .236203 0 0 15

11 13 17 .305340 0 0 14

12 18 21 .387946 6 0 18

13 6 8 .484728 8 0 17

14 11 13 .662879 7 11 16

15 4 9 .900812 9 10 19

16 11 14 1.226860 14 4 18

17 1 6 1.603029 5 13 19

18 11 18 2.034028 16 12 20

19 1 4 2.993703 17 15 20

20 1 11 10.967413 19 18 0
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FIGURE 4

DENDROGRAM USING THE WARD METHOD FOR d(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE 0 5 10 15 20 25

Label Seq

AR1_3 1
MA13 2
AR1_5 3
AR1_9 6
MA27_4 7
MA28_6 8
MA15 4
ARMA_25 5
MA16 9
MA19 10
AR13 18
AR15 19
MA1_5 20
ARMA63 21
AR17 14
AR18 15
AR19 16
MA1_3 11
MA1_6 12
AR28_7 13
AR29_2 17

TABLE 8

AGGLOMERATION SCHEDULE USING AVERAGE LINKAGE FOR D(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

1 18 19 .140000 0 0 4

2 1 2 .370000 0 0 5

3 14 15 .800000 0 0 7

4 18 20 2.295000 1 0 10

5 1 3 2.735000 2 0 13

6 11 12 3.870000 0 0 10

7 14 16 6.080000 3 0 12

8 4 9 6.230000 0 0 11

9 5 7 7.950000 0 0 11

10 11 18 9.471666 6 4 14

11 4 5 11.570001 8 9 13

12 14 17 14.166667 7 0 17

13 1 4 16.326666 5 11 16

14 11 21 17.672001 10 0 17

15 6 8 32.080002 0 0 19

16 1 10 33.240002 13 0 19

17 11 14 43.580830 14 12 18

18 11 13 57.171997 17 0 20

19 1 6 70.369370 16 15 20

20 1 11 209.701462 19 18 0
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FIGURE 5

DENDROGRAM USING AVERAGE LINKAGE FOR D(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE 0 5 10 15 20 25

Label Seq

AR13 18
AR15 19
MA1_5 20
MA1_3 11
MA1_6 12
ARMA63 21
AR17 14
AR18 15
AR19 16
AR29_2 17
AR28_7 13
AR1_9 6
MA28_6 8
AR1_3 1
MA13 2
AR1_5 3
MA15 4
MA16 9
ARMA_25 5
MA27_4 7
MA19 10

TABLE 9

AGGLOMERATION SCHEDULE USING SINGLE LINKAGE FOR D(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

1 18 19 .140000 0 0 5

2 1 2 .370000 0 0 4

3 14 15 .800000 0 0 7

4 1 3 1.730000 2 0 12

5 18 20 1.940000 1 0 8

6 11 12 3.870000 0 0 8

7 14 16 3.980000 3 0 15

8 11 18 5.050000 6 5 13

9 4 9 6.230000 0 0 10

10 4 5 7.020000 9 0 11

11 4 10 7.630000 10 0 12

12 1 4 7.630000 4 11 14

13 11 21 7.650000 8 0 17

14 1 7 7.950000 12 0 16

15 14 17 9.360000 7 0 17

16 1 8 10.110000 14 0 19

17 11 14 17.070000 13 15 18
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FIGURE 6

DENDROGRAM USING SINGLE LINKAGE FOR D(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE 0 5 10 15 20 25

Label Seq

AR13 18
AR15 19
MA1_5 20
MA1_3 11
MA1_6 12
ARMA63 21
AR17 14
AR18 15
AR19 16
AR29_2 17
AR28_7 13
AR1_3 1
MA13 2
AR1_5 3
MA15 4
MA16 9
ARMA_25 5
MA19 10
MA27_4 7
MA28_6 8
AR1_9 6

TABLE 10

AGGLOMERATION SCHEDULE USING COMPLETE LINKAGE FOR D(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

1 18 19 .140000 0 0 4

2 1 2 .370000 0 0 5

3 14 15 .800000 0 0 9

4 18 20 2.650000 1 0 10

5 1 3 3.740000 2 0 13

6 11 12 3.870000 0 0 10

7 4 9 6.230000 0 0 11

8 5 7 7.950000 0 0 11

9 14 16 8.180000 3 0 12

10 11 18 14.010000 6 4 15

11 4 5 17.600000 7 8 13

12 14 17 22.160000 9 0 18

13 1 4 25.309999 5 11 16

14 6 . 8 32.080002 0 0 19

15 11 21 32.590000 10 0 17

16 1 10 51.049999 13 0 19

17 11 13 85.239998 15 0 18

18 11 14 121.440002 17 12 20

19 1 6 381.679993 16 14 20

20 1 11 1865.750000 19 18 0
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FIGURE 7

DENDROGRAM USING COMPLETE LINKAGE FOR D(X,Y) MEASURES

Rescaled Distance Cluster Combine

CASE 0
Label Seq  

AR13 18
AR15 19
MA1_5 20
MA1_3 11
MA1_6 12
ARMA63 21
AR28_7 13  
AR17 14
AR18 15
AR19 16
AR29_2 17
AR1_9 6  
MA28_6 8
AR1_3 1
MA13 2
AR1_5 3
MA15 4
MA16 9  
ARMA_25 5
MA27_4 7
MA19 10

5 10 15 20 25

TABLE 11

AGGLOMERATION SCHEDULE USING THE WARD METHOD FOR D(X,Y) MEASURES

Clusters Combined Stage Cluster 1st Appears Next

Stage Cluster 1 Cluster 2 Coefficient Cluster 1 Cluster 2 Stage

1 18 19 .070000 0 0 4

2 1 2 .255000 0 0 5

3 14 15 .655000 0 0 8

4 18 20 2.161667 1 0 11

5 1 3 3.923333 2 0 16

6 11 12 5.858333 0 0 14

7 4 9 8.973333 0 0 10

8 14 16 12.893333 3 0 12

9 5 7 16.868334 0 0 10

10 4 5 24.893333 7 9 13

11 18 21 33.136665 4 0 14

12 14 17 42.681664 8 0 17

13 4 10 56.486664 10 0 16

14 11 18 70.363327 6 11 18

15 6 8 86.403328 0 0 19

16 1 4 117.399162 5 13 19

17 13 14 159.834167 0 12 18
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FIGURE 8

DENDROGRAM USING THE WARD METHOD FOR D(X,Y) MEASURES

CASE 0
Label Seq  

AR13 18
AR15 19
MA1 5 20
AR163 21
MA1_3 11
MA1_6 12
AR17 14
AR18 15
AR19 16
AR29_2 17
AR28_7 13
AR1_9 6
MA28_6 8
AR1_3 1
MA13 2
AR1_5 3
MA15 4
MA16 9
ARMA_25 5
MA27_4 7
MA19 10

Rescaled Distance Cluster Combine

5 10 15 20 25
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