

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

REORIENTATION OF R FARMERS: REQUIREME

Allan Low

Paper presented at the 32nd Annual Conference of Pretoria, 19-20 September 1994

1. Introduction

The new agricultural policy is directed at support for the neglected small scale farmers, promoting household food security. Research will be reoriented to serve the 95% of farmers who are poor, black, mostly part time and often farming small areas of land. To this end the government has said it intends to move away from the conventional technology transfer model to a more participatory model of technology generation and application. The new approach will require research programmes to be set in consultation with farmers and research institutes as has been the case in the United States.

The purpose of this paper is to contribute to the debate on how this change might best be effected and in particular to attempt to highlight some of the key issues that will need to be addressed if a sustainable agricultural reorientation of research and extension is to be achieved. The needs of small scale farmers is to take place in South Africa.

The first part of the paper discusses the nature of the changes that are required and briefly outlines the approaches that have been adopted elsewhere. The second part of the paper discusses the similar shift in research and extension orientation in South Africa.

The next part of the paper examines the existing research and extension systems in the region. The small farmer orientation has been introduced in an attempt to highlight the successes and pitfalls experienced by neighbouring countries. The final part of the paper attempts to identify some of the key issues that will need to be addressed in order to determine the success of the changes in South Africa.

2. Approaches to Research and Extension for Small Scale Farmers

Deficiencies in the reductionist "transfer of technology" approach

Reductionist research, where disciplines are based in specialist research institutes and focus on specific aspects of crop or livestock production, has been the backbone of technological development in agriculture and this will need to change. The technological advances achieved through reductionist research have not served the needs of small scale and poor farmers well in South Africa or other developing countries.

For the modern large scale farm sector, the transfer of information on farmer productivity to specialist researchers and of research results to farmers has taken place directly or through extension staff and agricultural supply companies. The

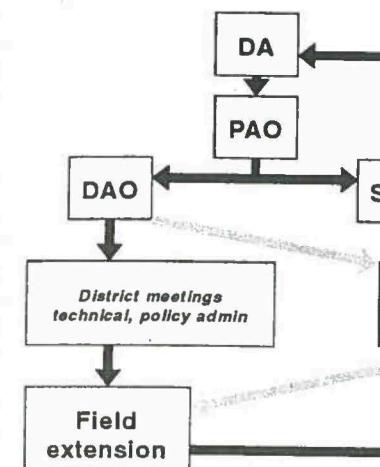
(a) Training and Visit Extension

The key aspects of the T&V system are: a clear division of labour between extension staff to deliver only technical messages and advice (not inputs or credit); a clear division of responsibilities, notably between 'village extension workers' (SEWs) responsible for technical messages and 'village extension workers' (VEWs) responsible for communicating messages to farmers; a strict fortnightly schedule for extension visits; a clear identification of 'contact farmers' and means of identifying them; SMSs; a well defined link between extension and research via the SMS (Benor & Baxter, 1992).

(b) On-farm Client Oriented Research

The key aspects of OFCOR are: a clear division of labour between extension staff to deliver only technical messages and advice (not inputs or credit); a clear division of responsibilities, notably between 'village extension workers' (SEWs) responsible for technical messages and 'village extension workers' (VEWs) responsible for communicating messages to farmers; a strict fortnightly schedule for extension visits; a clear identification of 'contact farmers' and means of identifying them; SMSs; a well defined link between extension and research via the SMS (Benor & Baxter, 1992).

Typically T&V replaced existing extension systems and the changes were introduced nationally or at provincial level. OFCOR was often introduced through the establishment of new 'adaptive research' units, or by creating farm research teams to complement existing research based disciplinary or commodity research units.


3. Lessons from experiences elsewhere

This section describes some of the experiences of introducing T&V and OFCOR in other countries. The objective is to highlight the practical difficulties involved with the implementation of theoretical T&V and OFCOR models. Hopefully this will contribute to a clearer understanding of the complexity of the transformation process and some insights into what is involved with these approaches.

Organisation of research and extension

The introduction of T&V and OFCOR in the Western Province, Zambia provides an idea of how these approaches changed the old methods of research and delivery process.

Before ARPT, the development messages had followed very strict lines of command, as indicated by the black arrows in Figure 1. The messages were developed by research units and then sanctioned by research and extension headquarters. Production guidelines for high yields were developed for specific agroecological zones. Field staff were trained at a national level by subject matter specialists and given a service on an *ad hoc* basis, or at district level, to implement policy directions, production drives and combatting pest outbreaks and other problems passed down from headquarters.

DA = director of agriculture
 PAO = provincial agriculture officer
 DAO = district agriculture officer
 SMS = subject matter specialist

old form

new

Figure 1: Zambia research and extension

Technology transfer

Moving from identified research topics to extension messages has also not been as expected with OFCOR and T&V models in general analysis of the outcome of on-farm maize as well as cotton, sorghum, beans and in Swaziland, Zambia and Zimbabwe gave presented in Figure 2. This analysis shows third of the original research themes for identified opportunities resulted in technology adopted. Most of these were adopted only by a limited number of farmers (less than 100), representing a proportion of the farmers conducting the research).

In many cases losses before recommendations produced are due to poor planning and implementation of OFCOR programmes. Deficiencies have included the following:

- Superficial diagnosis of problems and symptoms. Often this was based on a few days of surveying in the field, resulting from a sense of urgency to get to the trial stage. This led to some inappropriate trials, such as stalk blight to alleviate cobrot, which was not a major problem in most years. Inadequate attention has been paid to agronomic aspects of diagnosis, identifying which farmers have a given problem and to targeting of solutions.
- Poor implementation of trials. Many extension programmes suffer from inadequate attention to the selection of farmers and field sites and to the use of field assistants, and lack of supervision of experiments. This has often been accompanied by a tendency to overextend the numbers of farmers involved.

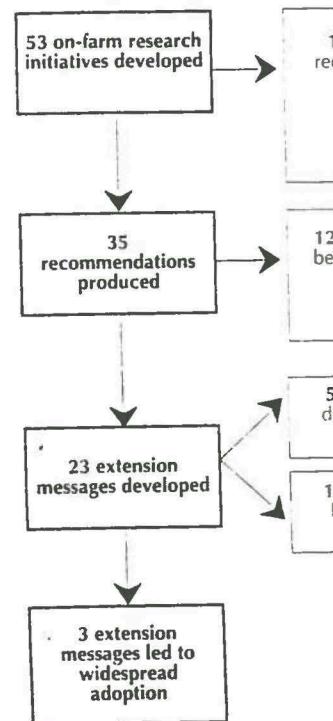


Figure 2: Analysis of the progression and Zimbabwe

However even where OFCOR has implemented and research recommendations resulted, translation of these recommendations into extension messages that are widely adopted has not been straightforward. Difficulties have arisen from the type of recommendations coming from this type of work, which differ from the "best way to husbandry" packages that extension workers are used to working with.

Some of the outputs generated by OFCOR are better adapted varieties (shorter season, earlier planting) or recommendations adjusted to different agro-ecological locations pose no real challenge to the traditional extension model.

But many of the outputs generated by OFCOR recommendations that are either:

- sub-optimal, with input levels of management less intensive than those that give good returns at high yield levels
- conditional on natural, economic and social circumstances

Sub-optimal recommendations take account of the fact that farmers are not able to be able to manage all factors at optimum levels, because of resource or time constraints. In these cases recommendations are not concerned with "the best way" to manage, but with reducing management conflicts with resource use within constraints. For example, a recommendation involving delayed application of

whether fertilizer was applied or not. On-farm research results indicated the superior open pollinated improved variety over hybrids when fertilizer was applied (Waterworth & Muwamba, 1991). However extension messages concerning maize and fertilizer rates only related to hybrids, recommended 60 Kg N ha⁻¹. The option of fertilizer and non-hybrids was not included.

These examples illustrate the problem that extension staff had with handling management based research findings that do not conform to "technical" ideals. Acceptance of the use of sub-optimal and conditional recommendations in conflict with the technical training and industrial experience of most extension and agricultural development officers and requires new skills in making conditional judgements about what input and management practices are appropriate for farmers.

This training element was missing in many extension programmes where the emphasis was on the management process rather than message content. In some instances the message delivery became over-bundled and delivered in an exact order and sequence regardless of modifications made by farmers to suit local rainfall patterns or labour constraints. In other cases extension workers sometimes found themselves telling farmers who had not yet planted that it was "too late to topdress with nitrogen" (Low, Seubert & Waterworth, 1991).

4. Making the change work: implementation

There are two distinct but related issues that must be successfully addressed if the concept of changing from a 'top down' to a 'bottom up' system of technology generation and dissemination is to be turned into a reality and produce effective results. The first issue relates to the practice of farmer oriented research and extension, how to ensure that it is done well and effectively. The second relates to linkages: many sets of actors need to be involved and the flow of information between them needs to be regular, relevant and understood.

The practice of farmer oriented research and extension

The change from a technology based to a small farmer based orientation involves a change in perspective, outlook and attitude as well as the acquisition of new skills. As the experience has shown in neighbouring countries, these changes do not come about easily.

The small farmer oriented approach implies a fundamental change from the technically oriented research and extension philosophy. It is important to realise that those who have been involved with the successful (but limited) impact of the technology transfer approach will find it difficult to accept that a reorientation is needed or will generate better results. In Malawi, for example, there was substantial resistance from commodity research programmes to the development of adaptive research teams. The adaptive teams had a role to play in setting the research agenda for commodity teams was not easily accepted. The commodity teams wanted adaptive teams restricted to testing their station generated technologies on farmers fields in different agro-ecological conditions.

including university departments and supply companies.

Linkages and information flows

While the introduction of OFCOR and T&V have blurred the distinction between extension, they have not obviated the need for the development of good information flows for technology generation and dissemination. In Swaziland and Zambia miscommunication between OFCOR and T&V teams led to the development of mechanisms for improving information flows (Seubert & Waterworth, 1991). In Zambia, new structures, information formats and communication mechanisms have been used to enhance information communication (Waterworth, 1990). In South Africa, emphasis has been placed on packaging information in ways that are useful to farmers (Seubert, 1989).

In South Africa it will be necessary to improve communication between such diverse organisations as research institutes, provincial government departments and extension organisations, NGOs, farmers' associations, input suppliers and commercial input suppliers. This will be a formidable one and has been underestimated as it has been by extension workers. T&V programmes, which assumed that extension workers and farmers' associations approaches themselves would facilitate extension-farmer links. Much can be learned from neighbouring country experiences and communication problems. These include the development of joint research-extension units, the implementation of field work such as the Committee for On-farm Research (COPRAZ, Shumba, 1989), Lesotho's experience of implementing a collaborative research programme (Low & Mokheseng, 1988) and the use of farmer groups to bring researchers and extension workers together (Norman et al, 1988).

5. Conclusion

Key lessons that emerge from the experiences of neighbouring countries in implementing extension approaches aimed at meeting the needs of small scale farmers can be summarised in three words: commitment, competence, communication.

A genuine commitment to change from the top down transfer of technology to a bottom up, farmer oriented approach to research and extension at all levels. This commitment needs to be supported by the establishment of field OFCOR and T&V units. The change of perspective needs to be supported by research and extension agencies.

Such a change will inevitably take time. In the meantime it is essential that the change in perspective is not weakened by implementation. Maximum use should be made of the community level experience of the NGOs in Africa and a premium needs to be placed on level training by experienced practitioners.

Finally the technology generation and dissemination continuum needs to be well linked, particularly at the local level.

research and experiment station research agricultural research systems: management 1 nine country case studies. OFCOR Compan No.1. The Hague, Netherlands: ISNAR.

NORMAN D, BAKER D, HEINRICH G & F. (1988). Technology development and far experiences from Botswana. Experimental 24:321-331.

SEUBERT C (1989). On-farm research and linkages: experience from Swaziland. Network Report No. 19. Harare.

SHUMBA EM. (1988). Maize technology Mangwende, a high potential commun environment in Zimbabwe, Part I: De research agenda. Farming Systems Newsle 34.