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1. Introductionl

The use of panel data has become increasingly popular in econometrics over the

last two decades. While the early theoretical and applied research focused on linear

models, much effort has been made recently to establish appropriate estimation and

hypothesis testing procedures capable of dealing with nonlinear panel data models

(MAtyas and Sevestre [1992]). Unfortunately most results relating to linear models

are special and cannot be extended to models having nonlinear specifications.

When the data heterogeneity is considered to be observable, the fixed effects

approach is appropriate. In this case, generally, it is not possible to separate the

estimation of the structural coefficients from those of the specific effects, and we may

face an incidental—parameter (Hsiao [1986], [1992]). On the other hand, when the

data heterogeneity is believed to be non—observable a random effects approach is

suitable. The traditional approach in this case involves two simplifying assumptions.

The first sets the conditional mean of the dependent variable to be linear, while

the second specifies a restrictive parametric form for the distribution of the specific

effects. As the log likelihood of the observations involves integration with respect to

the heterogeneity distribution, these two assumptions, and in particular the second

one, have been viewed as necessary for the maximization process to be operational.

See, for example, Stiratelli, Laird, and Ware [1984, p. 964] and Gourieroux [1992,

pp. 213-222].

Procedures for the estimation of a large class of models involving specific

heterogeneity distributions are widely available. Anderson and Aitkin [1985], Im and

Gianola [1988] and others applied Gaussian quadrature to evaluate integrals in panel

logit and probit models with normal random effects, whereas Waldman [1985] used

1 Computing assistance by Mark Harris is kindly aknowledged.
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this routine for the estimation of duration models. Kiefer [1983] developed a series

expansion to the same type of integral arising in labour market duration models.
Buttler and Moffit [1984] reduced a multivariate normal integral into a univariate one
for the panel probit model. Schall [1991] designed an algorithm for the estimation of
generalised linear models with random effects obeying relatively weak assumptions.
To date though, there does not seem to exist any analytical solution for the maximum
likelihood estimator in the framework of a general nonlinear panel data model with
random effects having a general parametric distribution.

Given the restrictions discussed above, we propose two different estimation
procedures for panel data models exhibiting, potentially, both nonlinearity in the
exogenous variables and/or the parameters of interest, and a general parametric
form for the heterogeneity distribution. The first method is a generalisation of
Solomon and Cox's [1992] technique, giving a small variance approximation to the
marginal likelihood. Although this approximation is appealing in its simplicity and

computational convenience, a different technique is required if the variance of the
specific effects is known to be large. This provides a motivation for the development
of a Laplace type approximation to the marginal likelihood. This approach has been

successfully applied recently in a variety of statistical problems, notably, Tierney and
Kadane [1986], Tierney et a/. [1989 a.b.], Wolfinger [1993] and Lieberman [1995]. The
Laplace approximation has, in general, a relative error of order 0(T-1).

In Section 2 of the paper we introduce the general problem and present the
two approximations leading to computable formulae. The relative advantages in
adopting either procedures are discussed. Some typical econometric examples are
provided in Section 3. In Section 4 we apply the two methods to a model of youth

unemployment in Australia, and analyse their properties through a Monte Carlo

simulation. Concluding remarks are given in Section 5 and proofs are provided in
the Appendix.

2. Integrating out the individual effects

We consider an array of panel data specifications in which the observations of the
response (dependent) variable yit are independent, each with conditional density

flyit I xit,pc,(3), i = 1, • • • , N, t = I., • • • , T,
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where xit and are both (k x 1) and fixed. We assume that the heterogeneity factors

(individual effects) pi, are continuous i.i.d. random varables, each with a density

g(pi; a), ji E R i = 1, ,N.

Interest lies in estimating the parameter vector f3. The conventional approach is to

maximize the log of the marginal likelihood

T

tm = E log I g( [11a) AyitI xit, iti; /3) daui
i=i t=i

= logLi, say,

(1)

with respect to #. The obvious difficulty in making (1) operational, has so far led to

strict parametric settings for f(.) and M. To maximize (1) under sufficiently general

parametric assumptions, we consider two approaches.

2.1 Small—sigma asymptotics

The method proposed here is a generalisation of the procedure of Solomon and Cox

[1992], who assumed the pi's i.i.d. normal. Put

with 0 = (13 : a),

and

Write

=

9) = eci + 4i ,

log f(Yit Ixit, iti; 0)

= log g(iti; a

tcr) = tc(ri) t(171-2 = [arti/ofiniti= r > 1,

where 6 = E(pi) Vi and the arguments have been suppressed for brevity. We denote
the variance of pi by o-2. Given the setup so far, the small variance approximation to

m is

[T

{ (—Ti -7,27) 
11= log 5 f(yit xit, 6; g(e; a) exP —2'ee(i(i12))2 [1 4- O(a.4)] 1 •ti t=ii=1

(6)
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Proof, regularity conditions and the first correction factor in the expansion are
70.provided in the Appendix. We note that if pi --, N(0, o-2), then g(; (72 = (2 2)-1/2,

p(1.) = n p(2) = 1
and so (6) collapses to

cr2

tlti = log{ TI f(yit xit, /6) [1. 2t(2)] —1/2 x

ci

:=1 t=1 

[ 0.2t(92

[1+ 0(474)] 1 ,exp  
2(1 — cr2tn

(7)

which, apart from the obvious difference in notation, agrees with the leading term

of Solomon and Cox's [1992, equations (13) and (15)] formula. The error of this

approximation is 0(o-4). For any given g(.) and f(•), the maximization of (6)

with respect to the parameters of interest involves, basically, a standard nonlinear

optimization routine.

2.2 Laplace approximation

A second approach exploits the behaviour of the integrand of

Li = I exp {ti(pi3 O)} , (8)

as T oo. From (2)—(4) we can see that for fixed cr2 , ti(pi, 0) = O(T). This means

that when T is large, exp 0)} attains a sharp peak at , the point which

maximizes ti(pi, 8) for fixed 0. Utilizing this feature, the Laplace approximation to

Li is

[ —27r 1
(2)

where 4r) is as defined in (5), except that it is evaluated at 0). The existence

and uniqueness of are both implicitely assumed. For a readable account on the

method of Laplace, the reader is referred to Barndorff-Nielsen and Cox [1989, Ch.3].

To apply the approximation, we fix 0 at some initial value and solve

exp(ii) {1 + 0(T)},

4
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= 1, ... N. (10)
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or in full,

Li = [1 — (72-i(cl exp [— Fci] [1 + 0(cr2)] .

In comparison, the approximation (6) has a superior error of order 0(o-4), but it
embodies in it no direct mechanism for which its accuracy is improved as T oo.

From a computational view point, the Laplace approximation has two chief
drawbacks. The first is the requirement of evaluation of third order derivatives in (12),
which for certain problems, may be a cumbersome task. The application of the method
effectively necessitates iteration between (10) and a numerical maximization of (11).
Evidently, the computation will be slow when N is large. This constitutes the second
difficulty. However, given Solomon and Cox's [1992, Sec.4] findings, the Laplace
approximation should be more reliable when a is large. As analytical alternatives to
the methods suggested exist only in some special cases, the Laplace approximation
remains an important and valuable tool.

3. Examples

3.1 Count data

The traditional specification for the number of events of a given type occurring at a
given time period is

f(yit xit,iti; 0) = (Yii!)-1 [exP(x:03 iti)rt x exP [-- exP(x:03 iti)] •

For illustration purposes only, we assume that

g(pi, o-2) = (2
2

Pi 0. )-1/2 \

although it should be clear from the foregoing discussion that neither methods rely
on normality. The log marginal likelihood is

„2
\ - 1

= E log f (2 2ra ) 2 exp(— —) H (yit ) [exp(x it + pi)]
Yit

2a2i=1

exP exP(x:03 + pi)] }c1p2.

(13)



In view of (1), (8) and (9), the Laplace approximation to fm is

_97
tm E log{

1 2
exp(Z) [1+ 0(T-1)]} . (11)

Differentiating (10) with respect to 8, we see that

09 041)
I 09 •

Using the last expression, the MLE of 0 is defined by

afm 
N{1(2)

ae i=1 2

.41)
[-(2) ati

09

s,(1)ati ,41) at i 1
(ti )- a-9 ae = 0 ,

(12)

where the "double hat" indicates that the relevant functions are evaluated at

The current estimate, 9, found in (12), is substituted into (10) for the updating of .

The iteration between (10) and (12) proceeds until convergence. A similar approach

was proposed by Wolfinger [1993] who assumed both f(•) and g(-) to be normal and

# to have a flat prior.

2.3 Discussion

The principal difference between the two techniques is in the point about which

fi(pi, 0) is expanded. The first approach utilizes an expansion about pi = whereas

the second about pi = 114. While the approximation (6) is only expected to behave

well for small values of cr, the Laplace approximation should be reliable when either

a- is small, T large, or both. To illustrate this point analytically, suppose, without

loss of generality, that
1

= — log(27r(72) —

Then for fixed T, as a tends to zero, ti = 0(cr-2) and the Laplace approximation to

Li is

—i7u)
1 2

exp(Ei)[1 + 0(o-2)] ,
[_,_

Li = 
 ,.,



A closed form solution to the integral in (13) is not available. To apply (7) to (13),

we first see that

and

£(1.) =  f(Yit I Xit, 13) 
c: = [yit — exp(x:o3)]atii

t(2) exp(xR)ci —
t=1

Substituting (14) and (15) into (7), we obtain

t=1

Em = log{ {H(yit!)-1 [exp(x3)]Y1t exp [— exp(x1iO3)] x
i=i t=i

T

[ ] 

—1/2

1 + (72 E exp(x1iO3) exp
t=i

[T

2
2 E (yit — exp(x i3))

t=1
• T

2(1 + o-2 E exp(x0))

] 1

t=1

(14)

(15)

1+O( 4)}}.

For the Laplace approximation, we set a = a-2 and

ti(iti, 0) = log(27r) — logo-2 —

log(yii!) yit(xfi tti) — exp(xlitO 
t=i

The /tie defining equation is

Further,

Fil)(i e 9) = [yit — exP(xiiii3 )1 = 0.2
t=i

ic2) = _ 1
— exp(xlit + ).

t=i

The Laplace approximation to Eiti is reduced to

^,2 T
—1/2 

tm = log{ [1 + or2 exp(4f3 
r E[_ log(yit!)

t=1

yit(x:ti3 Me) — exP(x:03 1229 )]] [1 + 0(T-11} .

7
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The execution of the method requires an initial solution to (16), followed by a

maximization of (17). The current estimates of and are substituted into (16) to

update /lie. We iterate between (16) and (17) until convergence.

3.2 Duration models

Duration models with heterogeneity have been considered by, among others, Gourier-

oux [1992], Keifer [1983], Lancaster [1979]. In most cases, the heterogeneity distrib-

ution is chosen on pure mathematical grounds, rather than economic considerations.

The endogenous variables in this context is positive. One formulation, considered by

Keifer [1983], is based on the exponential model

f(Yit I xit, ; fl) =

with

f exp(xi3 exP { - exP(xfi iti)Yit}
0

g(pi, 0-2) = (2„2)-1/2

if yit > 0

otherwise,

Under normality, Gaussian Quadrature or Kiefer's method can be used, but not so

under a more general specification of the mixing distribution.

The approximation (7) is easily verified to yield

_1
2

M = E log exp(x ti3)exp[—yit exp(4#)] 1 + 2 yit exp(4,3)
i=i t=i t=i

exp 1-0.2[ELi[1 — Yit exP(xn21 [1 + 0(0.4)] 1

Yit exp(x 3)1

The Laplace approximation results in

tm = log{ [1. + 0-2 E[yit exp(xtst=i
exp [— 

Pie
220-

2

E[xito — Yit exp(40 )1
t=1

[1 + 0(T-1)] 1.

(18)



where satisfies

t=1

1it exp(xO :t )j —[1. _ y = 0.
2o-2

(19)

As in the previous example, the MLE's of /3 and cr2 are achieved by the iterative

solution to (19) and the maximization of (18).

3.3 The Probit model

The Probit Model is one of the most popular modelling approaches in discrete choice
analysis. The difficulties in the maximization of £m even under normality of the

random effects are well known. It is assumed that

=
1 if xliti3 + uit > 0

Yit 
0 otherwise,

with N(0, o-2), uit N(0,1), pi and uit are independent Vi and Vt, i = 1, , N
t = 1, . . . ,T T. The log marginal likelihood is

2

Em = E log f(22)_1/2 exp ) [II [40(x tf3 + //Or x
i=1 t=i

To apply (7), we put

[1— (13 (xliti3 iti)]1—Yld .

H f(Yit I

t = 1

Xit,O, 0) =
t=1

tc(1.) Yit —

t=1

1 — (13

f(cV = yit [_22 + + (1 yit R (I) y2 (1 CI) 

) 

1 Oxlitfil

i=1

(22)

where (13. and ç5 are the standard normal cdf and pdf evaluated at xfi. Equations

(20)— (22) are the relevant components in (7) for this problem.



For the Laplace approximation, we set again a = o-2 and

"H2 T

= - -
2
log(27ru2) — [yit log -.213. + (1 — yit) log(1 — 3)] , (23)

2o-2 t=1

where is defined by

Yit — C13

t=1 
4)(1 - 

= 0,

and 4., ç are evaluated at x i3 . The second derivative of ti(pi, 0) in this setting

is

Z(2) = E{yit + (xti3
t=1

+(1- yit) [(1- (1 6)-1(xit# •

(24)

The Laplace approximation to fm is obtained upon substitution of (23) and (24) into

(11).

4. Application and numerical evaluation

Harris [1994] analysed youth unemployment in Autralia for the period 1985-88 using

the Australian Labour Force Survey. Given the heterogeneity of the data he estimated

a Probit model on four sub-groups of the original data set (male and female, high

and low education groups). The dependent variable of the model was set to zero if

the individual for given period was employed and to unity if she/he was unemployed.

The model was estimated by Limdep (see Greene [1992]) which uses the Gaussian

quadrature proposed by But tier and Motlit [1982] to evaluate the necessary integral.

Table 1 contains the original results produced by Limdep for the female low

education group and our parameter estimates for the same model and data using the

small—sigma and Laplace approximations.2

The fact that the parameter estimates in Table 1 are similar but not identical,

provides a motivation for further investigation of the accuracy of the analytical

2 Similar results were obtained for the remaining three groups.
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Parameter

Explanatory •variable

Table 1:

Estimates for Unemployment Model

(N = 566, T = 4)

Limdep Small-sigma Laplace
Constant

Age (exp[-0.1 x age])

Married/not married

Education < 10 years

Education 11 years

Working partner

Reservation wage

Disabled / not

Number of chidren
Rho (c.cr2/(cra2 + a2))

1.46

-6.05

-0.63

0.31

0.62

0.87

-0.40

-0.31

-0.20

0.78

1.93

-7.14

-1.06

0.39

0.82

1.45

-0.63

-0.52

-0.30

0.59
Max log-likelihood -594.3 -620.4

1.52

-7.35

-1.27

0.36

0.51

1.64

-0.58

-0.65

-0.40

0.44
-477.0

approximations, using Monte Carlo simulation. For the artificial data generation

we used the following specification:

y:ct = /30 + 014) oxT ai eit

j = 1, 2x • = x •t,t-i vCj)

vit Uniform[-0.5, 0.5] Et N(0, 1)

1 if y7t > its mean
Yit =

0 otherwise

and fib = /31 = 02 = 0.5, N = 100, T = 5 and we performed 1000 Monte Carlo

replications for the small-sigma and 500 for the Laplace approximation.3 In the

Laplace iteration procedure we used the OLS estimates as starting values for fi and

1 for a. Results are summarized in Table 2.

The small-sigma approximation works generally well. It appears to be reliable

and accurate even for moderate to large values of sigma. The Laplace procedure

works, in general, nicely as well, but for large N it can be slow and, as an additional

3 The Laplace approximation is much more time consuming, so it was not possible to run
the Monte Carlo experiment over 1000 replications.
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nuisance, it is very sensitive to the starting values of the iteration procedure. Our

results suggest that it is advantageous to use the Laplace approximation only when

sigma is relatively large.

5. Conclusion

The conventional use of nonlinear econometric panel data models with random

effects requires generally a restrictive set of assumptions to handle the mathematical

complexity of the problem. In this paper we have suggested two tractable procedures

for the estimation of such models under general parametric and functional settings.

The small—sigma approximation is particularly convenient and reliable when the

variance of the heterogeneity distribution is not too large. The Laplace approximation

can be regarded as either a large T or a small—sigma approximation and is a viable

alternative to the small—sigma approximation. Given the non-existence of alternative

analytical solutions to the marginal likelihood when the heterogeneity distribution is

nonnormal, both techniques enable theorists and practitioners to explore these models

under much more realistic parametric assumptions.

12



Table 2:

Monte Carlo Simulation Results

(N = 100, T = 5)

parameter - average 3 -mean bias stch dev. of bias

Small-sigma

0-2 = 0.01a
cra2 = 0.01
(72 

= 0.1a
0.2 = 0.1a
cr.?, = 0.2
0.2 = 0.2a
0.2 = 0.3a
0.2 = 0.3a
0.2 = 1.0a
0.2 = 1.0a

oi
132
/31
02

01
02

pi
02

02

Laplace
(72 
= 0.01 Sia

(72 = 0.01 fl2a
0.2 

= 0.1 131a
47.2 
= 0.1 02a

0.2 
= 1.0 /31a

0.2 = 1.0 $2a

0.510

0.508

0.509

0.500

0.492

0.500

0.492

0.493

0.447

0.450

0.439

0.466

0.490

0.487

0.529

0.554

0.099

0.099

0.109

0.105

0.113

0.112

0.123

.0.111

0.152

0.150

0.171

0.176

0.232

0.206

0.279

0.327

0.073

0.075

0.081

0.080

0.090

0.087

0.089

0.084

0.116

0.117

0.130

0.136

0.189

0.171

0.234

0.258

Due to the setup of the experiment the regression constant./30 is not identified.
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Appendix

Here we prove (5). The integral in (1) may be written as

Li = exp 0)] .

Expanding 4( i4,9) about pi = e and suppressing the arguments and the index i

temporarily, we obtain

1= or et f exp [t(1* _ia.2 to) it.21[1. + 0.3.e(3)12*3 + :40.4.64)/2,1,4 
+...] 

die

where 1/* = — eVcr. Transforming —.7262 p*2 = Z2, the last integral becomes

—1/2 0)2 1 61)2 2

L = [ exp I exp [Z , v_t(2) X

t(3) e(4)

[1 +
6[ 

Z3 + 

---e(2)]3/2 24t(2)2 Z4 + • .] 
dZ .

This yields the expansion

1

L= 
[_ 27r I 2 

exp 
{ t(1)2 1

e2) ti — — p
2(2) 

ex P{1 
{1 
+

+ 
to) 

[3 
6 (1)2 (1 4

24(2)2 £(2) 
62)2] + • ' • + .e-± /

3 (1) 0)3t(3)

—E(2)]3/2 [v_e(2) [_(2)}3,2

To establish the order of the error of the approximation we impose the following

conditions:

condition 1; cr2 4 = 0(1) as (72 0, Vi, i = 1, . . . , N.

condition 2; t(Ari) = 0(1) as cr2 0, Vi, i = 1,. . . , N, r = 1,3,4,....

We note that conditions 1 and 2 are both satisfied when, for example, pi

N(0, cr2). Under these conditions, the desired expansion is

[_ 2 
exp 
[

= 
n 61)2 [ 

463)f(1) + to)

(,)\ t 4_  
262) 8E(2)2

The correction factor appearing in the expansion is of order 0(a4) under conditions 1

and 2. The error of neglecting further terms is o(a4). On substitution of the leading

term of the last expression into (1) hnd rearranging, the result (6) follows.

14



References

Anderson, D. A., and Aitkin, M. [1985]: Variance components models with

binary response: interviewer variability; Journal of the Royal Statistical Society

B, 47, pp. 203-210.

Barndorff-Nielsen, 0. E., and Cox, D. R. [1989]: Asymptotic techniques

for use in statistics; Chapman and Hall, London.

Buttler, J. S., and Moffitt, R. [1984 A computationally efficient quadrature

procedure for the one-factor multinomial probit model; Econometrica, 50,

pp. 761-764.

Gourieroux, C. [1994 Introduction to nonlinear models; in Matyas and

Sevestre (eds.): The Econometrics of Panel Data, Kluwer Academic Publishers,

Dordrecht, 1992.

Greene, W. [1994 Limdep, Version 6.0: User's manual; Bellport, N.Y.

Econometric Software, 1992.

Harris M. [1994 Modelling the probability of youth unemployment in Aus-

tralia: 1985-1988; Monash University, Dept. of Econometrics, Working Paper

12/94.

Hsiao C. [1994 Logit and probit models; in Matyas and Sevestre (eds.): The

Econometrics of Panel Data, Kluwer Academic Publishers, Dordrecht, 1992.

Hsiao C. [1986]: Analysis of panel data; Cambridge University Press, Cam-

bridge, 1986.

Im, S., and Gianola, D. [1984 Mixed models for binomial data with an

application to lamb mortality; Applied Statistics, 37, pp. 196-204.

Lancaster, T. [1979]: Econometric methods for the duration of unemployment;

Econometrica, 47, pp. 939-956.

Lieberman, 0. [1995]: A Laplace approximation to the moments of a ratio of

quadratic forms; Biometrika, (forthcoming).

Kiefer, N. M. [1984 An integral occurring in duration models with hetero-

geneity; Economics Letters, 11, pp. 251-256.

Mityas L. and Sevestre, P. [1994 The econometrics of panel data; Kluwer

Academic Publishers, Dordrecht, 1992.

15



••••

Schall, R. [1994 Estimation in generalized linear models with random effects; •

Biometrika, 78, pp. 719-727.

Solomon, P. J., and Cox, D. R. [1994 Nonlinear component of variance

models; Biometrika, 79, pp. 1-11.

Stiratelli, R., Laird, N. and Ware, J. H. [1984 Random effects models

for serial observations with binary response; Biometrika, 40, pp. 961-971.

Tierney, L., and Kadane, J. B. [1984 Accurate approximations for

posterior moments and marginal densities; Journal of the American Statistical

Association, 81, pp. 82-86.

Tierney, L., Kass, R. E., and Kadane, J. B. [1989]: Fully exponential

Laplace approximations to expectations and variances of nonpositive functions;

Journal of the American Statistical Association, 84, pp. 710-716.

Tierney, L., Kass, R. E., and Kadane, J. B. [1989]: Approximate marginal

densities of nonlinear functions; Biometrika, 76, pp. 425-433.

Waldman, D. M. [1985]: Computation in duration models with heterogeneity;

Journal of Econometrics, 28, pp. 127-134.

Wolfinger, R. [1994 Laplace's approximation for nonlinear mixed models;

Biometrika, 80, pp. 791-795.

16

O




