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SUMMARY

In an earlier article, Phillips (1978) extended Daniels' (1956) approximation to the density

of a modified correlation coefficient to obtain a saddlepoint approximation to the density of the

least squares estimator in the first order non-circular autoregression. It was demonstrated that

the resulting approximation is undefined in a substantial part of the tails. In this note, we

establish that a suitable deformation of the contour of integration leads to a different type of

saddlepoint approximation which is defined everywhere on the support of the density. It is

further shown that the relative error of this approximation is bounded in the extreme tails.

Some Key Words: Autoregression; Branch point; Quadratic forms; Saddlepoint approximation.

*Some of the work towards the completion of this paper was carried out while the author was a

PhD. student in the Department of Econometrics, Monash University.



1. INTRODUCTION

The model

Yt = a ut, t = -1, 0,1,..., with ut — N(0, (Y2),

has been the subject of numerous studies in time series regression. Phillips (1978) examined the

performances of the Edgeworth and saddlepoint approximations to the density of the least

squares estimator of a,

2
= YtYt-1 Yt-1

t=1 t=1

= y' Ciy/ y' C2y,

where y' = (yo,..., yT) and C1 and C2 are given by Phillips (1978) equation (6). It was

established, both analytically and empirically, that Daniels' (1956) saddlepoint approximation

to the density of & is unavailable in a substantial part of the tails. The failure of the

approximation is attributed to the existence of a branch 'point of the integrand, such that it is

not possible to deform the contour of integration to pass through a suitable saddlepoint. The

problem apparently occurs because a term in the determinant appearing in the joint mgf of

y' Cly and y' C2y has been neglected prior to inversion. Although the error incurred on the

final approximation is exponentially small, the approximation breaks down in the tails. See

Daniels (1956) and Phillips (1978). In Section 2 we use a result by Lieberman (1994) to

provide an alternative saddlepoint approximation which is available over the entire range of 6i.

The relative error of this approximation is bounded in the extreme tails. A numerical evaluation

carried out in section 3 confirms that the modification results in good overall performance,

especially in the extreme tails of the distribution. All proofs are contained in the appendix.

where

2. APPROXIMATE DENSITY AND TAIL BEHAVIOUR

To establish an approximation which is reliable in the tails, we write et as

ai CI v
a =  

R R 
a , v — N(0, 62),

V' Rat C2Rav

1



b0... 0

ab 1 0... 0

Ra = a2b a 1 0... 0

a
T
b a T-1 . a 1

b= 
(1—a2) if a e (-1,1)

0 otherwise,

and note that & is homogeneous of degree 0 in v. As & is a ratio of quadratic forms in normal

variables, it follows from the appendix that a saddlepoint approximation for the density of 6c is

T
trRI— 26)D)-1 Ra' C,Ralexp Elog(1— 26') d)

t.0

2

- { 

T
47t E[dt/(1-2Codtri}

=0

with do _?_d1 .?....?_d-r, being the ordered eigenvalues of D = = Ra' (C1 — &CI )Ra

and ci) satisfying

a, 
E =0.
t.o 1 — 2co dt

(1)

(2)

We see that pr(6: < x) = pr(v' D(x) v <0) is non-trivial, if and only if do > 0 and cIT <0.

A suitable solution for (2) for which (1) is always defined, is clearly a saddlepoint satisfying

E (1/ 24, 1/2d0). It follows then that the approximation (1) must be defined for all ei on

the support of f(&).

The approximation (1) is substantially different from those provided by Phillips (1978)

and Daniels (1956), since an exact joint mgf has been employed in its derivation. The

drawback with the current methodology is in the difficulty in establishing the order of the error

analytically over the entire range of Et. It is shown in the appendix, though, that when loll is

sufficiently large, f(&) = f(05c) {1+ 0(T-1)). The chief advantage is of course, having a

reliable approximation which is guaranteed to deliver an answer, even in the extreme tails

region.

For computational purposes, it may be more convenient to rewrite (1) and (2)

equivalently as
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tr A—iRa, c2RalAI-2

tctic tr[(A-1D)2ill

where A = A(6) = I— 26) D and Co satisfies

(3)

tr(A-1D) =0. (4)

Although the eigenvalues of D are not explicitly involved in (3) and (4), it is necessary to

constrain a line search in solving (4) so that 6) belongs to the interval (1 / 2 dT,1 / 2 do). The

expressions for f(6c) appearing in (1) and (5) are only the leading term of a saddlepoint

approximation. For additional accuracy, the expansion is

f(&) = 4E0{1 —
2tr[(A.-1D)2A-1R0.: C21Za] 3tr[(A-1D)4] 

tr(A-1Ra' C2Ra)t1RA-1D)21 2[tr(A-1D)2J2

+
2 tr(ii-1DA-1R0:1 C2Ra)tr[(A-1D)3] 10011(A-1D)3]12 

+, „ ...
tr(A-tRa' C2RaXtr[(A-1D)2]]2 3[tr[(ii

,
'D)'r 1- (5)

We establish in the appendix that when 16cl is large, the error of neglecting further terms in the

expansion (5) is 0(T-2).

3. NUMERICAL COMPARISONS

While we can readily obtain the missing values in Phillips' (1978) Table 1 by

numerically integrating (3) or (5), it is much easier to do so by an application of the

Lugannani-Rice (1980) formula. From Lieberman (1994), we know that

where

Pr(ec> x) E_-- 1 — (1)(6 + (1)()(7.1.- —
z

= 6A2 tr((A-1D)2)1/-,

= (loglA1)4 sgn(c1 

(6)
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D = D(x), 430 and 4) are the standard normal cdf and pdf respectively and is as defined by

(2) or (4). Sgn(e.6) is negative, 0, positive when v' Dv— tr(D), is negative, 0, positive,

respectively. For V Dv = tr(D), the Lugannani-Rice formula reduces to

pr(Ec > x) = tr(D3)/ 3(tr(D2)}lit .

As with the density approximation, the saddlepoint used in (6) is real and unique, giving a non-

trivial tail area approximation over the entire range of Cc.

As an illustration, we use (6) to compute,

Pr{
,

T2 — (1— a2)./

in the interval 2 x 3, where the breakdown in Phillips' (1978) saddlepoint approximation

mainly occurs. Additional values corresponding to x = 4,5 are incorporated in order to

demonstrate the robustness of the approximation in the extreme tails region. All computations

were carried out in the SHAZAM (White et al. (1990)) package. The program incorporates the

EIGENVAL and DAVIES options in calculating the eigenvalues of a square matrix and the

distribution of a ratio of quadratic forms, respectively. The latter is the benchmark for all

comparisons. It agrees with Phillips' Table 1 exact values to a third decimal place. The results

are reported in Table I.

Clearly, the Lugannani-Rice approximation is excellent over the reported interval of

et. Accuracy increases towards the far tails of the distribution for both T=10 and T=30 and

for all a values. We observe in particular the approximation's exceptional behaviour for x = 4,

5. It should also be stressed that the approximation is superior to Phillips; (1978) EDGE A

and EDGE B approximations which are available in the relevant range, but do not seem to be

satisfactory. .4
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Let A = A(c)) = I -2c0D,

and

APPENDIX

B = tr(A-1Ras C2Ra) (Al)

h(co) = (A2)

Instead of adopting Daniels' (1956) approach, Lieberman (1994) applied Geary's (1944)

formula in inverting the exact joint mgf of vs Ras CiRav and vs Ras ClRav. The result can

be readily deduced to be

c+ioo
1

f(&)=----B(co)eh(w)do.) c > O. (A3)
27ti. fc_ioo

A saddlepoint approximation for f(ec) is i(&) = [27c h" (Co)] 2 B(6) eh(6)),

with h' (6) = 0, giving (1), or equivalently (3). This is a somewhat non-standard saddlepoint

approximation, since both B(6)) and h(C0) evolve with T. To examine the order of the error,

we expand (A3) fully as

00

13( 6)eh(G)) 
Z
2

f(61c)   e-72- 1+ 
iB' (6))z 

[27th" (6))12- -00 B(6))[h" (6))]2 2 B(6))11" (co) 
•„ ..}

B" (6) z2

1 ih(3)(6)z3 { + h(4)(6))z4 + [h(3)(6)]2 z6

6[h"(6' )] 
3 
T 24[il" (6))]2 72[11s s (6)]

3 +••• } dz, (A4)

where we have set -z2 = h" (6))(0) -ci))2. Apart from constants, the typical term in the

expansion (A4) involves the product

[ 
,

B(6))[h" (6))]-2- _

(e6 h(k) (60) 

k=3 [h" (&)]T

In view of (Al) and (A2), the relevant derivatives in (A5) are

and

j=0,1,2,...

k = 3, 4, ... (A5)

m = 0,1, 2.....

B(6)= 2' j! trRA-1 1))-i C21Za] j = 0,1,2,...

ha)(6) = 2j-10-1 ! tr[(A.-1D)-1], j = 2, 3, ....

5
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When 16:1-> 00, -> 00 and so, we may rewrite (A 6) and (A 7) fully as

Ba)(6)) = 2j j!ci)-(i+1)6c-ltr { { [(o)eirli — 2(61-1Ra' CiRa — Rat C2Ra)]-1

(6c-1 Rae CiRa- R ' C Ra))i[(616)-1I-2(-6-1Ra' CiRa -Ra' C2Ra)]-1Ra' C2Ra 1,

j = 0,1,2,... (A8)

and

hth (6)) = 2i-1(j- 1)!66-i tra[(6)&)-1 I-2(&_ Ra' CiRa- Ra' C2Ra)]-1

(Ec-1 Ra' CiRa- Ra' C2Ra)1i), j = 2,3,.... (A9)

Substituting (A8) and (A9) into (A5), it follows that

lirn 
BCD (6) 

161-4- B(6)% )[h" (6))]-1- [ h(k)(6)

k=3 [hi ((0)JT

u n
22 j!

(T+1)

In

00 2'(k-1)! 
, (A10)

k=3 --1
(T+ 1)2

with j = 0,1,2,..., k = 3,4,5,... and m = 0,1,2,.... Since all the odd terms in (A4) vanish on

integration, the only relevant factors involving T in (A10) are such that j+ (Ek=.3 k)111 2 and

even. Thus, the highest order term in (A10) is 0(r1). We provide the expansion to this order

fully in (5). The error of neglecting further terms is 0(T-2).
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X

2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
4.00
5.00

X

2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
4.00
5.00

Table 1 Exact values and saddlepoint approximations for

Pr( T4  >x

T=10 a=0.2
Exact Saddlepoint

0.0325 0.0272
0.0247 0.0212
0.0187 0.0164
0.0141 0.0125
0.0105 0.0094
0.0077 0.0069
0.0056 0.0050
0.0041 0.0036
0.0029 0.0026
0.0021 0.0018
0.0015 0.0013
6.7x10-5 6x10-5
7x10-6 5.7x10-6

T=10 cc=0.6
Exact Saddlepoint

0.0784 0.0781
0.0684 0.0686
0.0596 0.0600
0.0518 0.0522
0.0449 0.0454
0.0388 0.0393
0.0334 0.0339
0.0287 0.0292
0.0246 0.0250.
0.0209 0.0213
0.0178 0.0181
2.7x10-3 2.7x10-3
2.4x10-4 2.4x10-4

T=10

Exact

0.0494
0.0409
0.0337
0.0276
0.0225
0.0182
0.0146
0.0116
0.0092
0.0072
0.0056
2.9x10-4
2.2x10-5

a=0.4
Saddlepoint

0.0474
0.0396
0.0329
0.0271
0.0221
0.0180
0.0144
0.0115
0.0091
0.0071
0.0055
3x10-4
2.2x10-5

T=10 a=0.8
Exact Saddlepoint

0.1299
0.1185
0.1080
0.0984
0.0896
0.0816
0.0742
0.0674
0.0612
0.0556
0.0503

- 0.0177
0.0053

0.1322
0.1211
0.1107
0.1011
0.0923
0.0841
0.0766
0.0697
0.0634
0.0576
0.0522
0.0184
0.0056
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X

2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
4.00
5.00

X

2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
4.00
5.00

Table 1 Exact values and saddlepoint approximations for

Pr( TI (6c >x

T=30

Exact

0.0392
0.0302
0.0230
0.0174
0.0131
0.0098
0.0072
0.0053
0.0039
0.0028
0.0020
3.8x10-5
4.1x10-8

T=30

Exact

0.0605
0.0519
0.0445
0.0382
0.0326
0.0278
0.0236
0.0200
0.0169
0.0143
0.0120
0.0018
1.8x10-4

(continued)

a=0.2

Saddlepoint

0.0284
0.0226
0.0179
0.0140
0.0109
0.0084
0.0064
0.0048
0.0036
0.0026
0.0019
3.8x10-5
13x10-7

a=0.6
Saddlepoint

0.0600
0.0519
0.0447
0.0383.
0.0328
0.0280
0.0238
0.0202
0.0171
0.0144
0.0121
0.0018
1.8x10-4

T=30 a=0.4

Exact Saddlepoint

0.0456 0.0411

0.0369 0.0342

0.0299 0.0283

0.0241 0.0233

0.0195 0.0191

0.0157 0.0155

0.0126 0.0126

0.0101 0.0101

0.0081 0.0081

0.0064 0.0064

0.0051 0.0051

3.3x10-4 3.2x10-4

9.1x10-6 9.0x10-6

T=30 a=0.8

Exact Saddlepoint

0.0952
=0.0854
0.0766
0.0686
0.0614
0.0549
0.0490
0.0437
0.0390
0.0347
0.0308
0.0090
0.0023

0.0964
0.0866
0.0778
0.0697
0.0624
0.0558
0.0499
0.0445
0.0397
0.0353
0.0314
0.0091
0.0024




