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SUMMARY

The Laplace method for integrals approximating is applied to give a

general approximation for the kth moment of a ratio of quadratic forms in

random variables. The technique utilizes the existence of a dominating peak

at the boundary point on the range of integration. As closed form and

tractable formulae do not exist in general, this simple approximation, which

only entails basic algebraic operations, has evident practical appeal. We

exploit the approximation to provide an approximate mean-bias function for

the least squares estimator of the coefficient of the lag dependent variable

in a first order stochastic difference equation.

Some key. words: Approximate mean-bias; Boundary point; Generalized

cumulant; Invariant polynomial; Saddlepoint approximation.

* Some of the work towards the completion of this paper was carried out
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1. INTRODUCTION

Convenient closed form expressions for moments of a ratio of quadratic

forms in random variables exist only in some special cases. For example,

under normality, the computation of the moments of the Durbin-Watson test

statistic under the null hypothesis is straightforward. Under the

alternative hypothesis, however, these moments are cumbersome functions of

infinite sums of invariant polynomials with multiple matrix arguments. As

only the top order of these polynomials is tabulated, the exact finite

sample formulae presented by Smith (1989) are essentially uncomputable.

The practitioner or theorist who requires any moment of this ratio faces

either a laborious Monte Carlo experiment, or the exploitation of formulas

involving unsolved integrals given by Sawa (1972) and Magnus (1986), under

normality. The former is almost standard practice for obtaining the bias of

the least squares estimator of the lag dependent variable in the first order

stochastic difference equation. In contrast, Andrews (1993) has suggested a

median-, rather than a mean-unbiased estimator in the same context, which

avoids the unavailability of the first moment in a manageable form. Hogue

and Peters (1986) have applied the latter approach in their computation of

the bias and mean squared error of certain estimators within the ARMAX

framework. This approach entails a numerical integration of derivatives of

the joint moment generating function of the two quadratic forms.

In addition to the examples discussed above, many test statistics for

autocorrelation, heteroscedasticity and structural breaks are ratios of

quadratic forms. The k-class estimator in a simultaneous system, the R2

statistic in the linear regression model, Stein-rule estimators, test

statistics in unit root models and forecasts in dynamic linear models are

further examples.

To date, the literature on this ratio has been largely concerned with its
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distributional properties under. normality, but even so has failed to deliver

serviceable means for computing its moments. Some contributions in the area

are Gurland (1953), Imhof (1961), Anderson (1971, Ch6), Davies (1971),

Johnson and Kotz (1971, Ch 29), Kumar (1973), Evans and Savin (1984), Magnus

(1986), Farebrother (1990), Shively, Ansley and Kohn (1990) and Lieberman

. (1994). Limited departures from normality have been entertained by Box and

Watson (1962), Kariya (1977), Kariya and Eaton (1977), Knight (1985), McCabe

(1989), Peters (1989), Evans (1992) and others. An attempt to obtain the

moments of this ratio by numerical integration of an Edgeworth expansion of

the joint moment generating function of two quadratric forms, resulted in

considerable computational difficulties, see Peters (1989, Sec. 5.2). The

need for closed form expressions for the moments of this important statistic

is clearly manifested through Peters' (1989) report. In this article, the

Laplace method for integrals approximating is used to derive a general

expression for the kth moment of a ratio of quadratic forms. The

approximation can be easily executed in any standard computer package, and

is particularly compact under the normality assumption.

A number of authors have recently used the Laplace method in deriving

various approximations, particularly in Bayesian contexts and in integrating

out unwanted variables. See, among others, Tierney and Kadane (1986),

Tierney, Kass and Kadane (1989 a,b), DiCiccio and Martin (1991) and Daniels

and Young (1991). These approximations rely on the existence of a single

mode at an interior point of the range of integration. Erdelyi (1956), De

Brui jn (1958), Olver (1974), Bleistein and Handelsman (1986) and Erkanli

(1994) provide analogous treatment to the case where the maximum is attained

at the boundary point, which proves useful in the present study.

In Section 2 we derive our general approximation for the moments of a

ratio of quadratic forms in random variables. Under certain restrictions,
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the true moments are available in tractable forms. It is demonstrated that,

in this special case, the approximate mean collapses to the exact formula

and the error of approximate higher order moments is 0(n-1). Sufficient

conditions under which the approximation error is 0(n-1) in the general

set-up are established and an expansion up to 0(n-3) is obtained. The

usefulness of the approximation is demonstrated in Section 3, with the

introduction of parsimonious representations for the approximate bias

function and mean squared error of the least squares estimator of the

coefficient of the lag dependent variable in the linear regression model.

The accuracy of the technique is evaluated numerically in Section 4.

2.1 APPROXIMATE MOMENTS OF A RATIO OF QUADRATIC FORMS

Let x be n x 1 random vector with density function f(x). Let matrices F

and G be non-stochastic n x n, F symmetric and G positive definite. Denote

the joint moment generating function of x'Fx and x'Gx by

M(w w ) = E exp(w x'Fx + w x'Gx),
1 2 1 2

and assume that it converges in a strip containing in its interior the

origin. The statistic under consideration is r = x'Fx/x'Gx. If

x N (0, cr 
2 
I ) and G is an identity matrix, then the moments of r are

computable functions in the diagonal elements of F. See for example, Henshaw

(1968). For the more general case under normality, the moments are

complicated functions of infinite sums of invariant polynomials with

multiple matrix arguments. Under non-normality, there do not exist any

tractable formulae for these moments, hence the motivation for manageable

and computable approximations. Assuming that E(x'Gx) and E{(x'Fx)k) exist,

k 1, the following theorem is proved in the appendix.
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THEOREM 1. The Laplace approximation for the kth moment of r about the

origin is

E
k
) — 

E{ (X'FX)k).
{ E(eGX))k

(1)

While it is difficult to provide a general characterization of sequences

of F and G matrices which uniquely determines the order the error of the

approximation, it is possible to establish conditions on the cumulants of

the numerator and denominator quadratic forms under which the boundedness of

the error of E (r
k
) is ensured. Denote the pth cumulant of x'Gx by K and

the = 1 + m order, 6 = k + m degree generalized cumulant of the product of

(x'Fx)k and x'Gx, by Kkm. For a comprehensive discussion on generalized

cumulants, the reader is refered to McCullagh (1989, Ch3). It follows from

the appendix that, in terms of these cumulants, the sufficient conditions

for E (r
k
) to have an error of 0(n') are:

Condition 1.

Condition 2.

K = 0(n), (p = 1,2,...).

K = E{(XTX)k) = 0(nk), (k =- 1,2,...).
k0

Condition 3. K = O(n), with t k (k, m =
km

Conditions 1-3 are automatically satisfied if r is a ratio of two

independent chi-square variates with degrees of freedom both of order 0(n).

While conditions 1-3

expansion for E(rk), the

are not necessary for a formal development of an

error of the approximation is established under

them. Given these conditions, the Laplace expansion for E(rk) is

kk) + b + b + 0(n-3E(r)=E(r)+b = E (r ),
n1 n2

where

k(k+1
n1 2

and

11{(X'FX)
k
)K21 k

L{E(x'Gx))k+2.1 

4

k 1

(2)

-1= 0(n) (3)



K 
k 2 

3E{(x'Fx)
k
)K + K K

k(k+i) [ k(k+1)(k+2) 3 kl 2
b - -
n2 2 {E(x'Gx)r+- 

2
{E(X'GX)}k+3

E{ (X:FX)
k
:

8 

K2
2

AI

k(k+1)(k+2)(k+3)  (4)

If x'Fx and x'Gx are independent, then all terms involving K , m .>-- 1,
km

vanish, resulting in a simplification of (3) and (4). It is convenient to

use McCullagh's (1989 p. 60) formula for the conversion of generalized

cumulants into ordinary moments in expressing the relevant terms appearing

in (3) and (4) as

and

K = E{(XTX)k(X'GX)) - E{(XTX)k)E(X'GX)
kl

IC = E{(x'Fx)k(x'Gx)2) - 2E(x'Gx)E{(x'Fx)k(x'Gx)) - E{(X'GX)2)E{(XTX)k
}

k2

+ 2{E(x'Gx)}2E{(x'Fx)k}.

These moments can be easily recovered from the Edgeworth expansion of the

joint moment generating function of two quadratic forms, given by Peters

(1989); see also Knight (1985).

Under the normality assumption, the approximation is even more appealling,

as the expressions involved simplify greatly. Specifically, if x N(µ, c2),

we can write the Laplace approximations for the mean and second raw moment

explicitly as

and

E (r) - ifF1-1 
tr(C2F)

p:Gµ + tr(C2G)

E (r
2
) - 

{µ' Fp. + tr(OF ) )2 2{tr(C2F)2 + 2µ'FC2Fp.}

+ tr(11G))2

(5)

(6)

2.2 An example

Let y be n x 1, Xnxs of rank s and non-stochastic, f3 s x 1 and fixed,

and u an n x 1 disturbance vector. The general linear model is y = X/3 + u.

5



Under the null hypothesis of no serial correlation in the disturbances, u -

N(0, 0'
2
1 ). The Durbin-Watson test statistic is then

u' PA Pu
r=

u ' Pu

where Ai is the first differencing matrix and P = I - X(X'X)-1X is

idempotent. Then r is distributed independently of its own denominator, so

that

E(r
k
) - 

E{ (u' PAiPu)
k
) 

, (7)
E{(u' Pu)'}

see Durbin and Watson (1950, p. 419). As seen from (1) and (7), the

approximation for the mean is exact. From Smith (1986), E{(u'Pu)k} =

(2cr
2
)
k
(-
1
n - -s) , where (a) = a(a + 1)..:(a + k - 1). Therefore, the error
2 2k

of the approximation for k ?: 2 is

E (r
k
) 2

k
(-
1 1
n - -5)
2 2 • k

EC rk (n-s)k

= 1 + 0(n-1).

We note that the error of 0(n-1) holds for k 2 regardless of the design

matrix X.

3. APPROXIMATELY UNBIASED ESTIMATORS

Consider the model y
t 
= ay + x'f3 + u

t' 
where Li

t 
- N(0, cr

2
) for all t,t-i

(t = 1, ,n). The ordinary least squares estimator of a is

-, 31' PYt-1 t z'Sz
a -   

Y ' PY z'Bz'
t-i t-i 

=

where z' = 1 n...y 2), S = 2-(D;PD2 + D2 1'PD), B = D; 1 1PD, D = (I 0) and D
n-1 2

= (0 I ). Under the assumptions that the process has been stabilized at
n-1

t = 1, so that E(y) = E(yo) and var(yt) = var(y), for all t, z N(µ, cr20),

with
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=

f 1 f N

b 0... 0 x'
1
13

ab 1 0... 0 x'f3
2

a
2
b a 1 0... 0

n- 1n-2
a b a .. .a 1 x'f3

- n

= HX'f3, say,

where b -= 1/(1-a). 2 = LL', with L being the same matrix as H, except that b

6.
is replaced by (1 - 

a2)-1/2 
in the first column. a is a ratio of quadratic

forms in normal variables. The mean-bias of a can be usefully approximated

using (5). The Laplace approximations for the bias and mean squared error

functions of this estimator are

Bias (a) = E (a) - a

p.'(S-aB)p. + tr{C2(S-aB))
+ tr(OB

and

,.
^ "

Mse (a = E (a
2 
) - {E (a))

2 
+ {Bias (a)}

2

L L L L

- 
{p'Sµ + tr(C2S) )

2 
+ 2{tr(QS)

2 
+ 21.CSOSII}

+ tr(S2B))2

{+ a a _ 2 ifsii + tr(C2S) 

ti.'13µ + tr(OB)

Notice that ii = g(a) and 0 = 0(a), so that for any given values of

X and n, the computation of (8) and (9) is instant.

4. ACCURACY OF THE APPROXIMATION.

(8)

(9)

a, (3, 0.2,

Table 1 compares the Laplace approximations to the bias and mean squared

error of a with a Monte Carlo simulation consisting of 2000 replications.

The SHAZAM package (White et al. 1990) is used with the random number

generator, ranseed = 123, throughout. The data have been used in previous

studies of the same nature, specifically, Inder (1986) and Hogue and Peters

(1986). The various experimental designs are;
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Design 1; X consists of a constant and Maddala and Rao's (1973) GNP data, 13'

= (o, 1), o = 1, 8 and n = 32, 76.

Design 2; X consists of a constant and a linear time trend, tv = (o, 1), cr =

1 and n = 20, 40, 60, 80.

Design 3; X consists of a constant and the Durbin and Watson (1951)

• consumption of spirit data in the U.K., 13' = (0, 1, 1), cr = 1 and n = 30,

60.

The approximations for the bias generally compare favourably with the

simulated figures, particularly in designs 1 and 2 and with the larger

sample sizes. They are almost always superior to the corresponding mean

squared error approximations. Given that the latter is an outcome of an

approximation to a double integral, this feature is not surprising. We

emphasize though, as already noted by Tierney and Kadane (1986, Sec. 6) in a

similar context, that the approximations should be regarded as simple and

tractable devices which should by no means replace exact calculations,

should extremely accurate results be necessary.

5. CONCLUSION

We have applied the Laplace method for integrals in establishing a general

approximation for the kth moment of a very large class of statistics. The

technique utilizes the existence of a dominating peak at a boundary point on

the range of integration. For a subclass of statistics that includes the

Durbin - Watson test statistic under the null, the approximate mean is

exact. The relative error of approximate higher order moments is 0(n-1). An

expansion up to 0(n
-3
) was obtained under general conditions on the

cumulants of the quadratic forms involved in the ratio.

Of particular importance is the simplicity of the approximations. Only

basic algebraic operations are required. Unlike what is often the case for
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saddlepoint approximations, not even a line search is necessary. There does

not at present seem to exist any closed form convenient alternative for the

calculation of these moments.
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APPENDIX

Proof of Theorem I

We first show that (1) constitutes the Laplace approximation to E(rk),

then justify conditions 1-3 and the order of the terms in the expansion (2).

Let w = E w . The kth moment of r about the origin can be readily shown
2 j =1 2j

to be

0 0 akM(CA) , E
1 j=1 2j

co co aw
k

1

dw ...dw
21 2k.

= 0
1

(Al)

This multiple integral has not been previously solved. To express (Al) in a

form suitable for the application of the method of Laplace, we first write

the integrand as

where

and

akM(C4 , CI) )
1 j=1 2j

aw
k

1

= g (0, E w ) exp(h(0, E w )},
k j=1 2j J=1 2j

CL)=0
1

akm(w , z w
1 j 2j 

g (0, E w =
k j=1 2j awk

1

•

9

W =0

/M(0, E
J=1 2j

(A2)



h(0, Z w = log M(0, E w ).
J=1 2j j=1 2j

As G is positive definite,

k 

El h
w 

(0, E ) exp{(x'Gx) Z w )f(x)dx]
J=1 2j j=1 2)

2)

(x'Gx)exp{(xtGx) E w }f(x)dx > 0,
j=1 2)

for all x E le and CO E ER, j = 1,...,k). On the range of integration, the
2j

monotonicity of h(0, 
i 
w 
2j
) implies that its maximum is attained at the

j= 

boundary points w21=...= 
2k 
= 0. Applying the method of Laplace, we have

0 0

E(rk) = ...f g (0, Z w exp{h(0, Z c ))dw ...dw
k j=1 2) j=1 2j 21 2k

-co -co

g(0, 0) exp{h(0, 0)

II h ( 0, 0)
j=1 W

2)

In view of (A2), gk(0, 0) = E{(x'Fx)k) and since h(0, w ) is the
j=1 2)

cumulant generating function of x'Gx, h(0, 0) = 0 and

Thus

h
w 

(0, 0) = E(x'Gx).
2)

E{(x'Fx)k) _
E(rk) E (rk).

{E(x'Gx))k L

The order of the error of the approximation

In order to establish that conditions 1-3 ensure that the error of the

approximation is 0(n-1), we first note that for any j E [1, kl,

and

aPh(o, z w
J=1 2)

E Cc)
j=1 2)

=0

=K
aw...aw

2j 2)

10
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arngk 14)2j)

aw ...aw•
2J 2j

To see the latter, we put

Then

and

Z W =0
J=1 2j

= K (111 = 1,2, ... ).
km

K(u, Z w ) = log E exp{u(x'Fx)
k 
+ (x'Gx) Z w ).

J=1 2j j=1 2j

K(0, E w = g (0, E w
u j=1 2j k j=1 2j

amgk 0 , Wzi

K (0, 0) —   k
uW ...W aW —.8W

2j 2j 2j 2j E w =o
j=1 2)

On detailed expansion of E(rk) about the origin, it is seen that

E(rk)

= K , for any j E El, Id.
km

2

[E{(XTX)k} + K Z w + K E w ) /2 + ...]
k 1 j=1 2) k2 j =1 2)

f1 2 k 3

+ K Z w I/2+KIE W /6 + ...1
2 j =1 2j 3(j =1 

2))

expfE(x'Gx) E w 1 dw ...dw
j =1 2j 21 2k

k ) 2

TE{(XX)k} Et + K Et /2 +
k 1 j =1 j k2 j=1

k ) 2 k ) 3

+K E t /2 - K E t /6 +
2 j =1 j 3(j =1 j

exp{ 
k

-E(x'Gx) E t dt ...dt . (A3)
=1 1 k

By the positive definiteness of G, E(x'Gx) > 0 and for any nonnegative

integer s, .we may use the result

co co ( k s rck + s) 
E t exp{-E(x'Gx) Et'   t ...dt —  . (A4)
J1 j=1 j 1 k

0 0 r(k){E(x'Gx)}k+s

An application of (A4) in (A3) yields an expansion of the form
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E(rk) - 
E{(X'FX)k) 

(E(X'GX))k

a a
2

{E(X'GX)}k+1 {E(X'GX)}k

where the a ' s involve E{(x'Fx)
k
), the lc 's and K '5,

km

(A5)

(i, k, m = 1,2,•••;

p = 2,3, ... ). The rate of decay of the series (A5) is therefore directly

determined by the orders of magnitude of E(x'Gx) and the al's (i = 1, 2, ... ).

In view of (A3)-(A5), conditions 1-3 are seen to be sufficient for the

approximation to have an error .of 0(n-1). Direct if tedious derivation of

the 0(n-1) and 0(n-2) terms under conditions 1-3 produces (3) and (4). The

error of neglecting further terms is
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Table 1. Comparison of approximate (LAP) and simulated (MC) mean and mse

Design 1

n

76 0.2

0.4

0.6

0.8

0.9

32 0.2

0.4

0.6

0.8

0.9

a

0.2

0.4

0.6

0.8

0.9

0.2

0.4

0.6

0.8

0.9

-0.037

-0.046

-0.049

-0.014

-0.001

-0.071

-0.090

-0.093

-0.023

-0.003

bias

MC LAP

-0.000

-0.000

-0.000

-0.000

-0.000

-0.002

-0.001

-0.001

-0.000

-0.000

-0. 000

-0. 000

-0. 000

-0. 000

-0. 000

-0. 001

-0. 001

-0. 000

-0. 000

-0. 000

bias

MC LAP

n=

-0. 031

-0. 036

-0. 036

-O. 010

-0. 001

= 1

mse

MC LAP

0.000 0.000

0.000 0.000

0.000 0.000

0.000 0.000

0.000 0.000

0.000 0.000

0.000 0.000

0.000 0.600

0.000 0.000

0.000 0.000

Design 2

mse

MC LAP

80

0.013

0.013

0.011

0.001

0.000

n = 40

-0. 062

-0. 072

-O. 068

-O. 016

-0. 003

0.029

0.030

0.025

0.003

0.000

0.016

0.025

0.042

0.040

0.009

0. 033

0.050

0.082

0. 062

0.017

16

o'=8

bias mse

MC LAP MC LAP

-0.021

-0.018

-0.011

-0.004

-0.001

-0.057

-0.048

-0.028

-0.008

-0.003

-O. 017

-O. 014

-0. 008

-0. 003

-O. 001

-0. 042

-0. 033

-O. 019

-0. 006

-0. 002

0.008

0.005

0.002

0.000

0.000

0.021

0.014

0.005

0.001

0.000

bias

MC LAP MC

n = 60

-0.050 -0.041 0.019

-0.063 -0.048 0.019

-0.068 -0.047 0.016

-0.019 -0.012 0.002

-0.002 -0.001 0.000

-O. 144-

-0. 182

-O. 177

-O. 049

-0. 011

n = 20

-0.129

-0.149

-0.132

-0.037

-0.011

mse

0.010

0.013

0.013

0.011

0.007

0.026'

0.032

0.033

0.022

0.011

LAP

0.022

0.033

0.056

0.047

0.011

0.071 0.074

0.082 0.105

0.070 0.156

0.011 0.109

0.002 0.043



bias

a MC LAP

Table 1. (Continued)

Design 3

mse

MC LAP

bias mse

MC LAP MC LAP

n = 60 n = 30

0.2 -0.069 -0.061 0.021 0.023 -0.134 -0.121 0.052 0.054

0.4 -0.086 -0.072 0.023 0.035 -0.169 -0.142 0.063 0.078

0.6 -0.105 -0.084 0.025 0.062 -0.207 -0.166 0.076 0.126

0.8 -0.129 -0.099 0.028 0.131 -0.255 -0.203 0.096 0.210

0.9 -0.142 -0.107 0.031 0.226 -0.287 -0.232 0.112 0.269
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