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SUMMARY

The Laplace method for integrals approximating is applied to give a
general approximation for thé kth moment of a ratio of quadratic forms in
random variables. The technique utilizes the existence of a dominating peak
at the boundary point on the range of integration. As closed form and
tractable formulae do not exist in general, this simple approximation, which
only entails basic algebraic operations, has evident pra.ctical appeal. We
exploit the approximation to provide an approximafe mean-bias function for
the least squares estimator of the coefficient of the lag dependent variable
in a first order stochastic difference equation.
Some key. words: Approximate mean-bias; Boundary point; Generalized

cumulant; Invariant polynomial; Saddlepoint approximation.
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1. INTRODUCTION

Convenient closed form expressions for moments of a ratio of quadratic
forms in random variables exist only in. some special cases. For example,
under normality, the computation of the moments of the Durbin-Watson test
statistic under the null hypothesis is straightforward. Under the
alternative hypothesis, however, these mofnents are cumbersome functions of
infinite sums of invariant polynomials with multiple matrix arguments. As
only the top order of these polynomials is tabulated, the exact f inite
sample formulae presented by Smith (1989) are essentfally uncomputable.

The practitioner or theorist who requires any moment of this ratio faces
either a laborious Monte Carlo experimerit, or the exploitation of formulas
involving unsolved integrals given by Sawa (1972) and Magnus (1986), under
normality. The former is almosf standard practice for obtaining the bias of
thé least squares estimator of the lag dependerit variable in the first order

stochastic difference equation. In contrast, Andrews (1993) has suggested a

median-, rather than a mean-unbiased estimator in the same context, which

avoids the unavailability of the first moment in a manageable form. Hoque
and Peters (1986) have applied the latter approach in theif computation of
the bias and mean squared error of certain estimators within the ARMAX
framework. This approach entails a numerical integration of derivatives of
the joint moment generating function of the two quadratic forms.

In addition to the examples discussed above, many test statistics for
autocorrelation, heteroscedasticity and structural breaks are ratios of
quadratic forms. The k-class estimator in a simultaneous system, the RZ
statistic in the linear regression model, Stein-rule estimators, test
statistics in unit root models and forecasts in dynamic linear models. are

further examples.

To date, the literature on this ratio has been largely concerned with its




distributional properties under normality, but even so has failed to deliver

serviceable means for computing its moments. Some contributions in the area

are Gurland (1953), Imhof (1961), Anderson (1971, Ch6), Davies (1971),

Johnson and Kotz (1971, Ch 29), Kumar (1973), Evans and Savin (1984), Magnus
(1986), Farebrother (1990), Shively, Ansley and Kohn (1990) and Lieberman
(1994). Limited departures from normality have been entertained by Box and
Watson (1962), Kariya (1977), Kariya and Eaton (1977), Knight (1985), McCabe
(1989), Peters (1989), Evans (1992) and others. An attempt to obtain the
moments of this ratio by numerical integration of an Edgeworth expansion of
the j‘oint moment generating function of two quadratric forms, resulted in
considerable computational difficulties, see Peters (1989, Sec. 5.2). The
need for closed form expressions for the moments of this important statistic
is clearly manifested through Peters’ (1989) report. In this article, the
Laplace method for integrals approximating is used to derive a general
expression for the kth moment of a ratio of quadratic forms. The
approximation can be easily executed in any standard corr;_puter package, and
is particularly compact under the normality assumption.

A number of authors have recently used the Laplace method in deriving
various apprﬁximations, particularly in Bayesian contexts and in integrating
out unwanted variables. See, among others, Tierney and Kadgne (1986),
Tierney, Kass and Kadane (1989 a,b), DiCiccio and Martin (1991) and Daniels
and Young (1991). These approximations rely on the existence of a single
mode at an_interior point of the range of integration. Erdelyi (1956), De
Bruijn (1958), Olver (1974), Bleistein and Handelsman (1986) and.Er'kanli
(1994) provide analogous treatment to the case where the maximum‘ is attained
at the boundary point, which proves useful in the present study.

In Section 2 we derive our general approximation for the moments of a

ratio of quadratic forms in random variables. Under certain restrictions,




the true moments are available in tractable forms. It is demox}strated that,
in this special case, the approximate mean collapses to the exact formula
and the error of approximate higher order moments is O(n_l). Sufficient
conditions under which the approximation error is on™) in the general‘
set-up are established and an expansion up to 0o(n®) is obtained. The
usefulness of the approximation is demonstrated in Section 3, with the
introduction of parsimonious representations for - the approximate bias
function and mean squared error of the least squares estimator of the

coefficient of the lag dependent variable in the linear regression model.

The accuracy of the technique is evaluated numericélly in Section 4.

2.1 APPROXIMATE MOMENTS OF A RATIO OF QUADRATIC FORMS
Let. x be n x 1 random vector with density function f(x). Let matrices F
and G be non-stochastic n x .n, F symmetric aﬁd G positive definite. Denote
the joint moment generating function of X’Fx and x’Gx by
M(wl, wz) = E exp(wlx’Fx + wzx’Gx),
and assume that it converges in a strip containing in its interior the
origin. The statistic under consideration is r = xX'Fx/x’Gx. If
x ~ N (O, o*zln) and G is an identity matrix, then the moments of r are
computable functions in the diagonal elements of F. See for example, Henshaw
(1968). For the more general case under normality, the moments are
complicated functions of infinite sums of invariant polynomials witﬁ
multiple matrix arguments. Under non-normality, there do not exist any
tractable formulae for these moments, hence the motivation for manageable
and computable approximations. Assuming that E(x’Gx) and E{(x’Fx)*) exist,

k = 1, the following theorem is proved in the appendix.




THEOREM 1. The Laplace approximation for the kth moment of r about the
origin is

_ E{x’Fx)%

E (). -
{E(x’Gx)}

. (1)

While it is difficult to provide a general characterization of sequences
of F and G matrices which uniquely determines the order the error of the
approximation, it is possible to establish conditions on the cumulants of

the numerator and denominator quadratic forms under which the boundedness of

the error of EL(r‘k) is ensured. Denote the pth cumulant of x’Gx by ;cp and

the ¥ = 1 + m order, 8 = k + m degree generaliied cumulant of the product of
(x’Fx)k and x'Gx, by kkm. For a cbmpréhensive discussion on generalized
cumulants, the reader is refered to McCullagh (1989, Ch3). It follows from
the appendix that, in terms of these cumulants, the sufficient conditions

for EL(rk) to have an error of O(n-l) are:

Condition 1. k= o(n), (p = 1,2,...).
Condition 2. k = E(x’Fx)¥) = o(n®), (k = 1,2,...).

Condition 3. K= O(ne), with £ = k (k, m = 1,2,...).

Conditions 1-3 are automatically satisfied if r is a ratio of two
independent chi-square variates with degrees of freedom both of order O(n).
While conditions 1-3 are not necessary for a formal development of an
expansion for E(rk), the error of the approximation is established under
them. Given these conditions, the Laplace expansion for E(r¥) is

Ky _ k -3
.E(r‘ ) = EL(r‘ ) + bnl + bnz + O(n 7),

E((x’Fx)k)K2 K

_ k(k+1) -k

nl 2

k1

b

k+2 k+1

{E(x’Gx)} {E(x’Gx))
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. k(k+1)(k+2)(k+3)

s ).

‘:E((X’Fx)k)xz

{E(x’Gx)}

If x’Fx and x’Gx are independent, then all terms involving K _» M = 1,
vanish, resulting in a simplification of (3) and (4). It is convenient to
use McCullagh’s (1989 p. 60) formula for the conversion of generalized
cumulants into ordinary moments in expressing the relevant terms appearing
in (3) and (4) as

K, = E{(x’Fx)*(x’Gx)} - E{(x’Fx)}E(x’Gx)

K., = E{(x'Fx)*(x’Gx)%) - ZE(x’Gx)E((x’Fx)k(x’Gx)} - E{(x'Gx))E(x’Fx))
+ 2{E(x’ G E((x'Fx)%).
These moments can be easily recovered from the Edgeworth expansion of the
joint moment generating function of two quadratic forms, given by Peters
(1989); see also Knight (1985).
Under the normality assumption, the approximation is even more appealling,
as the expressions involved simplify greatly. Specifically, if x ~ Ny, 9Q),

we can write the Laplace approximations for the mean and second raw moment

explicitly as
' Fu + tr(QF)
p'Gu + tr(QG)

EL(»r) =

(WFp + tr(@F))% + 2{(tr(@F)® + 2y’ FQFpu)
{p’Gu + tr(9G))?

.EL(rz) =

2.2 An example
Let y be n x 1, X n x s of rank s and non-stochastic, B s x 1 and fixed,

and u an n x 1 disturbance vector. The general linear model is y = XB + u.




Under the null hypothesis of no serial correlation in the disturbances, u ~
N(O, ¢°I ). The Durbin-Watson test statistic is then
n

_u’PA1Pu
~ u’Pu

where A1 is the first differencing matrix and P = In - X(X’X)—IX is
idempotent. Then r is distributed independently of its own denominator, so

that

. , .

E(Y) = E{(u PAIPI;) }
: E{(u’Pu) ™}

see Durbin and Watson (1950, p. 419). As seen from (1) and (7), the

, (7)

approximation for the mean is exact. From Smith (1986), E{(wPw)*} =
(Zo‘z)k(%n - %s)k, where (a)k = ala + 1)...(a + k - 1). Therefore, the error
of the approximation for k = 2 is

k k,1 1
EL(I‘ ) _ 2 (ED ES)R

E(r®) ) (n-s)¥
=1+ o™,
We note that the error of O(n”') holds for k = 2 regardless of the design
matrix X.
3. APPROXIMATELY UNBIASED ESTIMATORS
Consider the model y, = ay 4 x;B +ou, where u o~ N(0, ¢°) for all t,

t-1

(t = 1,...,n). The ordinary least squares estimator of « is

t-lpyt _z'Sz
Py ~ z’Bz’
-1 7t

ox =

y

y
t

| I — l ’ 4 = ’ = H
where z' = (yl...yn), S = 2(D1PD2 + DZPDI)’ B D1PD1’ Dl (In-l‘ 0) and D2

= (0 i In_l). Under the assumptions that the process has been stabilized at

t = 1, so that E(yl) = E(yo) and var(yt) = var(y), for all t, z ~ N(u, O‘ZQ).

‘with




»
\ anJ

where b= 1/(1-a). = LL’, with L being the same matrix as H, except that b

~

2)'1/2 in the first column. « is a ratio of quadratic

is replaced by (1 - «
forms in normal variables. The mean-bias of gc can be usefully approximated
using (5). The Laplace approximations for the bias; and mean squared error
functions of this estimator are

~

BiasL(oc) = EL(a) -«

_ ' (S-aB)p + tr{Q(S-aB)}
B u’ By + tr(QB)

and

~ "2 " W2 . “ W2
MseL(a) = EL(a ) - (EL(a)} + (BlasL(oc))

_ {wsp + tr(@s))® + 2(tr(s)® + 2p’SQsy)
{u’Bu + tr(QB))?

+aa-2“S“+tr(QS). (9)
L' Bp + tr(QB)
2

Notice that p = p(a) and Q = Q(«), so that for any given values of «, B, ¢,

X and n, the computation of (8) and (9) is instant.

4. ACCURACY OF THE APPROXIMATION.

Table 1 compares the Laplace approximations to the bias and mean squared
error of c; with a Monte Carlo simulation consisting of 2000 replications.
The SHAZAM package (White et al. 1990) is used with the random number
generator, ranseed = 123, throughout. The data have been used in _previous
studies of the same nature, specifically, Inder (1986) and Hoque and Peters

(1986). The various experimental designs are;




Design 1; X consists of a constant and Maddala and Rao’s (1973) GNP data, B’
=(0, 1), c =1, 8 and n = 32, 76.

Design 2; X consists of a constant and a linear time trend, B’ = (0, 1), ¢ =
1 and n = 20, 40, 60, 80.

Design 3; X consist's of a constant and the Durbin and Watson (1951)
consumption of spirit data in the U.K., B’ = (0, 1, 1), ¢ =1 and n = 30,
60.

The approximations for the bias generally compaf‘e favourably with the
simulated figures, particularly in designs 1 and 2 and with the larger
sampie sizes. They are almost always superior to the corresponding mean
squared error approximations. Given that. the latter is an outcome of an
approximation to a double integral, this feature is not surprising. We
emphasize though, as already noted by Tierney and Kadane (1986, Sec. 6) in a
similar context, that the approximations should be regarded as simple and
tractable devices which should by no means replace exact calculations,

should extremely accurate results be necessary.

5. CONCLUSION
We have applied the Laplace method for integrals in establishing a general
approximation for the kth moment of a very large class of statistics. The
technique utilizes the existence of a dominating peak at a boundary point on
the range of integration. For a subclass of statistics that includes the
Durbin - MWatson test statistic under the null, the approximate mean is

exact. The relative error of approximate higher order moments is O(n_l). An

X -3 . ‘ o
expansion up to O(n"~) was obtained under general conditions on the

cumulants of the quadratic forms involved in the ratio.
Of particular importance is the simplicity of the approximations. Only

basic algebraic operations are required. Unlike what is often the case for




saddlepoint approximations, not even a line search is necessary. There does
not at present seem to exist any closed form convenient alternative for the
calculation of these moments.
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APPENDIX
Proof of Theorem i
We first show that (1). constitutes the Laplace approximation to E(rk),

then justify conditions 1-3 and the order of the terms in the expansion (2).

k

Let w, = ngwzj. The kth moment of r about the origin can be readily shown

to be

K
6M(w Tw )

E(r¥) = ‘[ ‘[ lej

This multiple integral has not been previously solved. To express (Al) in a

form suitable for the application of the method of Laplace, we first write

the integrand as
K
8 M(w P 2w ) k k

k
/M0, Zw_ )
J=1 2




k k
h(o, Zw ) = log M-(O, Tw ).

=12}
As G is positive definite,

k

B -1
hw (o, J§1wzj) = U exp((x’Gx)ngwzj)f(x)dx]

2] [Rn
k
J (x’Gx)exp{(x’Gx)jE_Ilwzj)f(x)dx > 0,
R '

for all x € R" and wzj e R, (j=1,..,k). On the range of integration, the

k .
monotonicity of h(O, j§lwzj) implies that its maximum is attained at the

boundary points 521=...= 521{ = 0. Applying the method of Laplace, we have

o .0 K k
k —
E(r’) = I J gk(O, j§1c,.v2j) exp{h(0, jglwzj)}dwm...dwu

-0 -0

gk(O, 0) exp{h(0, 0)

Kk
Th (0, 0)
j=1w

2] X

In view of (A2), gk(O, 0) = E{(x’Fx)} and since h(0, ngwzj) is the

cumulant generating function of x’Gx, h(0, 0) = O and
hw (0, 0) = E(x’Gx).

. 2

Thus

Ky o E((X’Fx)k)

= E ™).
{E(x’Gx)}

L

E(r

The order of the error of the approximation
In order to establish that conditions 1-3 ensure that the error of the

approximation is O(n'l), we first note that for any j € [1, k],

k
8°h(0, Tw_)
j=1 2)




k

m
i) gk(O, j’z__?lwzj) )

8w ...0w’
2] 2) J=1wzj'°

To see the létter, we put
Kk . k
K(y, j2=:1w2j) = log E exp{u(x’Fx)" + (x GX)JElej).

k k
K0, o) =gl0 Zo)

k
a"g, (0, z,0,)
K (0, 0) = = k =k , for any j € [1, Kkl
uw._ .. w_ ...0w km
257 2) 2) 2] 3:1“’2]:0

On detailed expansion of E(rk) about the origin, it is seen. that

. 0o .0 y k k 2
E(r) = '[m...[m [E{(x Fx)) + Koy ng wzj + Kkz[_)§1 wzj] /2 + ]

k 2 3
{1+K{Zw]/Z+K[ w}/6+...}
2= 2 3lj=1 2j

K
exp{E(x’Gx) Z w }dw ...dw
=12y a2 2k

] k

kK N2
NN
[E((x Fx)"} Koy ngtj + Kkz[jgltj} /2 + ]

k 2 Kk 3
{1+K[2t]/2—&[21]/6+...}
2| j=1j 3| j=1

k
exp{-E(x Gx) j‘é;c{j} dtl...dtk. (A3)

By the positive definiteness of G, E(x’Gx) > O and for any nonnegative

integer s, we may use the result

00 00 k s k F(k + )
J _[ [ glt) exp{-E(x’Gx) glt} dt...dt = z s . (A4)
o Yo UTHJ = T(K){E(x’Gx))}*"®

An application of (A4) in (A3) yields an expansion of the form




» k a a
ky o EXGXIFX)) L . 2 . (AS)

E(r ..
(E(x’Gx))*  (E(x'Gx)¥!  {(E(x’Gx))**?

where the a's involve E{(X’Fx)k), the Kp’s and Kkm’s, (i, k, m = 1,2,...;
1

p = 2,3,...). The rate of decay of the series (AS) is therefore directl'y
determined by the orders of magnitude of E(x’Gx) and the al’s (i =12,...).
In view of (A3)-(A5), conditions 1-3 are seen to be sufficient for the
approximation to have an error .of o(n™"). Direct if tedious derivation of
the O(ﬁ_l) and 0(n"%) terms under conditions 1-3 produces (3) and (4). The

. . -3
error of neglecting further terms is O(n 7).
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Table 1. Comparison of approximate (LAP) and simulated (MC) mean and mse

Design 1

.000
.000
. 000
.000
.000

Design 2

mse

LAP

.016
.025
.042
. 040
. 009




Table 1. (Continued)

Design 3







