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TAILING THE BID-ASK SPREAD

ABSTRACT

This paper discusses an application of a rather novel technique for the estimation of the
tails of return distributions for financial assets. This extreme value approach proves to be
particularly useful when assessing characteristics of high frequency (tick-by-tick)
transaction data. Tail parameter estimates allow derivation of probabilities of large price
changes. These probabilities improve optimal setting of bid-ask spreads based on the
order processing component of the bid-ask spread. Estimates for optimal levels are
compared to 'observed' bid-ask spreads. The latter, which are estimates in itself, are
based on recently developed methods in the literature.



1. INTRODUCTION

Market makers quote bid-ask spreads to get compensation for the provision of liquidity to

the market. Glosten [1987] and Glosten and Harris [1988] decompose this spread into two

parts: an asymmetric information part and a gross profit part. The last part accounts for

inventory holding costs, order processing costs and normal profit. Asymmetric infor-

mation in particular, as first discussed by Bagehot [1971] and subsequently formalized by,

among others Copeland and Galai [1981] and Glosten and Milgrom [1985], imposes a risk

component on the market maker in case of sudden large price changes. Trading with

better informed investors, without knowing to, entails the risk that shortly or immediately

after trading the market moves against the market maker. This would turn his position

into a substantial loss. Even without this asymmetric trading type, large price swings

indicate potential risks related to the gross profit component. When value changes

quickly, market makers often cannot trade on the other side demanding liquidity. Thus, it

may take several transactions before open positions can be reversed.

This paper introduces an optimizing technique for setting a 'fair' (assuming zero

normal profits) bid-ask spread. We explicitly do not make any claim on distinguishing the

above mentioned components, and confine the analysis to the required compensation for

large price changes.

The majority of the literature assumes that price processes of financial asset prices

can be described by geometric Brownian motions. This implies that, for fixed time

intervals, the changes of the logarithms of prices are normally distributed. However,

there is an extensive body of literature (see e.g. Mandelbrot [1963], Fama [1963] and

Hall, Wade Brorsen and Irwin [1989]) showing that the empirical distribution functions of

these so-called returns are characterized by much fatter tails than implied by normal

distributions. This is called excess leptokurtosis (a relatively large probability mass at the

tails and around the mean). Since market makers particularly fear sudden large price

changes, it is obvious that to them the tails are the most relevant part of the distribution.

Hence, this paper investigates tail behavior in relation to market makers' risk valuation.

Assuming certain regularity conditions for the tail behavior, a tail can be characterized by

one single parameter. Several distributions within the same class can have identical tail

parameters. This is particularly true for sums of independently and identically distributed

random variables (e.g. daily and weekly observations). The tail parameter furthermore



allows deduction of probabilities for the underlying random variables to exceed some pre-

specified high value without knowledge of the underlying distribution, i.e. they are robust

against misspecification in the exact distribution.

As noted before, these tail probabilities obviously affect market makers' behavior.

In addition, market makers are not so much concerned with price changes during fixed

time intervals, as with price changes between consecutive transactions. Once again

assuming a geometric Brownian motion, these changes can no longer be modeled by a

(fixed) normal distribution. However, if we assume that transaction times are generated

by an exponential distribution the following inference can be made: the tail parameter for

the returns between two successive transactions must be identical to the tail parameter of

returns for fixed time intervals.

After identification of the appropriate tail parameter, the estimate can be usefully

employed in deriving the probability of a price change significantly exceeding the bid-ask

spread. This provides some insight in the three sources feeding the bid-ask spread. It

does, however, not allow discrimination between the different components. The tail

approach is applied to transaction data for the Bund futures contract traded at the London

International Financial Futures Exchange (LIFFE). After identifying the tail shape, we

next compare the tail distribution results with the bid-ask spread. Roll's (1984) well

known approach, generalized to continuous time data, is used to estimate this bid-ask

spread. In addition, a more efficient method by George, Kaul and Nimalendran (1991) is

also tried and found to improve the estimates in the sense that they approach market

announced average spreads. LIFFE operates an open outcry (00C) system for the trading

interval 7.30 hours until 16.15 hours. Afterwards an automated pit trading (APT) system

takes over from 16.20 hours until 18.00 hours. An interesting question is whether return

distributions are driven by the same process for these distinct trading systems. We will

restrict ourselves to the question whether the tail behavior differs.

The tail estimation procedure has been applied before to daily settlement prices in

e.g. Kofman and de Vries [1989] for futures and in Jansen and De Vries [1991] for

stocks and stock indices like the S&P-500 index, but to our knowledge the procedure for

transaction data is new.



The paper is organized as follows. The next section explains the most relevant results in

the extremal value theory and shows that the tail index is identical for tick-by-tick

transaction data and 5-minute time spaced data. Section 3 gives estimates for the tail

index while section 4 discusses the implications of the estimates concerning probabilities

of large price changes in relation to the bid-ask spread. Section 5 concludes the paper.

2. THEORETICAL TAILS FOR HIGH FREQUENCY DATA

This section presents the most relevant theoretical issues of this paper in relation to

extremal value theory. For more details the reader should consult Kofman and De Vries

[1989] on which this section heavily draws. Consider a sequence of independent and

identically distributed random variables X1,...,Xn with distribution function F and let Mn

be the maximum of these n random variables. P is the distribution function of Mn.

Consider the following regular variation condition at infinity (see Feller [1971], Ch.

VIII. 8] ) .

iim l -F (tx) .x_c,
1-F(t)

(1)

for some 0< a < co and all x> 0 where, of course, it is assumed that F has no finite

upper endpoint. If F fulfills this condition, it can be shown that there exist normalizing

constants an> 0 and bn such that

P[I_ G(x)
an

where W stands for weak convergence and

G (x)= 0 x
=exp(-x-a) x>0

(2)

(3)

The parameter a is called the tail index of the distribution and G is called a limit

law. It follows from De Haan [1976] that el c°edF(t) is finite for (3< a and infinite for

> a. Since all moments exist for normal distributions, a does not have a limit law like



G. In fact, it can be proved that for the normal distribution

[ 
w

Fn Z_ -1-bn -- exp(-exp('))
an

(4)

for suitable constants an and bn. In this case, the tail parameter is defined as + co .

The same argument holds for mixtures of normals. It illustrates that the distribu-

tions with a limit law given by (3) have much fatter tails than normal distributions since

ihn 1- exp(exp(-x)) .0

x-ce 1- exp(-x')
(5)

However, both Student-t and sum-stable distribution functions satisfy the regular

variation condition. Similarly, ARCH processes have a limit law as specified in (3). For

the sum-stable distributions a <2 and for both Student-t and ARCH processes a> 2.

Hence, most alternative distributions (to the normal distribution) that have been proposed

in the literature for stock and futures returns, have a limit law as specified by (3).

Instead of estimating the parameter directly, Hill [1975] proposes an estimator for

7=1/a. Let X(1)_>. X(2) . . . X(0 be the descending order statistics from a sample

XI,X2,...,Xn of n empirical observations. Defme

1
E[ (,)logX . -logXonj

m-1 i.
(6)

If the number (m) of tail observations in a sample of size n approaches infinity, i.e.

m(n)-.00, Mason [1982] shows that is a consistent estimator, as long as the regular

variation condition is satisfied. Furthermore, Goldie and Smith [1987] indicate that

(i-fy)m 112 is asymptotically normal with mean zero and variance 72. Hence, one can

derive confidence intervals for . For finite n it is not obvious how to choose m. Kofman

and De Vries [1989] propose a procedure to choose an optimal m. The same procedure is

applied in this paper.

The tail index itself might not be of too much interest to the market maker.

However, it enables him to estimate levels for which there is a small probability that
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price changes will exceed these particular levels. Let this level lp , for small p and given

k, be defined as

P {X15_1p , , Xk = Fk (fp) = 1-p (7)

For p> 1/n, one can use the empirical distribution function to estimate This leads to

an unbiased estimator (see e.g. Mood, Graybill and Boes [1974]). However, for proba-

bilities p< 1/n, the empirical distribution function makes no sense. In that case Dekker

and De Haan [1989] give the following consistent estimator for .fp, which is based on the

tail behavior of the distribution:

1 =
(krIpn)i-1

_r) _2r) +X_r)
1-2

(8)

where, as before, n is the number of observations and r=m/2, with m the number of the

lowest order statistic used to compute . For p<11n, Ip is extrapolated outside the

domain of the empirical distribution function.

Jansen and De Vries [1990] show that the tail parameters a for data decreasing in

frequency (weekly, monthly etc.) are identical to the tail parameter a for daily return

data. For the sum-stable distributions with a <2 this result is imminent since the

aggregated variables have the same kind of distribution. For the other leptokurtic

alternatives with a >2, like the Student-t distribution, the aggregates no longer share the

same distribution. However, the tail behavior of these aggregates is still the same, see

Feller [1971, Ch. VIII.8]. This is merely one illustration that, if one is only concerned

with the tail distribution, there is additional robustness of the results due to their indepen-

dence of the exact specification of the total distribution.

To link the tails of transaction return data with e.g. daily data we use another

result of Feller [1971] and a model described in Harris [1987]. Assume that each day a

series of events takes place, each of which generates information relevant for asset

pricing. In succession to an event the values of assets change. However, it is not

necessary for a transaction to take place each time an event occurs. Furthermore, assume



that all of these changes in value are independently and identically distributed, that the

number of events between two transactions is Poisson distributed', and that the number

of transactions on each day is also Poisson distributed. Let S be the random variable

describing the logarithms of the value changes. Then, both the returns between two

subsequent transactions and the daily returns follow a compound Poisson process with

underlying random variable S. It follows from Feller [1971, Ch. VIII.10 ex. 311 that this

compound Poisson distribution has an identical tail index as the random variable S.

Transaction returns must therefore have identical tail indices as daily, weekly or monthly

returns.

To test whether this is indeed the case (for a particular data set) proceed as

follows. Assume there are two series of i.i.d. random variables with, respectively tail

parameters al and a2. Then the statistic Q with

2 2

,.al 11 1 + [6,72 11 2
(9)

is x2(2) distributed with and , mi as specified by (6) for the different samples.

One should reject the hypothesis that al =a2 at the 5 percent significance level if there is

no a=ai =a2 for which Q is below 5.99 (the value which is exceeded by a x2(2) with

probability 0.05). If there is an a for which Q is below 5.99 one can not reject the

hypothesis of equal tail parameters but one can derive an interval of a's for which Q is

below 5.99. This is the confidence interval for the tail parameter that both samples have

in common.

1
The same argument holds in case transactions do take place after each event.
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3. ESTIMATED TAILS FOR HIGH FREQUENCY DATA

The estimation techniques of the previous section are now applied to prices of Bund

futures traded at the London International Financial Futures Exchange (LIFFE). LIFFE's

market audit trail (TAS, time and sales specification) files are used for this purpose. Day

trading operates by open outcry (00C) and lasts from 7.30 until 16.15 hours. After

closing of this regular market, trading continues from 16.20 onwards until 18.00 hours by

automated pit trading (APT). Time-stamped transaction data, for both 00C and APT, are

selected for the nearby futures contract on the notional German Government Bond with a

6% coupon. Two successive weeks, November 11-15, and 17-22 in 1991, are covered in

estimating tails and exceedance probabilities. The nearby delivery month of the futures

contract is December. In addition to the continuously recorded prices, a 5 minute time-

spaced subset has been constructed by selecting the price nearest to each 5 minute point.

In order to obtain a sufficient number of observations, these series are extended by

including the week immediately preceding and the week immediately following the

mentioned two week period. All estimations are based on logarithmic transformations of

first differenced prices.

Table I: Data Characteristics

sets n mean
,

variance skewness kurtosis

ALL(5m) 2420 -5 .550*10-7 3 .057*10-8 -0.191 6.141

ALL1 6314 9.354*10-7 7.648*10-9 -0.500 23.628

ALL2 5949 6.932*10-7 7.169*10-9 -0.041 6.806

00C(5m) 2040 -1.588*10-7 3.275*10-8 -0.194 -6.099

00C1 5683 7.329*10-7 7.969*10-9 -0.523 23.938

00C2 5276 9.232*10-9 7.040*10-9 0.012 2.966

APT(5m) 360 0.422*10-5 0.183*10-7 -0.106 4 4.061

APT1 626 2.765*10-6 4.328*10-9 -0.074 2.255

APT2 668 -6.186*10-7 8.029*10-9

,

-0.316 29.975

ALL = Total data set,
00C = Open outcry subset APT = Automated pit trading subset
1,2,(5m) = Respectively indicating week 1, week 2 and 5 minute intervals



Table I summarizes the standard characteristics: mean, variance, skewness and

kurtosis, of the different data sets. The first column specifies the sets. Three groupings of

data are distinghuised: open outcry data (00C), automated pit trading data (APT) and the

combination of both sets (ALL). For each group, parameters are estimated for 5 minute

period data (5m) for the (extended) four week period, transaction data for the first week

(1) and transaction data for the second week (2), of the middle two week period. This

gives nine different data sets. The number of observations in each set is specified in the

second column. For the 5 minute data the number of observations is six times as large for

open outcry sessions as it is for automated pit sessions (the first period lasts six times as

long as the second period). However, tick-to-tick transaction data indicate that trading is

more active during open outcry sessions. From the kurtosis column we can observe that

the assumption of normal kurtosis is strongly rejected, except for the second week of

open outcry data. For this set normal kurtosis can not be rejected at a 5% significance

level. However, for all other sets it is clear that there is excessive kurtosis and that they

all have fat tails. Although some sets exhibit skewness, this is not as strong an aberration

from normality as the kurtosis.

Table II gives results for the tail estimation procedure outlined in the previous

section applied to the distinguished data samples. The second column specifies estimates

of the tail parameters for the positive returns (the upper tail), while column five gives

these parameters for negative returns (the lower tail). The third and six column give

respectively maximum and minimum observations for each sample. The fourth and

seventh column give the 95% confidence intervals for the estimated tail parameters. These

confidence intervals are constructed symmetrically around oe=1/i,, assuming that

('y--7)m112 is asymptotically normal. Most tail parameters are larger than 2 which

indicates that Student-t distributions are better fit to describe these futures returns than

sum-stable distributions. However, the latter distribution class can not be dismissed in all

cases.



Table II: Tail Estimates

sets a
up

max. range a
low

min.

,

range

ALL(5m) 2.726 10.4 1.82-3.62 5.979 -11.6 4.00-7.94
m=35
n=2420

ALL1
m=125
n=6314

2.338 11.6 1.93-2.75 2.593 -13.9 2.14-3.05

i

ALL2
m=115
n=5949

2.674 8.1 2.18-3.16 2.190 -9.2 1.79-2.59

00C(5m)
m=30
n=2040

2.495 10.4

,

1.60-3.39 5.100 -11.6 3.28-6.94

00C1
m=110
n=5683

2.247 11.6 1.83-2.67 2.535

,

-13.9 2.06-3.01

00C2
m=105
n=5276

3.144 3.4 2.54-3.75 2.602 -3.4 2.11-3.10

APT(5m)
m=5
n=360

2.143 4.7 0.66-3.62 12.075 -4.7 1.49-22.72

APT1
m=20
n=626

6.896 2.3 3.88-9.90 3.159 -4.6 1.78-4.55

APT2
m=20
n=668

1.987 8.1 1.12-2.86 1.731 -9.2 0.97-2.49

m= number of ordered observations used in estimating a.
n= number of observations.
maximum and minimum return columns are given in basis points.

As shown theoretically in the previous section, 5 minute data and continuously

recorded data should have an identical tail parameter. The Q-test statistic can be used to

assess whether this is indeed the case. Furthermore, it is interesting to see whether the

different trading systems generate data with the same tail index.



Table III: Equality Tests

Subsets upper tail range lower tail range

ALLOUT(5m)-ALLIN(5m) 3.38-6.35 2.27-4.26

ALLOUT(5m)-ALL1 rejected 2.24-3.15

ALLOUT(5m)-ALL2 rejected 2.01-2.62

00C(5m)-APT(5m) 1.43-3.43 3.38-7.22

00C1-APT1 rejected 2.07-3.13

00C2-APT2 2.47-3.07 2.01-2.67

ALL1-ALL2 2.12-2.83 2.05-2.68

00C1-00C2

,

2.45-2.63 2.14-2.99

APT1-APT2 rejected 1.49-2.63

ALLOUT(5m) = Two weeks surrounding ALL1+ALL2 at 5-minute interval
ALLIN(5m) = Two weeks overlapping ALL1+ALL2 at 5-minute interval

Table III gives results of the Q-tests on the equivalence between tail parameters for

different combinations of periods and data sets. The first part, rows 2-4, tests whether it

matters to observe on a time spaced basis or on a continuous basis. To avoid overlapping

observations (potentially inducing a bias in the test) in this experiment, the 5 minute set is

split into two parts: ALLIN containing overlapping observations with ALL1 and ALL2

continuously recorded prices, and ALLOUT containing the nonoverlapping returns (the

weeks preceding ALL1 and following ALL2). The second part, rows 5-10, confronts

separate weeks and trading systems.

Equality of the tail parameter is tested at the 5% significance level. In case

equality is not rejected, the confidence interval for the common parameter is given in the

table. Whereas theoretical equality between lower tails of continuous and five minute data

can not be rejected, it is rejected for the upper tails. In the week 1 versus 2 comparison,

rejections are obtained for the upper tail of automated pit trading. A final rejection occurs

in comparing trading systems for week 1 (00C1 versus APT1).
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4. TAIL PROBABILITIES AND BID-ASK SPREADS

To evaluate the risk component in the bid-ask spread, one first has to introduce a

measure for this spread. Since continuously recorded data series do not usually contain

bid and ask quotes2 (in addition to transaction prices), the majority of the literature

investigated ways to estimate the spread from the available data. The most common

estimator, using only transaction data, is the one developed by Roll (1984). Well known

problems with this estimator, like positive auto-covariances are documented in e.g.,

Glosten (1987). However, Harris (1990) shows that the estimator tends to be relatively

well behaved for high frequency •(like 5 minutes) data. In table IV, the Roll estimator S

for the percentage bid-ask spread based on continuously compounded returns Rt:

S =200V -Coy (R,

is given for the same samples we have used so far.

Table IV: Bid-Ask Spread Estimates*

(10)

Type ALL ALL 1 ALL2 00C 00 C 1 00C2 APT APT 1 APT2
(5m) (5m) (5m)

Roll 0.98 0.96 0.93 1.06 0.97 0.93 0.68 0.72 1.08

GICN 1.41 1.36 1.46 1.32 1.25 1.22 1.85 2.03 2.29

Roll's spread estimates are given in the first row. Adjusted spread estimates, using the GICN method are
presented in the second row. All estimates are in basis points (1/100th percent).

In contrast with Roll we do not find any negative spreads. As in Roll's case, the

estimates of the bid-ask spread depend on the observation interval. Longer periods (in this

case the 5-minute data) provide higher estimates than shorter periods (tick-by-tick data),

except for the APT-series. However, the differences are not as large as in Roll's daily

versus weekly case.

In addition, we give estimates for an adjusted bid-ask spread measure taking

2
Even if (as in our data set) these quotes are included, they are usually not measured simultaneously. Furthermore,

transactions are not designated to be at the bid or at the ask. Thus, a revised bid or ask quote may immediately
be hit, without the new bid/ask ever appearing in the data records.
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account of asymmetric information, as proposed by George, Kaul and Nimalendran

(1991)3 - GKN further on -, using transaction data and either bid or ask quotes. The

autocovariance aspect is identical to the Roll approach:

Soul = 200 * -COV(AXBT,„ AXgrj.1)

with

AXBT,t = (Xt —Xt-1) —(XB,t —XB,t-1)

with bid (or ask) quote X133 measured subsequent to each transaction price X. This incor-

porates the fact that quotes are revised prior to transactions based on expected price

changes. Effectively, it means that market makers protect themselves by adjusting

(widening or narrowing) bid/ask quotes with respect to an expected price trajectory. Such

a price path would, by definition, be detected first by informed traders. Roll does not take

this information component into account, and therefore underestimates the true spread.

News releases indicate that the quoted spread at LIFFE was somewhere near 1.5 ticks (or

1.5 basis points). That figure seems much better approximated by our adjusted estimates

in Table IV. It also illustrates the impact of the information component in the quoted

spread (some 25%) which weighs heavily in the spread compensation, especially for the

APT-samples where the gap between Roll and GICN is largest. This reflects the some-

times suggested anonymity problem with automated trading systems. Since market makers

do not know whether there counterparty is informed or not, quoted bid-ask spreads will

widen.

As noted before one can compare the bid-ask spread with the large price changes

that make up the tail of the distribution, and are thus described by the tail parameter.

Table V gives the estimates for price change levels as specified by equation (8) for all

continuously quoted transaction data in the first and in the second week. Table IV shows

that the bid-ask spread for the first week based on all transaction data (ALL1) is 1.36

basis points, while Table V indicates that the probability is 0.0005 that the price change is

more than 14 basis points. This is ten times as high as the bid-ask spread.

3
George et al. operationalize Glosten's (1987) work.
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Table V: Exceedance levels

ALL1 data a=2.338 ALL2 data a=2.764

p i'l, p
±p

0.00005 41 0.00005 32.4

0.0001 29.9 0.0001 24.5

0.00013 26.5 0.00013 22.1

0.00015 24.8 0.00015 20.8

0.00017 23.4 0.00017 19.8

0.00019 22.2 0.00019 18.9

0.0002 21.7 0.0002 18.5

0.0003 17.9 0.0003 15.5

0.0004 15.6 0.0004 13.7

0.0005 14 0.0005 12.4

±p

= probability

= exceedance level

Hence, if a market maker shorts this security, the probability- that he will loose ten times

the bid-ask spread when reversing his position in the next transaction is very small. The

one twentieth percent probability indicates that it occurs on average once every 2000

transactions. If the market maker shorts, he mainly fears the upper tail of the distribution

of price changes. If he is long, the lower tail is the more relevant part. The lower tail

probabilities have been calculated as well and do not differ significantly from those for

the upper tail. The riskiness of his position, as illustrated in Table V in absolute terms, is

approximately identical whether he is short or long. It also follows from equation (8) that

lp is homogeneous in k and p. If he trades 100 transactions within a certain period, the

probability that he will loose more than ten times the bid-ask spread (0.140%) is 100

times as large (i.e. 0.05, which is 5%). Of course he is then compensated with 50 times

the bid-ask spread. One might conclude that, given these low probabilities, the bid-ask

spread provides a rather generous compensation for the risk the market maker is exposed

13



to. Even with a large number of transactions, this risk of at least one very large adverse

price movement is well paid for. Hence, the bid-ask spread is merely used to compensate

for small adverse changes, processing costs and a normal profit.

5. CONCLUSION

This paper focuses on the distributions of returns for financial assets and in particular on

their tails. These areas with 'extreme' price changes may be most relevant for market

makers that fear large (adverse) price changes in succession to trading with better

informed traders. A novel procedure to investigate the tails of tick-by-tick transaction data

is proposed. From estimates of the tail parameter it must be concluded that the ap-

propriate distributions do not belong to the sum-stable distribution class but rather to the

Student-t type class. In addition, the tail parameter allows inference on probabilities of

large price changes even if no such changes are encountered in the sampling distributions.

These changes cum probabilities are next compared to the bid-ask spread as observed in

and estimated from transaction data. Given the small probabilities of very large price

changes, the risk of strong adverse market movements is rather limited. This risk-

component should therefore not be very influential on the bid-ask spread, except for the

case where market makers are very risk adverse, which certainly is not the case.

Assessing the relative importance of conventional risk measures (like the standard

deviation) versus the tail measure can probably be achieved by means of a cross-sectional

study.
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