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Application of Multiple Imputation in Dealing
with Missing Data in Agricultural Surveys:

The Case of BMP Adoption

Hua Zhong, Wuyang Hu, and Jerrod M. Penn

Missing-data problems are common in farmer surveys but are often ignored in the literature.
Conventional methods to address missing data, such as deletion and mean replacement, assume
that data are missing completely at random, which rarely holds. This study compares these
approaches to the multiple imputation method, which produces different parameter estimates. The
mean replacement method increases the central tendency of data, leading to more significant but
smaller coefficients than the other methods. We recommend using both the deletion and multiple
imputation methods to deal with missing data; results generated by the mean replacement method
may not be as reliable.

Key words: best management practices, multivariate imputation by chained equation, nonpoint
source

Introduction

Missing-data problems are common in surveys of farmers and frequently occur in other types
of primary data collection as well. Weber and Clay (2013) replicate previous studies to compare
estimation results using population data from the USDA’s quinquennial Census of Agriculture to its
annual, but more limited, Agricultural Resource Management Survey (ARMS) to study nonresponse
issues in the latter. They conclude that nonresponse occurs because of the time required and disutility
to answer questions. Further, larger farms are more likely to have missing values, consequently
having the most pronounced nonresponse bias. As opposite to “complete” nonresponse, “item-wise”
nonresponse has been overlooked in agricultural and resource economics. Failure to address missing
data and nonresponse bias can lead to spurious conclusions (Groves, 2006), especially when missing
values constitute more than 5% of the data (Schafer, 1999).

Our study aims to investigate methods to address missing responses in surveys of farmers. The
first method considered is deletion, a naïve method that omits observations with missing data.
This method assumes that missing values are independent of the observed and unobserved data,
an assumption rarely satisfied in empirical studies and that may lead to nonresponse bias (Lin and
Schaeffer, 1995; Groves, 2006; Groves and Peytcheva, 2008). The second method considered is
mean replacement, which replaces missing values with the observed mean. Both methods represent
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conventional approaches to handling missing data and are common practices in agricultural and
resource economics. We also consider a third, often-superior method of dealing with missing data,
multiple imputation (MI), which is frequently used by the U.S. Census Bureau, the Bureau of Labor
Statistics, and medical and environmental social science studies. Introduced by Rubin (1978), MI
first imputes each missing cell with m plausible values, analyzes and estimates m complete datasets,
and averages m results to produce a final estimate. Lall (2016) re-examines recent publications in
two leading political science journals and finds that many of the conclusions in these publications
could have been nullified if the more appropriate MI had been used.

This application of missing data involves a survey of farmers in the Kentucky River watershed to
investigate farmer willingness to adopt best management practices (BMPs) through a hypothetical
water quality trading (WQT) program through which farmers may be compensated by point sources
(PSs). The WQT program, first introduced by the U.S. Environmental Protection Agency (EPA) in
2003, assists dischargers in a watershed to trade emission permits, thus improving water quality at a
lower cost than traditional regulations. In WQT programs, agricultural nonpoint sources (NPSs)
can create credits for the WQT market by adopting BMPs. PSs pay NPSs through the trading
program by purchasing these credits. The goal of the survey is to understand farmer willingness
to further reduce agricultural runoff, factors that may affect their intention, and by how much they
would adopt additional BMPs given payment from a trading program. Thus, we asked farmers about
current BMPs implemented and whether they would adopt more BMPs if compensation were offered
through WQT and provided different types of WQT-related information to each farmer to test how
this information affects BMP adoption.

Five BMPs were included in the survey: riparian buffers, animal fences, no-till, waste storage
facilities, and nutrient management; 21.5%, 26.9%, 24.2%, 23.2%, and 18.2% of respondents did
not indicate how much they would adopt for each type of BMP, respectively. As a result, our primary
contribution is to address issues of missing data, in addition to assessing the feasibility of a WQT
program in the Kentucky River watershed. In our study, we apply a multivariate imputation by
chained equation (MICE) method, introduced by Raghunathan et al. (2001), one of multiple MI
algorithms, to impute the multivariate missing data.

Mechanism of Missing Data and the MICE Method

Missing Mechanism

This section formally describes three types of missing data. Let Y denote a variable with missing
data, X denote a vector of variables completely answered, and R be an indicator variable that equals
1 if Y is missing and 0 if Y is observed. The first type of missing data is missing completely at
random (MCAR), defined as

(1) Pr(R = 1|X,Y ) = Pr(R = 1).

MCAR implies that missing data are independent of any observed or unobserved variables. If MCAR
applies, deletion—which removes observations with missing data—is an effective strategy. The
mean replacement method is also justified by MCAR, which incorporates observations with missing
data by replacing missing cells with observed means. However, MCAR rarely holds empirically
because it suggests that missing responses arise completely by chance (Kenward and Carpenter,
2007).

The second type of missing data is missing at random (MAR), represented as

Pr(R = 1|X,Y ) = Pr(R = 1|X)
(2)

or Pr(R = 1|X,Y ) = Pr(R = 1|Yobserved).
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MAR assumes that the probability of missing data is related to the observed data but not to
unobserved data. Empirical research commonly assumes MAR, and it is the fundamental assumption
for most imputation methods. If MAR holds, a variety of methods can address the missing data, such
as the Hot Deck method, MI, and full information maximum likelihood (FIML).

Given the MAR assumption, MI can effectively deal with missing data in empirical surveys
because it considers the true variance of data, outlined in the following steps (van Buuren and
Oudshoorn, 1999):

1. Identify the missing variables, the posterior predictive density, and predictor variables.

2. Draw m plausible values for the missing data from the density to generate m complete datasets.

3. Conduct m complete-data analyses for each of the m complete datasets.

4. Combine the m data analyses into one estimate.

The third type of missing data is missing not at random (MNAR), which implies that the
probability of being missing is related to the unobserved value in the missing variable. Verifying
MNAR is impossible unless we obtain the unobserved value or other external information beyond
the survey. Current strategies to deal with MNAR are complex, and the results are sensitive to the
methods chosen (Allison, 2012). At present, there is no consensus on the best approach, and only
Heckman-type modelling may alleviate MNAR issues (Grittner et al., 2011).

The MICE Method

Multivariate imputation by chain equation (MICE) is an MI algorithm introduced by van Buuren and
Oudshoorn (1999) and Raghunathan et al. (2001) to impute categorical and continuous variables
simultaneously and without the multivariate normal assumption. The MICE algorithm has the
advantage of accommodating various types of missing data, regardless of whether the underlying
analytical models are discrete, continuous, categorical, or mixed. MICE decomposes the multivariate
problem into a series of univariate problems using an iteration algorithm. The procedure is as follows
(van Buuren and Oudshoorn, 1999; Raghunathan et al., 2001; Schenker et al., 2006; Azur et al.,
2011):

1. Let X denote variables fully observed, and Y (1), Y (2), . . . , Y (n) denote n variables with missing
data, ordered by the amount of missing data from the least to the most.

2. In iteration 1, regress observed Y (1) on X and impute the missing values of Y (1) using the
predicted distribution based on the fitted regression. Then, regress Y (2) on X plus the observed
value and recently imputed values of Y (1) and impute the missing values of Y (2). For Y (k),
regress Y (k) on X, Y (1), Y (2), . . . , Y (k−1), where Y (1), Y (2), . . . , Y (k−1), including all observed
and imputed values, to impute Y (k) using predictive distribution based on the fitted regression
of Y (k). Repeat this procedure until all incomplete variables Y (n) are imputed.

3. In iteration 2, the imputation process is repeated as in iteration 1, but predictors in each
regression include all variables except for the variable being imputed. To be specific, regress
imputed values in iteration 1 and observed values of Y (1) on X,Y (2), Y (3), . . . , Y (n), where Y (2),
Y (3), . . . , Y (n) are imputed in the last round, and re-impute the missing values of Y (1) using
predictive distribution based on the fitted regression. Regress Y (2) on X and Y (1), Y (3), . . . ,
Y (n), including all observed and imputed values, where Y (1) is the most recent imputed value
and Y (3), . . . , Y (n) are imputed in the last round; and then re-impute the missing values of
Y (2). For Y (k), regress Y (k) on X, Y (1), Y (2), . . . , Y (k−1), Y (k+1), . . . , Y (n), where Y (1), Y (2), . . . ,
Y (k−1) are the most recent imputed value in current iteration and Y (k+1), . . . , Y (n) are from the
imputed values in the last iteration; then re-impute Y (k) using predictive distribution based on
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the fitted regression of Y (k). This procedure is executed c iterations until the equation chains
converge.

Surveys and the Missing-Data Problem

Survey

Survey questionnaires were mailed to randomly chosen farmers across 35 counties located in the
Kentucky River watershed from 2011 to 2012. A total of 2,000 farmers were identified using a list of
farmers in the watershed maintained by local University of Kentucky extension offices and contacted
by a packet through U.S. mail. To improve response rates, the packet included a cover letter printed
on University of Kentucky letterhead and hand-signed by the project’s principal investigator. The
survey questionnaire and a postage-paid return envelope were also included in the packet. A total of
459 returned their questionnaires for a final response rate of 23%. This was achieved after an initial
mailing and two rounds of postcard reminders. Of the returned responses, 357 contained at least
some completed answers regarding to BMP-related questions and were used in the final analysis.
The survey questions included farmer participation in current government-funded environmental or
conservation programs, their potential adoption of additional BMPs through a WQT program, farm
characteristics, and demographic characteristics. Our sample is not significantly different from the
state average of farm and farmer characteristics compared to the 2012 U.S. agricultural census.

The key BMP adoption question asked in the survey was:

Regardless of whether you are currently participating in any government cost share
programs, if you knew that by using water quality management practices on your land,
a nearby waste/sewage water treatment plant or factory will cover X% of your cost of
implementing these practices, would you be interested in using additional water quality
management practices (BMPs) in the form of the following activities?

Each respondent received a table listing five BMPs: riparian buffers, animal fences, no-till, waste
storage facilities, and nutrient management. In the actual survey, X% is a possible value from 75%
to 120% in 5% increments, each with equal probability. Each respondent saw only one level of
compensation. A respondent could give one of three answers to each BMP: “yes,” “no,” or “not
possible for me” in case a specific BMP was inapplicable or the adoption capacity has been reached
on their land.

If respondents answered yes, the follow-up question asked, “In addition to what you have
adopted already, by how much would you like to adopt this practice?” The respondents provided
exact values for how much they would adopt the practice (i.e., open-ended). The units of measure
were “feet” for riparian buffers and animal fences, an “acre” for the practices of no-till and nutrient
management, and “number of facilities” for waste storage.

The survey also included four WQT program descriptions to determine their impact on adoption.
The baseline treatment provided a basic explanation of WQT programs. The second and third
information treatment groups received additional information on cost savings and environmental
benefits of WQT programs, respectively. The fourth treatment provided information on both
cost savings and environmental benefits. Different treatments were randomly assigned with equal
probability across the sample. As explained later, these treatments are integral to the imputation
strategies.

Table 1 presents all variables and summary statistics for the entire sample. Table 2 explains
discrete levels in explanatory variables.
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Table 1. Variable Summary Statistics (N = 357)
Variable Definition of Variables Mean Std. Dev.
Current use of BMPs:

y1 Any BMPs =1; else 0 0.739 0.440
y2 Riparian buffers =1; else 0 0.367 0.483
y3 Animal fences =1; else 0 0.465 0.499
y4 No-till =1; else 0 0.311 0.464
y5 Waste storage facilities =1; else 0 0.067 0.251
y6 Nutrient management =1; else 0 0.241 0.428

Cost coverage compensation:
Offer The percentage of implementation costs for

additional BMPs that will be covered by a
wastewater treatment plant or factory. Each
participant was randomly assigned to one of
ten compensation levels: 75%, 80%, 85%,
90%, 95%, 100%, 105%, 110%, 115%, and
120%.

0.970 0.150

Explanatory variables:
Land size Land size, includes rented and owned land.

(unit: 1,000 acres)
0.282 0.537

Rent percentage Rented farmland / Total farmland 0.142 0.275
Surface water Surface water on farmland =1; else 0 0.860 0.348
Percentage of household Share of pre-tax household income from 2.417 1.815
income from farminga farming
Total household income Share of pre-tax household income 2.529 1.542
reinvested in farma reinvested into farm
Farms with crop Farmers earning revenue from crops or who

plant crop on their land =1; else 0
0.423 0.495

Farms with livestock Farms earning revenue from livestock or
raising livestock =1; else 0

0.798 0.402

Age Farmer’s age 60.154 11.908
Male Male =1; else 0 0.857 0.350
Educationa Farmer’s education level 4.078 1.920
Income levela Household annual pre-tax income level 4.359 1.499
Farming experience Farming experience (year) 32.220 15.307
Water recreation 1 if participating in water related recreation

at least once a year =1; else 0
0.661 0.474

CRP 1 if currently participating in Conservation
Reserve Program (CRP) =1; else 0

0.118 0.323

WLP 1 if currently participating in Working-Land
Program (WLP) =1; else 0. WLP includes
Conservation Stewardship Program (CSP),
Environmental Quality Incentives Program
(EQIP), and Wildlife Habitat Incentives
Program (WHIP)

0.204 0.404

Water quality Seven levels from poorest (1) to best (7)
water quality nearest to farmers’ properties.

5.038 1.365

Environmental cognizance Respondent’s self-reported awareness of
environmental issues; seven levels from very
aware (7) to unaware (1).

4.947 1.556

Beginning farmer 1 if farming less than ten years; else 0 0.120 0.326
Minority farmer 1 if operator’s race is not white; else 0 0.045 0.207

Continued on next page. . .
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Table 1. – continued from previous page
Variable Definition of Variables Mean Std. Dev.
Answers “not possible for me” for:

z1 =1 if all BMPs; else 0 0.345 0.476
z2 =1 if riparian buffers; else 0 0.583 0.494
z3 =1 if animal fences; else 0 0.490 0.501
z4 =1 if no-till; else 0 0.501 0.501
z5 =1 if waste storage facilities; else 0 0.577 0.495
z6 =1 if nutrient management; else 0 0.507 0.501

Respondent’s Information Treatment:
Baseline =1 if baseline; else 0 0.235 0.425
Cost savings =1 if cost savings; else 0 0.261 0.440
Environmental =1 if environmental benefits; else 0 0.210 0.408
Combined =1 if combined information; else 0 0.294 0.456

Notes: a Discrete levels in table are interpreted in table 2.

Table 2. Frequency Distribution of Discrete Variables

Level
% of Household

Income from Farming Freq. Percent Level
Total Household Income

Reinvested in Farm Freq. Percent
1 0–15% 162 45.40% 1 0–15% 106 29.70%
2 16–30% 77 21.60% 2 16–30% 116 32.50%
3 31–45% 36 10.10% 3 31–45% 48 13.50%
4 46–60% 28 7.80% 4 46–60% 45 12.60%
5 61–75% 17 4.80% 5 61–75% 20 5.60%
6 75–90% 17 4.76% 6 75–90% 13 3.60%
7 >90% 20 5.60% 7 >90% 9 2.50%

Level Income ($ thousands) Freq. Percent Level Education Freq. Percent
1 0–14.9 14 3.90% 1 Less than high school 17 4.80%
2 15–24.9 21 5.90% 2 High school 88 24.70%
3 25–49.9 60 16.80% 3 Some college, no degree 64 17.90%
4 50–74.9 110 30.80% 4 Associate 14 3.90%
5 75–99.9 64 17.90% 5 Bachelor 83 23.30%
6 100–149.9 56 15.70% 6 Master 51 14.30%
7 >150 32 9.00% 7 Professional 26 7.30%

8 Doctorate 14 3.90%

Missing-Data Problem

We analyze missing responses to BMP adoption questions for two cases.1 In the first case,
respondents answered “yes” to the yes/no question, but did not answer the follow-up question.
Because respondents have already stated they would like to adopt the BMP, the plausible values
for the missing data should be a positive, continuous value for riparian buffers, animal fences, no-till
and nutrient management, and a discrete count for the number of waste storage facilities.

The second case exists when respondents failed to answer the yes/no question, thus missing the
follow-up question as well. If respondents answered the yes/no question for at least one practice but

1 We investigate missing data associated only with respondents who answered at least part of the survey. Respondents who
did not answer the survey were not included in our analysis.
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Table 3. Frequency Distribution of BMP Responses (N = 357)
Riparian

Buffer
Animal
Fence No-Till

Waste
Storage

Nutrient
Management

Yes: amount provided 37 71 68 45 78
Yes: no amount 32 49 43 25 32
No 80 62 67 81 66
Not possible 70 60 49 69 38
Missing 138 115 130 137 143
Percentage of observations in the first
case of missing data

9.00% 13.70% 12.00% 7.00% 9.00%

Percentage of observations in the
second case of missing data

38.70% 32.20% 36.40% 38.40% 40.10%

not the other practices, their responses to the other practices are treated as missing. In this case, the
plausible values for missing data in the yes/no questions are either “yes,” “no,” or “not possible for
me.” If respondents are imputed to belong to the “yes” category, then the plausible values for the
quantitative questions are the same as in the first case. We exclude respondents who did not answer
all five yes/no BMP adoption questions, treating them as uninterested and unwilling participants.2

Table 3 summarizes the missing data for each BMP.

Empirical Strategy for Dealing with Missing Response

Following previous empirical studies in health, medical, environmental, and household areas (van
Buuren and Oudshoorn, 1999; Schenker et al., 2006; Azur et al., 2011; White, Royston, and Wood,
2011; Miyama and Managi, 2014), we assume MAR applies in our research for several reasons.
First, MCAR rarely holds empirically. Even if the MCAR assumption is satisfied, imputation based
on MAR mechanisms will not bias the analysis (Little and Rubin, 1989). Second, as mentioned
above, the MNAR assumption cannot be justified or tested without obtaining the unobserved values.
One method to handle MNAR is to still use the imputation method under the MAR assumption
but include as many predictor variables as possible (Miyama and Managi, 2014). Adding more
predictor variables increases the chance that missing data are correlated with predictor variables,
thus converting the missing mechanism from MNAR to MAR. Finally, our preliminary test shows
that the MCAR condition does not hold in our case.3

Simulation-based methods such as MI can perform well even with up to 50% missing data
(Allison, 2002), but one caveat of MI is that higher percentages of missing data will cause estimation
problems and can weaken the MAR assumption (Johnson and Young, 2011). Compared to 20%–87%
of missing data in previous empirical studies (Lall, 2016), our 18%–27% of missing data is relatively
low.

Given the MAR assumption, we use deletion, mean replacement, and MICE to treat each BMP’s
missing data. The number of missing variables, n, is initially five, corresponding to the five BMPs,
but will change when we impute missing values in both the yes/no question and corresponding
follow-up question for each BMP. Although mean replacement and deletion rely on the same
assumption, we include both for comparison. Many empirical studies prefer to use mean replacement
over deletion because deleting observations decreases available information and the efficiency of
estimation. We apply MICE under four scenarios to discuss different MI strategies.

2 Other circumstances exist, in which a respondent answered “no” or “not possible for me” to the yes/no question, so their
response to the follow-up implementation rate is missing. Some reasons include if respondents refused to consider the BMPs
(i.e., “no”), inability to implement the BMP on their land, or if maximum BMP adoption had already taken place. In these
cases, the appropriate value for the missing data in the follow-up question is 0 and thus no longer considered missing.

3 To test whether nonresponses are related to the observed variables, we estimated a logit model with an indicator of
missing data as the dependent variable and all observed variables as independent variables. Results show that nonresponses
were correlated with several observed variables, so the MCAR assumption fails.
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Figure 1. Execution Route of the Second Scenario

MICE Scenario 1: One-Stage Imputation

The first scenario imputes missing responses to each BMP’s follow-up question. Missing values
for respondents who answered “no” are replaced with 0 because they would not adopt additional
BMPs. This is true for those who had additional capacity on their farms to adopt additional BMPs
but chose not to so or those who had already reached their maximum capacity. For the respondents
who answered “yes” but did not indicate how much they would adopt, we impute the missing values
of the five BMPs simultaneously using MICE.

MICE Scenario 2: Two-Stage Imputation

The second scenario imputes missing values both in the yes/no question and in the corresponding
follow-up question for each BMP such that there are missing values in 10 variables. The possible
responses to the yes/no questions are “yes,” “no,” or “not possible for me.” If the answer is yes, the
possible response to the follow-up question is a positive, continuous or discrete value. If it is no,
adoption is 0. Therefore, we impute “yes,” “no,” or “not possible for me” for the missing data in the
yes/no question using a multinomial logit model. For those observed or imputed to be in the “yes”
group, we impute missing data in the follow-up question. The imputation steps are also described in
figure 1.

MICE Scenario 3: Two-Stage Imputation with Restriction

The third scenario is procedurally similar to the second scenario in that it imputes missing values in
both the yes/no question and the follow-up question for each practice using a two-stage approach,
but it restricts the imputation of missing values in the yes/no question to only “no” or “not possible
for me.” This more conservative approach assumes that missing responses to the yes/no question
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Figure 2. Execution Route of the Third Scenario

are more likely answer “no” or “not possible for me.” There are also 10 missing variables for the
imputation as well.

We first impute the missing values to be either “no” or “not possible for me” in the yes/no
question using the logistic regression model, then restrict the sample to the “yes” group and impute
missing values for the follow-up question. The imputation steps are outlined in figure 2.

MICE Scenario 4: Three-Stage Imputation

Scenario 4 considers the nature of the missing response of the yes/no question. “Yes” and
“no” represent a personal preference to implement BMPs given the compensation through WQT
programs, but “not possible for me” is principally different, implying that a farm cannot implement
a practice, regardless of preferences. As a result, we first determine farm capability by using a
logistic regression model to impute the missing response as “possible” or “not possible.” For those
imputed as “possible,” we then impute “yes” and “no” using the logistic regression model again; for
the sample that either answered “yes” or imputed as “yes,” we impute missing data of the follow-
up adoption rate question, outlined in figure 3. In this case, the number of missing variables for
the imputation to consider is 15, corresponding to five possible/not possible imputations in the first
stage, five yes/no imputations in the second stage, and five missing value imputations in the third
stage.

Some explanatory variables have missing-data issues as well. However, the percentage of
missing data is less than 5%. Schafer (1999) suggested that if the percentage of missing data is
around 5%, it may not be considered severe, so mean replacement is utilized.
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Figure 3. Execution Route of the Fourth Scenario

Imputation

As indicated above, MICE can accommodate discrete or continuous variables. In our study,
adoption choices are discrete variables, so missing data are imputed by logit or multinomial logit
models depending on the previously described scenarios. The follow-up adoption-rate questions
are continuous or discrete count variables, so the missing data are imputed by linear or Poisson
regression method. Online Supplement A lists the models used in imputation in our study.

For predictor variables x, we follow a general rule that the number of predictors should be
as large as possible to improve the possibility the MAR condition is satisfied (van Buuren and
Oudshoorn, 1999). Furthermore, using all information increases the precision of prediction and
decreases imputation bias. Lastly, imputation algorithms do not require causality between predictor
and imputed variables. The goal of imputation is to predict the distribution of a missing variable, and
the imputations are drawn from the posterior distribution of the imputed variable but do not change
the joint distribution (Schafer, 1997; King et al., 2001). Thus, it is necessary to include dependent
variables in the analytic model as predictors to improve the precision of prediction in the imputation.

However, White, Royston, and Wood (2011) stated that imputation models with too many
variables may face difficulties of convergence, especially for complex imputation models. van
Buuren and Groothuis-Oudshoorn (2011) recommended no more than 15–25 variables. Given
this debate, we choose the following 21 predictor variables: the levels of compensation, land
size, rent percentage, having surface water on the farm, percentage of household income from
farming, total household income reinvested in the farm, types of farming production, age, gender,
education, income, race, water recreation activities, farming experience, water quality near the
farm, participation in government programs, current usage of different types of BMPs, and the
four different WQT information treatments. Because the riparian buffer, animal fence, no-till, and
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nutrient management BMPs are continuous, imputation uses the linear regression model. Waste
storage facilities are added in discrete quantities, so imputation relies on the Poisson regression
method.

Table 4 displays an example of scenario 2’s two-stage imputation. Ten variables are missing,
including both adoption choices and adoption rates. In stage one, missing data of adoption choices
are imputed sequentially by multinomial logit regression; in stage two, missing data of adoption
rates are imputed by linear regression method, conditional on adoption choices of observed and
imputed data. This procedure to sequentially impute data from stage one to stage two represents one
round of imputation. Online Supplement B contains detailed imputation models and predictors for
each scenario.

Online Supplement C reports some clarification for choosing a specific data algorithm and
transformation of variables to address divergence issue in our imputation. In addition, we use
30 iterations as the burn-in period. Online Supplement D provides justification and evidence of
convergence. Specifying additional burn-in iterations did not change the results. For waste storage
facilities, a predicted mean matching (PMM) method was used in the simulation, instead of the
Poisson method, to achieve convergence.

After imputing missing values for each BMP’s follow-up question, we replace imputed extreme
values, values that exceeded the minimum and maximum of the observed data, by the corresponding
minimum and maximum of each BMP. These extreme values accounted for less than 5% of all
imputed values.

Empirical Model for BMP Adoption

Previous studies have estimated BMP adoption rates by using OLS models, Tobit models, double-
hurdle models, and switching-regression models (Ervin and Ervin, 1982; Norris and Batie, 1987;
Adesina and Zinnah, 1993; Uri, 1997; Ma et al., 2012; Abdulai and Huffman, 2014). Following
previous literature, with each imputed dataset, we estimate the factors affecting how much farmers
may engage in each BMP, specified by equation (3) using Tobit or Poisson regressions. The
dependent variable, Yi, is how much of each BMP farmers would like to implement. For riparian
buffer (Y1), animal fence (Y2), no-till (Y3), and nutrient management (Y5), the dependent variables is
continuous if the decision is “yes” and 0 if the decision is “no.” Because usage of BMPs is censored
at 0, we use a Tobit model to estimate how much farmers may implement these practices. Since
waste storage facilities (Y4) are count values, we estimate the number of facilities adopted using
Poisson regression. We exclude respondents who indicated “not possible for me” from the analysis.

(3) Yi = X′βββ + ε,

where Yi is a continuous value if “yes” for i = 1,2,3,5 and a count number for i = 4 and Yi = 0 if
“no.” Previous studies show mixed results of factors affecting choices and rates of BMP adoption.
Two syntheses of BMP adoption conclude that no single factor can consistently explain BMP
adoption (Knowler and Bradshaw, 2007; Prokopy et al., 2008). Baumgart-Getz, Prokopy, and
Floress (2012) conducted a meta-analysis of BMP adoption among farmers, concluding that their
environmental awareness and attitudes are important factors but that researchers must carefully
define and use these indicators. Admittedly, previous syntheses of BMP adoption cannot find any
factor consistently explaining adoption, but these studies still conclude that farm characteristics,
farmer characteristics, and environmental attitude and awareness are the most used and recognized
variables to explain BMP adoption. Accordingly, we use the following explanatory variables for each
BMP: compensation, land area, rent area percentage, the presence of surface water on the farm, farm
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with livestock,4 percentage of household income from farming, total household income reinvested
in the farm, income, nearby water quality, and participation in the Conservation Reserve Program
(CRP) and Working-Land Program (WLP). We also examine the cross-effect of BMP adoption
by including the current use of the five types of BMPs to explain adoption. Finally, to examine
whether complementarity exists in adopting BMPs, we include the respondent’s decision to adopt
other practices j as explanatory variables in the adoption of practice i. Following equation (3), the
estimable model is

Yi = β0 + βiC +

(
N

∑
n=1

βinxn

)
+

(
5

∑
i=1

θiiyi

)
+

(
5

∑
j=1

µi jy′j

)
(4)

(i 6= j)

where, i = 1,2,3,4,5,6 (each i also identifies a model of a BMP, and there are five regressions in
total); β0, βi, βin, µi j, and θii are coefficients; j = 1,2,3,4,5, where each j denotes a BMP, either
riparian buffers, animal fences, no-till, waste storage facilities, or nutrient management, respectively;
N is the number of variables; Yi represents dependent variables of how much of each BMP farmers
would like to implement; C, xn, yn, and y′n are independent variables; xn = farm characteristics,
farmer characteristics, environmental aspects, targeted farm status, and the type of WQT program
information farmers received; C is the compensation offered to a farmer by NPSs, which will cover
a certain percentage of the cost of implementing the BMPs; yi is current adoption of all surveyed
BMPs; and y′j is respondent’s decision to adopt other BMPs.

Combining Final Estimates

The last step of MI is to calculate the m estimation results using Rubin’s (1987) method. Let Q
denote a parameter estimate, such as a regression coefficient, in each imputed dataset. The point
estimate Q̄ of Q is the average of the m separate estimates:

(5) Q̄ =
1
m

m

∑
j=1

Q j.

Let U j denote the estimated squared standard error of Q j, written as equation (6), and B denote the
between-imputation variance across the m point estimates, written as equation (7). The estimated
variance of point estimate of MI, T , is

Ū =
1
m

m

∑
j=1

U j;(6)

B =
1

m− 1

m

∑
j=1

(Q j − Q̄)2;(7)

T =

(
1 +

1
m

)
B + Ū .(8)

4 In a preliminary model, we included two indicators for crop production and for livestock production to control for farm
type. However, the MI method requires that imputation predictors should include all variables that appear in the analytic
model (van Buuren and Groothuis-Oudshoorn, 2011). Including the crop production indicator in imputation stymied model
convergence. Thus, we chose to include the indicator of livestock production but exclude crop production in our analytic
model. Nevertheless, our preliminary models were estimated including these variables and the results are largely identical to
those without them.
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The tests and confidence intervals follow a Student’s t-approximation: (Q̄− Q)/
√

T ∼ tv with
degrees of freedom v represented as

(9) v =

(
1

m− 1

)[
1 +

Ū
(1 + m−1)B

]
Previous studies have shown that, after convergence, five or ten imputations are sufficient unless

there is a severe degree of missing data. However, White, Royston, and Wood (2011) recommend
larger numbers of imputation m due to efficiency loss and reproducibility. Since the variance of
parameters is calculated using equation (8), they propose that the relative efficiency of infinitely
many imputations, a, compared to m imputations is

(10) lim
a→∞

(
1 + 1

m

)
B + Ū(

1 + 1
a

)
B + Ū

=

(
1 + 1

m

)
B + Ū

B + Ū
= 1 +

B
B + Ū

× 1
m

= 1 +
FMI

m
,

where B
B+Ū is the fraction of missing information (FMI), which ranges between 0 and 1 (Schafer,

1997).
If we allow 1% loss of efficiency in our imputation, 1 + FMI

m should be less than or equal
to 1.01, then FMI

m ≤ 0.01, so the imputation times m are greater than or equal to (100× FMI).
FMI is calculated based on the analytic model using imputation data and can be obtained from
most statistical software packages. In the estimation, each parameter has its own FMI. We use the
largest FMI value (i.e., 1) to determine m. This also improves the reproducibility of our imputation,
regardless of “seeds” or software packages. Intuitively, a larger m improves similarity in reproduced
results. After some preliminary trials, we use m = 100.

Results

Imputation is executed using the “rseed” option in Stata 13.0. To improve coefficient interpretation,
we convert income level, percentage of household income from farming, and total household income
reinvested in the farm from categories to continuous data using the midpoint of each corresponding
category (Online Supplement E). Tables 5–9 display the results of how much farmers may increase
each BMP.5 Each table compares the results of all six imputation methods per BMP. The largest FMI
values for each model are reported at the bottom of respective tables.

Assessment of Imputation

We show that results using conventional imputation methods are misleading. First, the MCAR
condition fails in our data. Given the appropriateness of the MAR assumption, MI is superior to
conventional missing-data methods, which tend to exaggerate significance of coefficients, generating
erroneous policy implications (Lall, 2016). Taking the result in table 7 as an example, the
conventional methods show that larger farms or farms with more rented land are significantly more
likely to adopt no-till, while MI methods show these relationships are inconclusive.

Theoretically, replacing missing values by a constant (sample mean) decreases data variability
(i.e., increases central tendency of the distribution of the data) and, as a result, underestimates
variances that causes biased significance tests (Johnson and Young, 2011). When significant,
coefficients using mean replacement are the smallest in magnitude across all six scenarios for all
five BMPs. However, t-values calculated from this method are greater than in any of the other

5 We test for and find no evidence to support overdispersion in the Poisson model in the deletion method (Cameron and
Trivedi, 1990). Since MI does not change the distribution of data, tests of overdispersion will be consistent before and after
imputation. Therefore, we use the Poisson model across all six scenarios.
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Table 5. Tobit Regression for Factors Affecting Farmers’ Riparian Buffers Adoption
MICE Method

Deletion
Mean

Replacement One-Stage Two-Stage
Restricted
Two-Stage Three-Stage

Offer 252.21 1,262.02 6,038.36∗ 2,399.99 3,892.89 6,524.32
(1,823.69) (1,044.37) (3,265.62) (3,225.84) (3,062.33) (3,070.73)

Land acre −348.12 −261.87 −855.63 −658.48 −523.85 −57.10
(791.51) (327.50) (1,211.16) (1,081.18) (952.25) (768.20)

Rent percentage 471.37 −80.48 789.84 1,206.70 330.97 34.13
(1,086.16) (597.57) (1,816.96) (1,625.48) (1,604.54) (1,644.90)

Surface water 1,196.30 133.88 726.85 243.20 182.05 424.81
(928.47) (484.61) (1,264.12) (1,167.88) (1,195.40) (1,121.46)

Farm with livestock −993.62 −192.82 −987.45 −1,167.85 −943.91 −1,152.16
(868.77) (436.25) (1,442.57) (1,202.70) (1,195.02) (1,231.92)

HH income 6.17 −2.53 −1.90 −2.96 −2.57 −4.09
(4.34) (2.45) (7.17) (6.53) (6.70) (7.00)

%HH income from farming −1,779.14 −1,147.17 −2,968.57 −2,629.59 −3,336.01∗ −1,926.24
(1,359.75) (743.51) (2,161.91) (1,921.82) (1,898.44) (1,910.29)

%HH income reinvested in farm 2,353.53 1,735.31∗∗ 4,981.63∗∗ 4,274.05∗∗ 4,866.53∗∗ 3,069.42
(1,472.19) (877.36) (2,454.51) (2,151.58) (2,366.86) (2,330.12)

Water quality −231.21 −136.75 −56.86 146.84 −242.93 17.52
(191.50) (115.71) (309.26) (256.38) (290.15) (278.51)

CRP −661.85 225.05 1,200.70 480.79 1,200.10 969.55
(792.88) (456.45) (1,256.99) (1,173.41) (1,210.86) (1,311.56)

WLP 1,059.95 253.61 −888.60 −143.04 −202.93 −603.21
(645.30) (356.86) (1,111.59) (1,014.89) (1,065.55) (1,007.54)

Current usage of other BMPs:
Riparian buffers 1,628.61∗∗∗ 1,267.39∗∗∗ 2,810.33∗∗∗ 2,066.80∗∗ 2,744.15∗∗∗ 2,072.80∗∗

(605.12) (336.13) (973.05) (896.49) (888.43) (903.51)
Animal fences −959.05 −658.66 −987.20 −963.56 −1,145.92 −5.26

(646.53) (379.37) (1,102.66) (990.16) (927.65) (1,074.51)
No-till −664.72 216.05 1,280.76 1,089.14 1,419.69 1,685.38

(763.36) (420.11) (1,337.12) (1,121.57) (1,102.79) (1,143.07)
Waste storage facilities −2,614.14∗ −1,388.77∗∗ −2,451.86 −1,973.32 −2,210.02 −3,439.98∗

(1,535.59) (665.72) (1,964.89) (1,959.34) (1,918.21) (1,858.17)
Nutrient management −363.96 −174.85 −472.88 −860.92 −15.96 −790.41

(636.13) (373.31) (1,135.26) (959.69) (969.10) (1,037.33)

Choices of other BMPs:
Animal fences 3,608.54∗∗∗ 2,026.57∗∗∗ 4,120.23∗∗∗ 4,060.74∗∗∗ 4,015.39∗∗∗ 2,402.14∗∗∗

(714.09) (388.50) (1,241.75) (1,259.47) (1,160.68) (869.25)
No-till 83.85 258.29 935.85 1,197.78 1,259.19 320.01

(686.32) (389.67) (1,160.80) (984.32) (1,031.05) (894.26)
Waste storage facilities −917.66 −665.85 −1,189.65 −1,191.82 −1,599.76 18.69

(736.45) (422.56) (1,347.95) (1,090.81) (1,245.81) (1,065.52)
Nutrient management 637.78 210.97 365.66 861.18 917.16 408.31

(701.61) (345.46) (1,107.78) (1,015.60) (1,098.75) (937.77)

WQT Information Treatment:
Cost-savings information −1,509.39∗∗ −474.56 −488.92 −210.12 −94.68 −485.51

(746.33) (428.96) (1,195.09) (1,017.59) (1,133.19) (1,148.11)
Environment information −23.03 181.65 746.78 606.96 1,255.00 239.82

(802.67) (456.54) (1,484.95) (1,366.12) (1,346.05) (1,265.11)
Combined information −411.98 −296.11 −210.79 −92.38 −166.82 −209.24

(631.24) (421.42) (1,177.61) (991.09) (1,024.50) (1,071.08)

Constant −2,752.69 −2,006.60 −9,961.93∗∗ −6,888.15∗ −7,872.08∗∗ −8,954.43∗∗∗

(2,458.34) (1,387.10) (4,380.66) (3,922.50) (4,032.93) (3,899.99)
Sigma 1,695.34∗∗∗ 1,364.46∗∗∗ 3,291.63∗∗∗ 2,989.19∗∗∗ 3,294.86∗∗∗ 3,428.87∗∗∗

(203.97) (120.66) (671.00) (572.11) (588.35) (555.24)
N 119 149 149 225 199 218

256 237 251
Largest FMI − − 0.8153 0.8833 0.7472 0.8168

Notes: In the last three scenarios, “yes/no” choices are imputed, affecting the numbers of observations across different imputation data. We
report the smallest (upper row) and the largest number (lower row) of observations used during estimation. Standard errors are in parentheses.
Single, double, and triple asterisks (*, **, ***) imply 10%, 5%, and 1% significance levels, respectively.
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Table 6. Tobit Regression for Factors Affecting Farmers’ Animal Fences Adoption
MICE Method

Deletion
Mean

Replacement One-Stage Two-Stage
Restricted
Two-Stage Three-Stage

Offer 1,595.78 1,070.10 3,145.69 2,596.27 2,057.25 3,188.58
(1,646.66) (1,035.28) (2,025.59) (2,067.17) (1,803.73) (2,143.73)

Land acre −1,673.14∗∗ −970.69∗ −2,739.97∗∗ −2,667.73∗∗ −2,489.65∗∗ −2,702.89∗∗∗

(856.26) (550.68) (1,112.02) (1,101.72) (1,024.45) (1,016.09)
Rent percentage 50.92 487.46 999.03 854.22 955.99 1,279.91

(959.33) (580.28) (1,270.45) (1,385.80) (1,102.67) (1,310.78)
Surface water −164.23 −299.20 −742.06 −1,137.32 −1,004.94 −432.25

(859.03) (517.27) (1,083.09) (1,158.66) (958.09) (860.73)
Farm with livestock 618.18 153.34 −509.84 −442.35 −65.03 −301.45

(954.67) (521.23) (1,154.61) (1,194.73) (1,056.65) (1,208.81)
HH income 2.23 0.32 5.08 5.36 2.42 1.55

(4.53) (2.69) (5.39) (6.03) (5.24) (5.78)
%HH income from farming 2,161.51 988.66 2,510.39 5,311.77∗∗∗ 1,639.60 4,016.02∗∗

(1,536.92) (882.25) (1,748.43) (1,967.42) (1,755.90) (1,965.13)
%HH income reinvested in farm −1,223.12 −367.69 120.90 −4,041.02∗ 872.55 −2,312.96

(1,746.35) (1,054.12) (2,037.00) (2,152.72) (1,914.50) (2,098.21)
Water quality −320.04∗ −298.13∗∗ −344.31 −275.46 −360.08 −391.09∗

(190.89) (124.16) (233.54) (234.56) (220.47) (227.68)
CRP 104.59 −7.19 −1,018.53 −198.59 −224.73 −217.39

(825.86) (513.02) (958.98) (999.10) (993.95) (976.61)
WLP −758.13 −181.45 11.73 −768.85 −319.35 −472.27

(668.12) (385.97) (856.71) (797.99) (766.13) (827.71)

Current usage of other BMPs:
Riparian buffers 1,088.93∗∗ 451.93 769.53 706.17 1,078.44∗ 928.56

(519.27) (344.52) (652.60) (702.98) (616.24) (672.47)
Animal fences 1,985.10∗∗∗ 1,067.09∗∗∗ 1,975.42∗∗∗ 2,005.71∗∗∗ 1,920.26∗∗∗ 2,005.42∗∗∗

(583.56) (364.75) (716.45) (732.19) (688.65) (726).00
No-till 1,270.70∗ 675.76 2,513.68∗∗ 1,235.00 1,580.20∗ 1,510.77∗

(752.04) (437.16) (1,002.68) (943.23) (935.16) (914.27)
Waste storage facilities 1,980.49∗ 376.44 1,308.00 2,385.30∗ 1,619.69 1,917.57

(1,133.39) (679.09) (1,305.55) (1,358.75) (1,242.95) (1,543.73)
Nutrient management −1,952.46∗∗∗ −940.34∗∗ −2,597.18∗∗∗ −2,008.29∗∗ −2,145.99∗∗ −2,238.97∗∗∗

(692.98) (429.19) (850.44) (860.55) (895.60) (845.06)

Choices of other BMPs:
Riparian buffers 1,075.81∗ 479.27 1,496.68∗∗ 1,877.22∗∗∗ 1,649.58∗∗ 1,098.85∗

(568.45) (344.87) (679.76) (685.34) (682.88) (620.65)
No-till 18.46 78.54 −552.15 236.71 600.98 154.99

(651.84) (408.58) (769.94) (882.48) (778.56) (664.59)
Waste storage facilities 697.40 422.57 1,042.17 1,376.18 972.34 707.56

(690.61) (408.74) (821.65) (832.53) (825.03) (780.67)
Nutrient management −275.76 3.24 −388.19 −132.05 −135.21 119.77

(634.45) (408.34) (783.74) (780.35) (787.86) (718.49)

WQT Information Treatment:
Cost-savings information 1,542.20∗∗ 838.91∗∗ 1,600.37∗ 1,314.34 1,901.27∗∗ 1,174.46

(711.43) (431.30) (910.48) (905.02) (837.94) (876.17)
Environment information 508.58 108.81 474.66 414.85 263.20 34.14

(722.10) (477.12) (952.33) (873.60) (851.06) (933.93)
Combined information −443.79 −303.91 −519.57 −983.39 −155.92 −1,090.90

(682.03) (428.70) (836.56) (860.11) (741.54) (860.44)

Constant −2,652.10 −81.45 −2,634.74 −2,286.91 −2,845.88 −2,123.55
(2,397.51) (1,479.62) (2,819.25) (2,745.98) (2,614.28) (3,163.88)

Sigma 2,238.97∗∗∗ 1,833.18∗∗∗ 2,752.05∗∗∗ 2,750.88∗∗∗ 2,819.08∗∗∗ 2,841.68∗∗∗

(198.54) (124.69) (332.43) (296.09) (327.22) (332.99)
N 134 182 182 249 216 253

276 255 276
Largest FMI 0.6864 0.7625 0.6467 0.7609

Notes: In the last three scenarios, “yes/no” choices are imputed, affecting the numbers of observations across different imputation data. We
report the smallest (upper row) and the largest number (lower row) of observations used during estimation. Standard errors are in parentheses.
Single, double, and triple asterisks (*, **, ***) imply 10%, 5%, and 1% significance levels, respectively.
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Table 7. Tobit Regression for Factors Affecting Farmers’ No-Till Adoption
MICE Method

Deletion
Mean

Replacement One-Stage Two-Stage
Restricted
Two-Stage Three-Stage

Offer −96.65 −50.71 −9.49 −39.30 −22.21 −23.45
(75.74) (51.38) (113.65) (94.38) (106.01) (87.55)

Land acre 23.05∗ 20.58∗∗ 23.44 27.32 31.55 20.96
(12.96) (10.20) (20.05) (19.86) (20.20) (18.11)

Rent percentage 93.34∗∗ 42.98∗ 105.12 129.01∗ 100.40 77.26
(37.03) (25.58) (74.21) (68.69) (62.61) (56.28)

Surface water 1.43 −6.11 21.73 32.46 46.55 17.09
(37.06) (26.17) (52.77) (49.56) (53.72) (38.31)

Farm with livestock −85.03∗∗∗ −47.99∗∗ −52.99 −48.11 −77.28∗ −42.41
(33.10) (22.69) (46.44) (37.63) (44.09) (33.16)

HH income 0.49∗∗∗ 0.30∗∗∗ 0.40 0.35 0.43∗ 0.36∗

(0.18) (0.11) (0.27) (0.24) (0.26) (0.22)
%HH income from farming 135.83∗∗ 110.85∗∗∗ 169.21∗∗ 171.74∗∗ 163.04∗∗ 158.73∗∗

(57.45) (39.44) (85.99) (84.57) (79.80) (75.10)
%HH income reinvested in farm −66.28 −61.92 −52.38 −77.01 −93.23 −7.91

(64.76) (47.44) (92.97) (86.98) (92.07) (78.35)
Water quality −11.06 −7.00 −10.24 −9.35 −6.88 −12.51

(7.96) (5.75) (11.55) (9.97) (11.37) (10.17)
CRP −31.29 −23.64 −76.66 −75.96 −60.02 −71.89∗

(30.53) (22.08) (51.27) (48.88) (47.39) (42.94)
WLP 22.15 17.64 3.30 18.04 −3.16 18.26

(29.05) (18.90) (47.84) (40.72) (41.11) (34.12)

Current usage of other BMPs:
Riparian buffers −14.62 5.71 1.56 −14.69 −16.58 0.08

(24.48) (16.60) (36.97) (31.91) (34.02) (32.57)
Animal fences 35.10 17.48 23.75 14.62 10.39 28.76

(30.15) (19.79) (42.05) (38.68) (37.57) (33.60)
No-till 95.17∗∗∗ 70.52∗∗∗ 127.56∗∗∗ 119.25∗∗∗ 126.52∗∗∗ 121.15∗∗∗

(25.14) (17.18) (43.34) (38.60) (41.02) (37.73)
Waste storage facilities −107.87∗∗ −60.33∗∗ −119.78∗ −115.79∗∗ −119.66∗ −114.18∗∗

(42.85) (27.43) (66.64) (58.69) (63.80) (53.53)
Nutrient management −20.57 −18.38 −9.27 −16.88 7.74 −17.71

(27.54) (19.18) (41.03) (36.87) (40.11) (33.95)

Choices of other BMPs:
Riparian buffers 14.84 9.96 47.19 35.26 64.78 15.38

(27.82) (17.55) (48.06) (38.30) (44.30) (31.22)
Animal fences 2.03 12.64 3.91 9.71 24.95 −4.74

(30.91) (20.23) (43.76) (43.51) (39.53) (31.01)
Waste storage facilities 49.72 21.63 47.82 36.10 78.98∗ 32.81

(30.66) (19.77) (42.90) (38.94) (43.43) (33.67)
Nutrient management 39.26 37.00∗∗ 44.33 76.64∗ 74.61∗ 21.38

(27.44) (17.75) (37.73) (40.09) (40.22) (29.49)

WQT Information Treatment:
Cost-savings information 14.99 27.34 51.05 34.32 25.70 32.74

(29.95) (20.70) (46.09) (39.29) (44.73) (36.29)
Environment information 14.96 19.91 69.30 48.54 51.34 26.44

(35.36) (22.36) (62.72) (51.51) (51.82) (44.97)
Combined information −1.03 4.29 8.35 −19.55 −11.09 −0.43

(28.92) (21.14) (41.82) (40.55) (39.68) (35.29)

Constant 37.79 14.95 −134.41 −114.58 −178.24 −63.10
(105.07) (66.85) (164.27) (121.62) (155.70) (116.88)

Sigma 96.38∗∗∗ 84.60∗∗∗ 141.44∗∗∗ 136.20∗∗ 145.94∗∗∗ 128.24∗∗∗

(8.50) (5.87) (26.34) (21.63) (26.07) (20.94)
N 136 178 178 254 226 254

285 264 283
Largest FMI 0.8701 0.8719 0.8521 0.8835

Notes: In the last three scenarios, “yes/no” choices are imputed, affecting the numbers of observations across different imputation data. We
report the smallest (upper row) and the largest number (lower row) of observations used during estimation. Standard errors are in parentheses.
Single, double, and triple asterisks (*, **, ***) imply 10%, 5%, and 1% significance levels, respectively.
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Table 8. Tobit Regression for Factors Affecting Farmers’ Waste Storage Facilities Adoption
MICE Method

Deletion
Mean

Replacement One-Stage Two-Stage
Restricted
Two-Stage Three-Stage

Offer 0.19 −0.13 −0.61 −0.44 −0.29 −0.10
(1.03) (0.85) (0.84) (0.73) (0.84) (0.76)

Land acre 0.01 −0.01 0.02 0.01 0.10 0.03
(0.27) (0.20) (0.17) (0.19) (0.16) (0.17)

Rent percentage −0.74 −0.38 −0.20 −0.12 −0.40 −0.25
(0.57) (0.46) (0.44) (0.36) (0.44) (0.37)

Surface water −0.28 −0.13 0.04 0.18 0.06 0.05
(0.52) (0.43) (0.44) (0.40) (0.43) (0.36)

Farm with livestock 0.59 0.24 0.10 0.15 −0.04 0.16
(0.60) (0.42) (0.42) (0.38) (0.42) (0.38)

HH income 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

%HH income from farming −0.26 −0.42 −0.54 −0.66 −0.68 −0.47
(0.70) (0.60) (0.59) (0.52) (0.59) (0.54)

%HH income reinvested in farm 1.83∗∗ 1.42∗∗ 1.13∗ 0.88 1.20∗ 1.19∗∗

(0.78) (0.62) (0.60) (0.55) (0.63) (0.56)
Water quality −0.02 −0.06 −0.07 −0.06 −0.10 −0.09

(0.12) (0.10) (0.09) (0.09) (0.10) (0.08)
CRP 0.43 0.27 0.18 0.20 0.22 0.28

(0.43) (0.31) (0.32) (0.29) (0.31) (0.30)
WLP 0.12 0.16 0.19 0.21 0.27 0.07

(0.33) (0.26) (0.26) (0.25) (0.27) (0.24)

Current usage of other BMPs:
Riparian buffers 0.54 0.35 0.22 0.05 0.10 0.26

(0.36) (0.28) (0.29) (0.26) (0.29) (0.24)
Animal fences −0.19 −0.13 −0.14 −0.22 −0.14 −0.07

(0.35) (0.29) (0.29) (0.26) (0.27) (0.27)
No-till −0.55 −0.29 −0.02 0.01 −0.06 −0.01

(0.45) (0.34) (0.34) (0.28) (0.34) (0.31)
Waste storage facilities 0.50 0.27 0.20 0.32 0.35 0.15

(0.42) (0.35) (0.34) (0.31) (0.34) (0.31)
Nutrient management −0.10 −0.16 −0.24 −0.25 −0.18 −0.18

(0.36) (0.30) (0.29) (0.25) (0.29) (0.26)

Choices of other BMPs:
Riparian buffers −0.17 −0.15 −0.14 −0.05 −0.15 −0.08

(0.35) (0.29) (0.28) (0.26) (0.29) (0.25)
Animal fences 1.19∗∗∗ 0.85∗∗∗ 0.76∗∗∗ 0.73∗∗ 0.84∗∗∗ 0.46∗

(0.38) (0.30) (0.30) (0.33) (0.30) (0.25)
No-till −0.18 0.03 0.11 0.15 0.39 0.06

(0.36) (0.29) (0.30) (0.31) (0.31) (0.26)
Nutrient management 1.09∗∗∗ 0.81∗∗∗ 0.84∗∗∗ 0.99∗∗∗ 1.04∗∗∗ 0.58∗∗

(0.37) (0.29) (0.29) (0.36) (0.31) (0.25)

WQT Information Treatment:
Cost-savings information 0.55 0.34 0.30 0.41 0.36 0.42

(0.44) (0.37) (0.36) (0.33) (0.36) (0.33)
Environment information 0.33 0.28 0.36 0.36 0.35 0.35

(0.50) (0.39) (0.40) (0.34) (0.39) (0.36)
Combined information 0.48 0.29 0.21 0.28 0.24 0.35

(0.49) (0.40) (0.40) (0.37) (0.40) (0.38)

Constant −3.01∗ −1.69 −0.88 −1.29 −1.51 −1.03
(1.58) (1.23) (1.20) (1.09) (1.24) (1.11)

N 128 151 151 211 200 223
243 231 253

Largest FMI 0.1894 0.5798 0.2613 0.4859

Notes: In the last three scenarios, “yes/no” choices are imputed, affecting the numbers of observations across different imputation data. We
report the smallest (upper row) and the largest number (lower row) of observations used during estimation. Standard errors are in parentheses.
Single, double, and triple asterisks (*, **, ***) imply 10%, 5%, and 1% significance levels, respectively.
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Table 9. Tobit Regression for Factors Affecting Farmers’ Nutrient Management Adoption
MICE Method

Deletion
Mean

Replacement One-Stage Two-Stage
Restricted
Two-Stage Three-Stage

Offer 62.82 54.06 107.19 77.77 141.76 148.60
(143.69) (107.51) (166.49) (151.42) (157.89) (146.35)

Land acre 28.37 25.16 28.27 27.17 15.12 29.82
(28.62) (22.52) (33.72) (31.74) (34.16) (33.87)

Rent percentage 27.97 39.36 95.52 120.49 66.40 113.87
(74.79) (55.39) (93.72) (102.11) (92.81) (97.53)

Surface water −45.93 −38.51 −43.89 −63.54 −76.91 −6.64
(65.67) (49.21) (70.97) (64.81) (69.04) (58.55)

Farm with livestock 26.83 36.73 46.70 64.14 27.88 44.45
(71.66) (50.48) (78.71) (71.44) (70.23) (60.03)

HH income 0.29 −0.08 0.22 0.24 0.54 0.00
(0.33) (0.23) (0.40) (0.41) (0.39) (0.38)

%HH income from farming 47.68 46.89 22.94 63.80 −2.50 28.86
(104.37) (75.63) (116.90) (127.58) (109.39) (102.86)

%HH income reinvested in farm 42.17 −13.33 20.15 −9.69 −6.90 69.84
(137.86) (89.78) (148.28) (137.11) (146.93) (133.10)

Water quality −4.74 −0.52 −2.32 8.78 8.75 −3.76
(16.28) (12.81) (19.99) (17.90) (19.34) (17.54)

CRP 38.59 53.88 68.35 59.46 10.02 53.37
(70.88) (49.58) (89.13) (76.24) (84.74) (71.09)

WLP −72.25 −83.80∗∗ −103.51 −119.48∗ −97.93 −73.32
(54.51) (41.11) (74.33) (66.48) (67.08) (62.96)

Current usage of other BMPs:
Riparian buffers 100.59∗∗ 87.88∗∗ 108.61∗ 108.59∗ 96.73∗ 96.93∗

(50.38) (35.38) (57.58) (56.57) (52.72) (51.29)
Animal fences −17.41 −8.09 9.34 5.69 31.66 29.65

(50.59) (37.79) (59.58) (52.05) (52.66) (47.18)
No-till 69.91 57 92.08 71.86 99.15 117.32

(57.74) (41.11) (65.93) (56.65) (66.01) (65.47)
Waste storage facilities −140.50∗ −95.19 −136.67 −130.61 −130.11 −157.81

(84.69) (58.56) (105.69) (98.82) (96.99) (103.60)
Nutrient management 147.10∗∗∗ 110.10∗∗∗ 142.65∗∗ 131.73∗∗∗ 172.79∗∗∗ 107.75∗∗

(48.56) (35.13) (56.81) (51.36) (56.64) (48.47)

Choices of other BMPs:
Riparian buffers 26.41 36.58 46.24 30.41 58.83 34.03

(53.39) (37.90) (61.21) (56.07) (59.96) (52.85)
Animal fences 16.04 5.83 9.67 12.88 18.66 13.42

(55.62) (40.14) (63.13) (60.41) (57.85) (55.51)
Waste storage facilities 74.33 83.99∗∗ 102.08 131.67∗∗ 147.94∗∗ 53.28

(54.53) (39.62) (63.69) (67.40) (62.87) (53.69)
Nutrient management 137.56∗∗∗ 103.25∗∗∗ 143.25∗∗ 155.49∗∗ 163.19∗∗ 88.21∗

(52.36) (38.11) (62.36) (64.89) (64.10) (52.38)

WQT Information Treatment:
Cost-savings information 3.06 16.52 13.53 1.38 36.47 26.28

(65.35) (47.35) (74.37) (67.61) (77.47) (74.86)
Environment information −13.73 −21.87 12.49 −42.21 24.06 −11.30

(66.14) (48.51) (81.12) (68.44) (78.56) (77.02)
Combined information 62.72 43.73 48.30 44.33 36.88 46.27

(61.15) (46.97) (69.08) (62.20) (64.94) (66.26)

Constant −328.43 −246.17∗ −422.14∗ −457.00∗ −582.94∗∗ −420.96∗

(208.79) (148.33) (251.70) (243.87) (255.60) (220.95)
Sigma 209.05∗∗∗ 179.62∗∗∗ 235.06∗∗∗ 225.08∗∗∗ 245.26∗∗∗ 228.81∗∗∗

(17.10) (12.37) (44.03) (49.07) (47.39) (46.38)
N 145 176 176 254 239 264

288 272 290
Largest FMI 0.8724 0.9418 0.8752 0.9276

Notes: In the last three scenarios, “yes/no” choices are imputed, affecting the numbers of observations across different imputation data. We
report the smallest (upper row) and the largest number (lower row) of observations used during estimation. Standard errors are in parentheses.
Single, double, and triple asterisks (*, **, ***) imply 10%, 5%, and 1% significance levels, respectively.
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methods,6 which verifies that mean replacement increases central tendency of the data and artificially
provides more significant coefficients than the deletion and MI methods. The deletion method is
a less distorted strategy than mean replacement because it does not replace missing data with a
constant. However, it is still based on the unrealistic MCAR assumption.

Unlike conventional methods, the MICE algorithm imputes missing data from predictive
distribution considering the true variance of data. Thus, it decreases central tendency of the data
and generates more variance, which leads to relatively greater estimates but more conservative
significance than conventional methods. Summing up, if a variable is statistically significant across
all scenarios, absolute values of coefficient magnitudes should have the following order:

(11)
∣∣βββ one−stage

∣∣ ≥
∣∣βββ two−stage

∣∣ ≈
∣∣βββ two−stage restricted

∣∣ > |βββ deletion| > |βββ mean| .

For several reasons, we choose to use results from the one-stage imputation method to examine
farmer willingness to adopt BMPs, factors that may affect their willingness, and how much more
they would adopt each BMP. First, as discussed above, MICE methods are equivalent to or better
than deletion and mean replacement. Second, deviations between the imputed and observed data
are expected under the MAR assumption, but researchers should be especially careful of extreme
departures (Abayomi, Gelman, and Levy, 2008). Following van Buuren and Groothuis-Oudshoorn
(2011) and Azur et al. (2011), a visual examination of the observed and imputed distributions
shows that the one-stage and three-stage imputed values have fewer deviations than the other two
strategies. Consequently, scenarios 1 and 4 are preferable due to fewer departures. Third, the one-
stage imputation and the two-stage with restricted imputation have smaller FMI values than the
other two scenarios. The FMI value represents the fraction of missing information. In other words,
for a given fixed percentage of efficiency loss from the imputation, the greater FMI is, and the
more imputation times m needed (White, Royston, and Wood, 2011). Therefore, under the same
imputation time, the one-stage imputation and the two-stage with restricted imputation have smaller
losses of efficiency than other scenarios.

The one-stage imputation generally performs best among the four imputation scenarios because
its imputed value has less variation and lower FMI across the five BMPs. In addition, the extra steps
to determine whether a farm is able to adopt BMPs or whether they would like to use a BMP can
also be a strong assumption.

Discussion of the BMP Adoption: Additional Abatement

Table 10 shows the average marginal effect of the coefficients from the one-stage imputation. Models
of riparian buffers, animal fences, no-till, and nutrient management are Tobit models indicating
the average marginal effect is calculated as F (X′βββ )× βββ (McDonald and Moffitt, 1980), while
waste storage facilities utilizes a Poisson model, so the average marginal effect is βββ × exp(X;βββ ).
After calculating the average marginal effect and standard error using the delta method for each
imputation, we apply Rubin’s method (equations 8–10) to derive a final estimate of marginal effects
in the one-stage imputation. It is possible that BMP adoption among farmers is not just a function of
willingness; their capacity to adopt may be limited by how close they were to their farms’ maximum
adoption capacity. This question was asked in the survey and initially included in the analysis but
subsequently dropped due to strong collinearity.

All else equal, a 1% increase in compensation suggests an additional 22.77 feet in riparian
buffers. Farms with one additional acre are predicted to decrease adoption of animal fences by 1.46
feet, meaning that larger farms are less likely to add fences to restrict animal access to streams. One
possible explanation is that the expected total expense of installing fences for large farms should

6 t-values of the coefficient of %HH Income from farming are deletion (2.36), mean replacement (2.81), one-stage (1.97),
two-stage (2.03), two-stage restricted (2.04), three-stage (2.11). t-values of the coefficient of current use of no-till are deletion
(3.79), mean replacement (4.10), one-stage (2.94), two-stage (3.09), two-stage restricted (3.08), three-stage (3.21).
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Table 10. Average Marginal Effect of Factors Affecting BMP Adoption after One-Stage
Imputation

Riparian
Buffers

Animal
Fences No-Till

Waste Storage
Facilities

Nutrient
Management

Offer 2,277.48∗ 1,678.34 −4.68 −0.42 48.25
(1,246.76) (1,074.72) (55.59) (0.58) (74.87)

Land acre −322.50 −1,463.55∗∗ 11.48 0.02 12.78
(458.66) (594.24) (9.78) (0.12) (15.18)

Rent percentage 296.48 534.72 51.53 −0.13 43.13
(687.38) (679.26) (36.38) (0.30) (42.21)

Surface water 275.15 −396.83 10.61 0.03 −19.83
(481.06) (579.40) (25.80) (0.30) (31.92)

Farm with livestock −375.19 −274.04 −25.97 0.07 21.08
(551.19) (618.23) (22.66) (0.29) (35.38)

Income −0.73 2.71 0.19 0.00 0.10
(2.72) (2.87) (0.13) (0.00) (0.18)

%HH income from farming −1,115.98 1,339.90 83.00∗∗ −0.37 10.45
(816.78) (932.87) (42.23) (0.41) (52.68)

%HH income reinvested in farm 1,876.91∗∗ 67.33 −25.70 0.77∗ 9.09
(930.82) (1,090.01) (45.53) (0.42) (66.64)

Water quality −21.33 −184.07 −5.03 −0.05 −1.05
(117.12) (124.71) (5.66) (0.06) (9.00)

CRP 453.47 −544.56 −37.58 0.12 30.79
(478.22) (512.67) (25.06) (0.22) (40.06)

WLP −337.48 7.34 1.64 0.13 −46.72
(424.44) (459.11) (23.39) (0.18) (33.39)

Current usage of other BMPs:
Riparian buffers 1,058.22∗∗∗ 409.79 0.77 0.15 49.02∗

(370.26) (346.80) (18.06) (0.19) (25.83)
Animal fences −371.44 1055.23∗∗∗ 11.66 −0.10 4.18

(418.93) (378.73) (20.58) (0.20) (26.81)
No-till 487.95 1342.58∗∗ 62.49∗∗∗ −0.01 41.57

(510.53) (535.95) (20.97) (0.23) (29.66)
Waste storage facilities −922.38 698.06 −58.69∗ 0.14 −61.65

(740.36) (696.81) (32.55) (0.23) (47.36)
Nutrient management −180.12 −1,386.68∗∗∗ −4.55 −0.16 64.36∗∗∗

(432.36) (450.65) (20.06) (0.20) (25.19)

Choices of other BMPs:
Riparian buffers − 799.28∗∗ 23.12 −0.09 20.83

− (360.23) (23.49) (0.19) (27.49)
Animal fences 1,557.10∗∗∗ − 1.90 0.52∗∗ 4.39

(490.42) − (21.40) (0.21) (28.43)
No-till 351.17 −294.42 − 0.08 46.06

(438.32) (410.60) − (0.20) (28.58)
Waste storage facilities −446.25 555.79 23.42 − 64.63∗∗

(509.24) (437.50) (20.93) − (27.72)
Nutrient management 139.17 −206.81 21.70 0.57∗∗∗ −

(421.10) (419.06) (18.40) (0.21) −

WQT Information Treatment:
Cost-savings information −184.66 856.10∗ 25.03 0.20 6.08

(453.18) (486.99) (22.63) (0.25) (33.48)
Environment information 285.80 253.59 33.97 0.25 5.58

(565.50) (508.43) (30.74) (0.28) (36.53)
Combined information −80.90 −277.01 4.10 0.14 21.80

(446.76) (446.84) (20.47) (0.27) (31.06)

Notes: Standard errors are in parentheses. Single, double, and triple asterisks (*, **, ***) imply 10%, 5%, and 1% significance levels,
respectively.

exceed small farms, although the expense on a per animal basis may be lower for large farms,
potentially suggesting that farmers consider the total expenditure rather than cost per unit in BMP
adoption decisions.

Farmers with a higher proportion of household income from farming are more likely to adopt
no-till, with a 1% increase of household income from farming leading to 0.83 more acres of no-
till. In addition to the environmental benefits of no-till, farmers also obtain economic benefits
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such as lower fuel and labor costs. The time saved from no-till means farmers can work on other
tasks to improve crop production (Huggins and Reganold, 2008). Therefore, choosing no-till can
concurrently improve long-term farm production, soil quality, and farm revenue. Farmers who
reinvest more assets into their businesses tend to adopt more riparian buffers and waste storage
facilities. A key result of this study is that previous BMP adoption significantly affects additional
BMP adoption. Holding other factors constant, farmers already using riparian buffers will adopt
1,058.22 more feet of riparian buffers and apply nutrient management to 49.02 more acres relative
to farmers not using buffers. Farmers who have already employed animal fences will increase animal
fences by 1,055.23 feet compared to farmers who have not. Similarly, farmers currently using
no-till are likely to adopt 1,342.58 additional feet of animal fences and 62.49 acres of no-till. If
farmers already have a waste storage facility, they will reduce the practice of no-till on 58.69 acres.
Farmers currently using nutrient management will reduce animal fences by 1,386.68 feet but will
adopt nutrient management on 64.36 additional acres. Cameron and Englin (1997) also find that
respondents’ willingness to use environmental goods is influenced by their previous experiences
with the goods.

Lastly, the type of information significantly affects farmers’ BMP adoption decisions. Compared
to the control group, which received only basic WQT information, the treatment featuring
augmented cost-savings information induced farmers to adopt animal fences by an additional 856.10
feet. However, the treatment with augmented environmental information did not influence BMP
adoption. As such, policy makers who wish to promote a WQT program or BMP adoption should
carefully consider the type of information communicated with the farmers.

Table 10 also reveals the complementarity of adopting different BMPs. Farmers willing to
use riparian buffers are more likely to adopt animal fences and vice versa. Farmers willing to
build waste storage facilities also tend to implement nutrient management systems. These findings
match previous literature that farmers who adopt technological innovation tend to attempt other
similar innovations because of technical complementarity among the innovations (Lichtenberg,
2004; Khanal, Gillespie, and MacDonald, 2010) and adopters’ preferences, such as risk attitudes
(Rahelizatovo and Gillespie, 2004) or socioeconomic characteristics (Sharma, Bailey, and Fraser,
2011).

Conclusion

This study investigates methods to address missing responses in farmer surveys by comparing
conventional methods and multiple imputation methods. We conduct a survey of Kentucky farmers’
BMP adoption through a hypothetical WQT program. Roughly a fifth to a quarter of respondents
did not indicate the amount adopted for the five BMPs investigated. We apply six approaches to
address the missing data issues: the deletion method, the mean replacement method, and four MICE
variants.

Our empirical findings show that compensation from WQT programs, socioeconomics
characteristics, farm physical characteristics, WQT-related information, land area, percentage of
household income from farming, percentage of total household income reinvested in the farm,
and current experience of BMPs all affect BMP adoption. We also observe a complementarity
of BMP adoption, with riparian buffers and animal fences as well as waste storage facilities and
nutrient management often adopted together by farmers. Lastly, we find that WQT information with
augmented cost-savings information induced farmers to adopt more animal fences.

While other disciplines routinely employ MI, many researchers using agricultural surveys
continue to rely on the deletion method for missing data. We show that replacing missing data
with MI-generated values enhances the economic analysis and implications. The MI method shows
promise to specifically handle missing data for surveys involving farming decisions. The comparison
between several popular schemes offers insights on their relative efficacy to address missing data.
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As a conservative strategy, when the percentage of missing data is more than 5% or the MCAR
assumption tenuous, we recommend dealing with missing data by providing results from both the
deletion and the MI method (Schafer, 1999). The traditional approaches such as deletion and mean
replacement methods may generate misleading conclusions. The mean replacement method is not
advisable as it may generate unreliable results versus other methods, especially when the researcher
is uncertain about the underlying reasons for the missing data.

[Received February 2016; final revision received September 2017.]
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Online Supplement A: Imputation Models (Raghunathan et al., 2001)

Linear Regression Model

Define y as a variable that follows a normal linear regression model:

(A1) y|x∼N(x′βββ ,σ2),

where x = (x1, x2, x3, . . . , xk)
′ is a vector of k predictors of y and is fully observed, βββ is a k × 1

vector of regression coefficients explaining the correlation between y and predictors x, and σ2 is the
scalar variance.

Assume that y contains missing data that need to be imputed. Define y = (yo, ym) and
x = (xo, xm), where

Number of
Observations
n = no + nm

y with
Missing Data

x Predictors
Fully Observed

Fully observed part no yo xo

Missing part nm ym xm

The imputation model is specified as follows:

1. Using observed yo and xo, calculate β̂ββ = [x′o, xo]
−1x′oyo and û = (yo − xoβ̂ββ ).

2. Generate σ̂2 = û′û/g, where g is a draw from χ2
no−k distribution.

3. Draw βββ |σ2 ∼N[β̂ββ , σ̂2[x′o, xo]
−1].

4. Draw ym ∼ N[xm
ˆ̂
βββ , σ̂2], where ˆ̂

βββ is the most recent draw of βββ in step 3.

5. Using y[yo, ym] and [xo, xm], repeat steps 1–4 after appropriate adjustments.

After the first round, β̂ββ is obtained using y[yo, ym] and x[xo, xm], where ym is the imputed value from
the most recent round, the degree of freedom of x2 distribution in step 2 is replaced by n− k, and xo
in step 3 is replaced by x[xo, xm].

Logit Model

Define y as a variable that follows a logistic model:

(A2) Pr(y = 1|x) = exp(x′βββ )
exp(x′βββ ) + 1

,

where x = (x1, x2, x3, . . . , xk)
′ is a vector of k predictors of y and is fully observed and βββ is a k × 1

vector of regression coefficients explaining the correlation between y and predictors x.
Assume that y contains missing data that need to be imputed. Define y = (yo, ym) and

x = (xo, xm), where
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Number of
Observations
n = no + nm

y with
Missing Data

x Predictors
Fully Observed

Fully observed part no yo xo

Missing part nm ym xm

The imputation model is specified as follows:

1. Use observed yo and xo to fit a logistic model to obtain the maximum likelihood estimate, β̂ββ ,
and its asymptotic covariance matrix, V .

2. Let T be the Cholesky decomposition of V , where V = T T t .

3. Draw βββ : ˆ̂
βββ = β̂ββ + T z, where vector z is a random normal deviate with dimension rows β̂ββ .

4. Use ˆ̂
βββ , which is the most recent draw of βββ in step 3 to fit

(A3) P∗ = Pr(ym = 1|x) = exp(x′m
ˆ̂
βββ )

exp(x′m
ˆ̂
βββ ) + 1

.

5. Generate a vector u of uniform random numbers between 0 and 1 with dimension rows ym.

6. With respect to each individual, impute 1 if u≤ P∗, and 0 otherwise.

7. Using y[yo, ym] and [xo, xm], repeat steps 1–7 after appropriate adjustments.

Multinomial Logit Model

Define y as a variable that contains l categories (outcome q = 1 is the base outcome) follows a
multinomial logistic model:

(A4) Pr(y = q|x) =
exp(x′βββ q)

1 + ∑
l−1
1 exp(x′βββ q)

if q > 1, so,
Pr(y = q|x)
Pr(y = l|x)

= ex
′
βββ q ,

where x = (x1, x2, x3, . . . , xk)
′ is a vector of k predictors of y and is fully observed and βββ q is a k × 1

vector of regression coefficients explaining the correlation between outcome q and predictors x.
Assume that y contains missing data that need to be imputed. Define y = (yo, ym) and

x = (xo, xm), where

Number of
Observations
n = no + nm

y with
Missing Data

x Predictors
Fully Observed

Fully observed part no yo xo

Missing part nm ym xm

The imputation model is specified as follows:

1. Use observed yo and xo to fit a multinomial logistic model to obtain the maximum likelihood
estimates (β̂ββ 1, β̂ββ 2, β̂ββ 3, . . . , β̂ββ q, . . . , β̂ββ l−1) and the asymptotic covariance matrix V = T T t ,
where T is the Cholesky decomposition.
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2. Draw βββ : ˆ̂
βββ q = β̂ββ q + T z, where vector z is a random normal deviates with dimension rows β̂ββ q.

3. Use ˆ̂
βββ , which is the most recent draw of βq in step 3 to fit

(A5) P∗q = Pr(ym = q|x) =
exp(x′m

ˆ̂
βββ q)

1 + ∑
l−1
1 exp(x′m

ˆ̂
βββ q)

and P∗l = 1−
l−1

∑
1

P∗q

4. Generate a vector u of uniform random numbers with dimension rows ym.

5. Let R0 = 0, Rq = ∑
l−1
1 P∗q , and Rl = 1 be the cumulative sums of the probabilities. Impute

outcome q if Rq−1 < u < Rq.

6. Using y[yo,ym] and [xo,xm], repeat steps 1–6 after appropriate adjustments.

Predictive Mean Matching (PMM) Model

Define y as a variable that follows a normal linear regression model:

(A6) y|x∼N(x′βββ ,σ2),

where x = (x1, x2, x3, . . . , xk)
′ is a vector of k predictors of y and is fully observed, βββ is a k × 1

vector of regression coefficients explaining the correlation between y and predictors x, and σ2 is the
scalar variance. Assume that y contains missing data that need to be imputed. Define y = (yo, ym) and
x = (xo, xm), where

Number of
Observations
n = no + nm

y with
Missing Data

x Predictors
Fully Observed

Fully observed part no yo xo

Missing part nm ym xm

The PMM method follows steps of the linear regression model except for the last two:

1. Draw ym ∼N[xm
ˆ̂
βββ , σ̂2] to obtain ŷm, the prediction of ym.

2. Generate first s minimums determined based on the absolute differences between the linear
prediction for incomplete observation i and linear predictions for complete observations, such
as ∣∣ŷi − ŷ j

∣∣ , j ∈ obs jmin determined based on
∣∣ŷi − ŷ j

∣∣= min
j∈ obs

∣∣ŷi − ŷ j
∣∣ .

3. For the missing observation i of ym, ym equals y jmin , where jmin is randomly drawn from the
set of indices {i1, i2, . . . , ik} determined based on the first s minimums.
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Table B1. Imputation Model Using Multivariate Imputation by Chained Equation
Variable Type Definition

c1 unordered categorical variables Choice to adopt riparian buffers: c1 = 1 if “yes,” c1 = 0 if “no,” c1 = 2 if
“not possible for me”

c2 unordered categorical variables Choice to adopt animal fences: c2 = 1 if “yes,” c2 = 0 if “no,” c2 = 2 if
“not possible for me”

c3 unordered categorical variables Choice to adopt no till: c3 = 1 if “yes,” c3 = 0 if “no,” c3 = 2 if “not
possible for me”

c4 unordered categorical variables Choice to adopt waste storage facilities: c4 = 1 if “yes,” c4 = 0 if “no,”
c4 = 2 if “not possible for me”

c5 unordered categorical variables Choice to adopt nutrient management : c5 = 1 if “yes,” c5 = 0 if “no,”
c5 = 2 if “not possible for me”

y1 continuous Follow-up question on how much riparian buffer will be adopted
y2 continuous Follow-up question on how much animal fences will be adopted
y3 continuous Follow-up question on how much no till will be adopted
y4 count Follow-up question on how many waste storage facilities will be

installed
y5 continuous Follow-up question on how much nutrient management will be adopted
I1 binary variables Respondent is unlikely or unable to adopt riparian buffers: I1 = 1 if

“no,” I1 = 0 if “not possible for me”
I2 binary variables Respondent is unlikely or unable to adopt animal fences: I2 = 1 if “no,”

I2 = 0 if “not possible for me”
I3 binary variables Respondent is unlikely or unable to adopt no till: I3 = 1 if “no,” I3 = 0 if

“not possible for me”
I4 binary variables Respondent is unlikely or unable to adopt waste storage facilities: I4 = 1

if “no,” I4 = 0 if “not possible for me”
I5 binary variables Respondent is unlikely or unable to adopt nutrient management: I5 = 1

if “no,” I5 = 0 if “not possible for me”
p1 binary variables Respondent capability to adopt riparian buffers: p1 = 1 if possible,

either “yes” or “no,” else p1 = 0 if “not possible for me”
p2 binary variables Respondent capability to adopt animal fences: p2 = 1 if possible, either

“yes” or “no,” else p2 = 0 if “not possible for me”
p3 binary variables Respondent capability to adopt no till: p3 = 1 if possible, either “yes” or

“no,” else p3 = 0 if “not possible for me”
p4 binary variables Respondent capability to adopt waste storage facilities: p4 = 1 if

possible, either “yes” or “no,” else p4 = 0 if “not possible for me”
p5 binary variables Respondent capability to adopt nutrient management: p5 = 1 if possible,

either “yes” or “no,” else p5 = 0 if “not possible for me”
q1 binary variables Given capability, respondent willingness to adopt riparian buffers:

q1 = 1 if “yes” and q1 = 0 if “no” when p1 = 1
q2 binary variables Given capability, respondent willingness to adopt animal fences: q2 = 1

if “yes” and q2 = 0 if “no” when p2 = 1
q3 binary variables Given capability, respondent willingness to adopt no till: q3 = 1 if “yes”

and q3 = 0 if “no” when p3 = 1
q4 binary variables Given capability, respondent willingness to adopt waste storage

facilities: q4 = 1 if “yes” and q4 = 0 if “no” when p4 = 1
q5 binary variables Given capability, respondent willingness to adopt nutrient management:

q5 = 1 if “yes” and q5 = 0 if “no” when p5 = 1

Notes: Table B1 variable definitions in the imputation model.
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Online Supplement C: Fitting the Imputation Model

During imputation, the normal linear regression model requires the normality assumption for
observed values to predict value X . When the observed values are highly skewed, the normal
linear regression model is invalid. Following Royston and White (2011), we apply a shifted log
transformation to the observed value of missing data in order to satisfy the normality assumption.
This process transforms the observed value in variable y into a log form toward normality using
equation (C1), where ynorm is the log-transformed nonmissing values, yobs is the value of nonmissing
y, and k is an estimated parameter indicating skewness. If yobs is negatively skewed, the sign in front
of yobs in equation (C1) is negative; otherwise it is positive. After imputation, we use the inverse
transformation in equation (C2) to convert observed and imputed values of variable y back to the
original scale, and label it as ycompleted .

ynorm = ln(±yobs − k);(C1)

ycompleted = ∓(eynorm+yimputed + k).(C2)

In our research, the issue of perfect prediction occurs in several models. Perfect prediction
arises when covariate variables can perfectly predict outcomes of the categorical data (Albert and
Anderson, 1984). As a result, the imputation cannot be executed because the estimation has infinite
coefficients with infinite standard errors. Categorical data, especially in logit and multinomial logit
models, are more likely to have the perfect prediction issue (White, Royston, and Wood, 2011). One
can “diagnose” the models by identifying and removing the covariates causing perfect prediction.
However, removing a potentially troublesome variable may mislead the imputation because omitting
a key determinant leads to a biased result. An alternative strategy uses an augmented-regression
approach introduced by White, Daniel, and Royston (2010). We apply the augmented approach in
all imputation models with categorical data.
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Online Supplement D: Imputation Assessment

Online Supplement D displays our convergence tests for the imputation. van Buuren and Groothuis-
Oudshoorn (2011) show that it is impossible to find a clear-cut method for determining whether the
MICE algorithm has converged. The most-used strategy is to plot one or more parameters against
the iteration number and then conduct a visual check. They also show that plotted parameters of
nonconvergence of the MICE algorithm are flat or resolve into a steady state because values are
locked to the starting imputation.

Following their method, we conducted 1,000 iterations to assess our imputation and convergence.
Figures D1–D5 in display the convergence of all scenarios for each BMP model: one-stage, two-
stage, restricted two-stage, and three-stage imputation. As can be seen in our figures, means of
observed and imputed data oscillated. The oscillation indicates our imputations are not stuck with
the starting values. In addition, the first full oscillation can be achieved within 10–30 iterations
across all scenarios. This is a good signal that the imputations have converged. Thus, we opt to use
30 iterations as the burn-in period for all scenarios.

Figure D1. Assessment of Imputation Convergence for Riparian Buffers
Notes: Based on the visual check, the imputation results of riparian buffers are not stable as other models of BMPs, because missing rates for
the riparian buffer are the highest among surveyed BMPs.
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Figure D2. Assessment of Imputation Convergence for Animal Fences

Figure D3. Assessment of Imputation Convergence for No Till
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Figure D4. Assessment of Imputation Convergence for Waste Storage Facilities

Figure D5. Assessment of Imputation Convergence for Nutrient Management
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Online Supplement E: Rescaled Categorical Variables

Categorical Value
Percentage of Household Income

from Farming
Total Household Income

Reinvested in Farm
Income

(1,000 Dollars)
1 8% 8% 0.5
2 23% 23% 20.0
3 38% 38% 37.5
4 53% 53% 62.5
5 68% 68% 87.5
6 82% 82% 125.0
7 97% 97% 233.3
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