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RESIDUAL DIAGNOSTIC PLOTS FOR

CHECKING FOR MODEL MIS-SPECIFICATION

IN TIME SERIES REGRESSION.

Richard Fraccaro1,2, Rob J Hyndmanl, and Alan Veevers2

Abstract: This paper considers residuals for time series regression. Despite much

literature on visual diagnostics for uncorrelated data, there is little on the autocorrelated

case. In order to examine various aspects of the fitted time series regression model, three

residuals are considered. The fitted regression model can be checked using orthogonal

residuals; the time series error model can be analysed using marginal residuals; and

the white noise error component can be tested using conditional residuals. When used

together, these residuals allow identification of outliers, model mis-specification and

mean shifts. Due to the sensitivity of conditional residuals to model mis-specification,

it is suggested that the orthogonal and marginal residuals be examined first.
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1 Introduction

Regression models with autocorrelated errors have received much attention in recent years.

An overview of time series regression is presented by Tsay (1984). Influence diagnostics

are discussed by Puterman (1988) and Hossain (1990), and outlier detection is considered

by Tsay (1986) and Ledolter (1988). Haslett and Hayes (1998) and Martin (1992) establish

generalised versions of residuals and diagnostics that are commonly used when performing

Ordinary Least Squares (OLS) regression. However, there has been little attention given

to residual diagnostic plots for time series regression.

We shall consider a linear regression model with an autoregressive (AR) error :

Yt = f (Xt) + et where Op(B)et = zt (1)

where Xt is a vector of explanatory variables assumed to be known, the regression model

is f (Xt) = Xti3 where 3 is a vector of coefficients, Op(B) = (1 — Oi.E3 — • • • — OpBP) is a

polynomial of order p in the backshift operator B, and zt is a zero mean Gaussian white

noise series with variance cr2.

Model (1) can also be written as

Y = X0 e where e gN(0, E) (2)

where the correlated error structure is represented in the matrix E which has (i, Ath el-

ement 7(li — jj), and where 7 is the autocovariance function of the time series model

represented by et. This representation of the time series regression model allows Gener-

alised Least Squares (GLS) to be used to estimate the parameters, 13. The use of GLS

estimation in an iterative procedure is outlined by Judge et al. (1988, p.392), and is the

method used for obtaining parameter estimates for the examples presented herein.

The limitation to AR models in (1) is not particularly restrictive as any ARMA model can

be approximated by a high order AR model (see Brockwell and Davis, 1991, p.91). Hence,

the results presented within can be extended to regression models with ARMA time series

errors.

It is a common practise with ordinary regression, where the errors are uncorrelated (p = 0),

to plot the residuals against each of the explanatory variables. Patterns in residual plots

indicate the fitted model is mis-specified. The pattern seen indicates the form of the mis-

specification (e.g., a quadratic shape indicates that a quadratic term should be included

in the model).

Fraccaro, Hyndman and Veevers



Residual plots for time series regression 3

Our goal is to produce similar residual plots for models with autocorrelated errors. The

resulting residual plots should also allow other aspects of the fitted model to be assessed,

such as checking the assumed properties of zt. In Section 2, we examine a type of residual

that, whilst being an intuitive diagnostic to use, is sometimes misleading when assessing

the fitted regression model. In Section 3, a more suitable type of residual is derived,

with its use demonstrated on examples presented in Section 4. A third type of residual

examined in Section 5 provides further checking of other elements of the fitted model.

When used together, these three types of residuals provide the means for assessing various

aspects of the time series regression model.

2 Marginal Residuals

The marginal expectation for model (1) is E(Yt I X) = f (Xt). Departures from the best

estimate of this expectation are called marginal residuals, et =Yt — f(Xt). It would seem

natural to produce diagnostics plots based on the marginal residuals. This approach is used

when performing OLS estimation on uncorrelated data, but its use with autocorrelated

data is problematic.

Asymptotically, Var(e) = E (following from Proposition 9.7.1 in Fuller, 1996, p.519) and so

these residuals must be expected to exhibit autocorrelation which may lead to "patterns"

in a residual plot. These autocorrelation-induced patterns will often interfere with other

patterns that indicate mis-specification. Consequently, it is difficult to visually identify

when mis-specification has occurred and what form of mis-specification is present.

An example of a plot of marginal residuals is shown in Figure 1. This plot is based on the

mean shift data example which will be presented in Section 4.2. The autocorrelation in

the data is evident in the residual plot, and makes it difficult to discern the existence of

other patterns.

Under the hypothesis that the regression model has been correctly specified, the marginal

residuals 6 estimate the unobservable time series error process. It is therefore suggested

that marginal residuals be plotted in time order. Other types of residuals presented herein

could also be plotted against time, or against the fitted values as is the norm.

The nature of marginal residuals allows them to be treated as an observed time series,

and so current time series diagnostic methods can be utilised. For example, parameter

changes can be detected using techniques discussed in Bagshaw and Johnson (1977), and

outliers in error models can be identified using methods such as those proposed by Ljung

(1993) and Ledolter (1988).

Fraccaro, Hyndman and Veevers
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Figure 1: An example of a plot of marginal residuals where the error model is AR(1). The
pattern dominating the plot is due to autocorrelation.

3 Residual Orthogonality

Let H = X(VE—IX)-1X1E-1 denote the hat matrix from a linear model fitted using

generalized least squares regression. For ordinary least squares, p = 0 and E-1 = a-21.

In this case,

e'X = ((I — H)Y)'X = Y.1(I — H)'X = — YI1-11X =0. (3)

Similarly, ei-k = elX4 = 0. Thus, the marginal residuals are orthogonal to "CT and to X.
We believe that this orthogonality is the essential reason why for uncorrelated observations,

it 'makes sense' to plot the residuals ê against X and Y.

However, for time series regression, where p> 0, 1-11X X and so the above orthogonality

does not hold. Thus, the veetor of residuals, "6, is correlated with Y and X. As a

result, patterns may appear in residual plots when, in fact, the residuals do not vary

systematically.

A solution to finding a suitable type of residual for time series regression lies in the above

orthogonality principle. In the following section, a residual orthogonal to "k and X is

presented.

Fraccaro, Hyndman and Veevers
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3.1 The orthogonal residual

In generalized least squares regression, the normal equations are VE-1Y = X1E-1X,3.

Therefore

X'E-1(Y - X0) = VE-le =0 (4)

and so v = E-le is orthogonal to X (and can also be shown to be orthogonal to Y = X0).

The orthogonal errors, v, have mean zero and their covariance matrix, Cov(E-le) =

is not diagonal so they are correlated. However, the covariance has an interesting

property that arises from the duality between autoregressive and moving average (MA)

processes. Specifically, the inverse of the autocovariance matrix from an MA(p) process

is approximately equal to the autocovariance matrix from an AR(p) process (Anderson,

1976). Murthy (1974) shows that for an AR(p) autocovariance matrix, E, the inverse may

be represented as

E-1 =__ t-1± (5)

where t-1 is an MA(p) autocovariance matrix, and t-1 is a matrix of zeros except for

the leading and trailing p x p submatrices.

Now, for an MA(p) process, the autocovariance function satisfies 7(k) = 0 for k > p.

Therefore, the matrix t-1 consists of zeros except for the main diagonal and up to p

off-diagonals either side of the main diagonal. Adding the matrix t-1 only changes some

of the non-zero values in the matrix t-1 and so E-1 has the same pattern as t-1.

Therefore, the ith orthogonal error, vi, will only be correlated with those p orthogonal

errors that occur immediately before and after it. For a low order AR process (and with

sufficiently large n), E-1 is nearly diagonal, and so the orthogonal errors have low order

autocorrelation.

The duality property described above has an important consequence for the use of orthog-

onal residuals, Cr,-  in a residual plot. As illustrated in Figure 2, low-order autocorrelation

is not obvious in a scatterplot. An observer will therefore not be distracted from other

patterns that may indicate mis-specification or the presence of outlying observations. Sim-

ilarly for orthogonal residuals, low-order autocorrelation will not detract from the presence

of other patterns or unusual residuals that exist in the plot.

The orthogonal residuals have covariance matrix

Cov(E—le) = E-1(I — H)E(I — HYE-1

= E-1(I — H)E(I — E-1X(VE-1X)X1)E-1

Fraccaro, Hyndman and Veevers
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Figure 2: Left: Simulated AR(1) series showing that the autocorrelation can be confused
with mis-specification, especially with large 0. Right: Simulated MA(1) series showing
that the lower order autocorrelation does not lead to patterns likely to be confused with
mis-specification regardless of the value of 0.
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Figure 3: Level of Lake Huron in feet from 1875 to 1972.

= — H)(E — X(X/E-1X1)X1)E-1

= E-1 (I — H) (I — H)

=

Note that the hat matrix, H, is idempotent. The standard deviation of u3 is therefore

V(E---1 — H))ii. (6)

4 Examples using Orthogonal Residuals

4.1 Lake Huron Data

Figure 3 shows a plot of the level of Lake Huron in feet, reduced by 570, as recorded over

the years from 1875 to 1972. The data are listed in Brockwell and Davis (1991, p.555).

A time series regression model was fitted to the data, with the result summarised in

Table 1. A linear relationship is shown to exist between lake level and time, with the

errors following an AR(2) process. There is a slight downward trend in the lake level

during the time in which observations were made.

In Figure 4 the studentized orthogonal residuals (obtained by dividing by (6)) are

plotted against the fitted observations, Y. The marginal residuals, plotted in time order,

are shown in Figure 5.

Fraccaro, Hyndman and Veevers
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Parameter Estimate Std.Err

Intercept 10.099 0.4601
Time Index -0.022 0.0080 
AR(2) Model
Lag 1 Coefficient 0.977
Lag 2 Coefficient -0.278

0.705

Table 1: Summary of parameter estimation for the Lake Huron data.
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The marginal residual plot reveals systematic variation in the residuals that could be

mistaken as an indication of the fitted model being inadequate. Instead, the pattern

in this plot is a result of the autocorrelation in the residuals. In contrast, the plot of

studentized orthogonal residuals does not indicate any such systematic variation. Apart

from a few possible outliers, the orthogonal residuals indicate that the fitted time series

regression model is satisfactory in explaining the level of Lake Huron over time.

4.2 Mean Shifts

A type of effect that one would like to be able to detect when it occurs within a time series

is mean shift. This is when the mean of a time series process changes by a fixed quantity

for several consecutive observations. The following example illustrates how orthogonal

residuals and marginal residuals can be used together to identify a mean shift.

A data set of 125 observations was simulated using the formula

= 2 — 5xi + 7x + ei

where ei was an AR(1) process with a coefficient of ç5 = 0.85 and with o-2 = (2.5)2. The

variable xi was randomly generated from the continuous uniform distribution U[1, 4]. To

simulate a mean shift, the value for ei of observations 70 through 85 was increased by

10 units. Figure 6 illustrates the relationship between yi and xi. The process yi and the

mean-shifted values can be easily seen in Figure 7.

Fraccaro, Hyndman and Veevers
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Figure 7: Plot of yi in time order for the mean shift simulation data. The mean-shifted
observations are indicated with squares.

Parameter Estimate Std.Err
Intercept 6.30 2.49
X -7.23 1.37
X2 7.49 0.28
AR(1) Model
Lag 1 Coefficient 0.875
o- 2.921

Table 2: Summary of parameter estimation for the mean shift simulation data.

Table 2 shows the result of fitting a quadratic relationship between yi and xi.

As evident from the studentized orthogonal residuals in Figure 8, observations 69, 70 and

85 have orthogonal residuals remarkably different from the other values. From this, it

could be concluded that the only noticeable feature of the data is the presence of a few

outliers. In fact, the mean shift is responsible for these large residual values.

Consider the low-order autocorrelation of orthogonal residuals as discussed in Section 3.1,

and the covariance properties as discussed regarding (5). The residual for observation i

will depend on the (i — 1)th and (i + 1)th observations. Observation 85 has the same time

series process mean as observation 84, but not observation 86. Consequently, observation

85 has a large orthogonal residual value. Similarly observations 69 and 70 have large

residual values. Observation 86 would also be expected to have a large residual value but

Fraccaro, Hyndman and Veevers
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Figure 8: Plot of studentized orthogonal residuals for the mean shift simulation data.

the orthogonal residual plot reveals that it does not have a remarkable residual value.

Observations 71 through 84 all have the same time series process mean as their neighbours,

and therefore do not have large orthogonal residual values.

As part of model checking, one would examine the marginal residuals next. When there

may be mean shifts, it can be useful to view the plot of marginal residuals. Due to their

autocorrelated nature, marginal residuals can provide insight into the underlying time

series process. Figure 9 suggests that observations 70 through 85 do not follow the trend

for marginal residuals established by the other observations. The conclusion to be reached

here is that the mean shift apparent in Figure 9 is responsible for the indication of outliers

in the plot of orthogonal residuals, and not the presence of three outlying observations.

This example highlights how it can be useful to consider the orthogonal residual plot and

marginal residual plot together.

4.3 Mis-specification

To demonstrate how orthogonal residuals can be used to identify model mis-specification,

consider the mean shift simulation data presented above. A quadratic relationship was

used to model the relationship between yi and xi, based on the pattern suggested in

Figure 6. Suppose a straight line relationship were fitted instead. Table 3 details the

resulting parameter estimates, and reveals that a higher order time series error model was

fitted.
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Parameter Estimate Std.Err
Intercept -32.03 2.04
X 29.37 0.61
AR(2) Model
Lag 1 Coefficient 0.354
Lag 2 Coefficient 0.193
o- 6.761

Table 3: Summary of parameter estimation for the mean shift simulation data when the
quadratic term has been omitted from the model.
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Figure 10: Plot of studentized orthogonal residuals for fitting a mis-specified model to the
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The studentized orthogonal residuals, shown in Figure 10, display a quadratic pattern,

suggesting that the fitted regression model has been mis-specified. Note that the pattern

induced by mis-specification overwhelms any other features in the plot, such as the presence

of possible outliers indicated in the orthogonal residual plot for the correctly specified

model, Figure 8. When the marginal residuals are plotted against the fitted values (not

shown), a quadratic pattern, similar to that displayed in Figure 10, is evident.

5 Conditional Residuals

For the time series regression model, it is possible to calculate the expectation of Yt

conditional on previous values of the observations. Let -YIP) denote the partitioned vector

[Yt_p Yt_p+i • • • Yt_i I Ytr. Then YIP) has a multivariate normal distribution with mean

and covariance matrix

[f(X—) f (Xt—p+1) • • • f (Xt—i) f (Xt)li

[ Ep 7p

7ip 7(3)

Fraccaro, Hyndman and Veevers
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where Ep has (i,j)th element 7( ii — j I) (1 .. i, j 5_ p), and Pyp has ith element '7(p — i).

Then, applying equation (8a.2.11) of Rao (1973), we obtain

E[YtlYt-1, • • • ,Yt—p,X] = f (Xt) + 7PET.1

1 - Yt—p

Yt-p+1

_

-

f(Xt_p) N .

f (Xt—p+i)

Yt —1 _. .. f (Xt-1) .j
= O1Yt-1 ± 02Yt-2 ± • • - + OpYt—p

+ f (Xt) — (kif (Xt—i) — - - - — Op f (Xt—p)

because PypEp-1 = [Op Op-1 • • • 01] by the Yule-Walker equations (see, for example, Brock-

well and Davis, 1991, p.239).

The difference between Yt and this expectation will be referred to as the conditional

residual (for t > p)

it = Yt — #(1)117t-1 — (152K-2 — • • • — (15pYt—p — f(x) ± '.'1 f (Xt-1) ± ' • • ±

=

Assuming that the regression model has not been mis-specified, the conditional residuals

will be estimates for the unobservable zt. A plot of conditional residuals can then be used

to assess whether ,Zt satisfies model assumptions.

An alternative approach for deriving the conditional residuals is to transform the terms

in model (2) so that the transformed errors are uncorrelated. Let P be a lower triangular

matrix such that E-1 = P'P. Then multiplying (2) by P we obtain PY = PX,3 ± Pe.

The covariance matrix for this transformed model is Var(Pe) = PiVar(e)P = I, so the

error terms are independent with unit variance.

The effect of the transformation is easy to understand, for example, in the AR(1) case

where

\- /1 — 02 o o - - - 0 0

—0 1 0 • • • 0 0

0 —0 1 0

„

o • - 1 0

0 0 • • • 0 —0 1
... _

Then, for t > p, the tth term of Pe is 1.(et — Oet_i) = zt/u. However, this transformed
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Figure 11: Plot of standardised conditional residuals for the Lake Huron data.

model also allows the calculation of conditional errors for 1 < t < p — 1.

Generally, for t > p, the (t, i)th element of P is

1/o i=t

= —Okla- i=t— k, k =1,•••,13
0 otherwise;

(see Knottnerus, 1991, p.15). Consequently, PYt = Op(B)Yt/o-, PXt = Op(B)Xt/o- and

Pet = Op(B)et/o- = zt/o-, for t > p. Therefore, the conditional residuals are :it = aPet•

The quantities Pet = 2t/o- will be referred to as standardised conditional residuals.

A different method of transformation is presented by Seber (1977, p.172), which results in

Best Linear Unbiased Scaled (BLUS) residuals. This produces a set of (n —p)transformed

residuals, as opposed to the n residuals produced from the methods described above.

5.1 Lake Huron Example

Figure 11 is a plot of standardised conditional residuals for the Lake Huron data set

examined above. The conditional residuals are uncorrelated and appear to indicate that

model assumptions regarding zt are satisfied.
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5.2 Interpreting Conditional Residuals

As stated above, the conditional residuals are an estimate of the unobservable zt when the

model has not been mis-specified. However, mis-specification of the time series error model

can greatly affect the conditional residuals. Consider an example where the following

AR(3) time series error model is appropriate

et = + 02et-2 + 03e_3 Zt

but where an AR(1) error model is used in the time series regression model. The resulting

conditional residuals are no longer a function of zt alone. This error model mis-specification

may result in conditional residual plots with patterns induced by autocorrelation.

Therefore, the procedure used to fit a time series regression model to data affects the way

the conditional residuals should be interpreted. A procedure that allows the error model to

be optimally chosen through an iterative procedure (such as in iterative GLS) will usually

result in conditional residuals demonstrating a white noise pattern. If instead, a procedure

is used where the analyst specifies the error model, patterns in the conditional residuals

may be attributable to mis-specification of the error model rather than, say, mean shifts

or outliers.

Further complications can arise when the regression model is mis-specified. If the error

model is fixed by the analyst, unaccounted variation that exists because of the regression

model mis-specification will not be accounted for in the time series error model. This un-

accounted variation will thus be present in the conditional residuals, resulting in patterns

in residual plots.

The situations outlined above indicate the sensitivity of the conditional residual to model

mis-specification. Due to this sensitivity, it is suggested that conditional residuals be

only examined once the orthogonal and marginal residuals have been analysed and any

apparent model mis-specification has been corrected.

6 Unified Use Of Residuals

The presentation of marginal, orthogonal and conditional residuals provides a regime for

model checking and analysis. The following example illustrates how these three types of

residuals can be used in a unified manner.

In a metal production facility a response yi depends on another variable xi and mea-
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Figure 12: Plot of yi vs xi for the metal production data. Observations 12 through 14 are
denoted with a square. Observations 23 and 24 are numbered.

surements of both are recorded over time. Thirty-six pairs of observations are shown in

Figure 12, where a linear relationship between yi and xi appears appropriate. (The data

presented are a linear transformation of observations recorded directly from the production

plant. For reasons of confidentiality, the names of the variables and their origin cannot be

disclosed.) Observations 23 and 24 are numbered as they are prominent in the plots to

follow. Note also the points depicted as squares in the top-hand right corner of the plot;

these correspond to observations 12 through 14.

Figure 13 is a plot of yi in time order and shows evidence of autocorrelation. Note that

observations 12 through 14 appear to be inconsistent with the trend set by the other

observations. These observations are not necessarily outliers, as they also have large xi

values as shown in Figure 12.

A straight line relationship between the two variables was fitted, and the result is sum-

marised in Table 4.

To assess the fit of the model in Table 4, the orthogonal residuals presented in Figure 14

are examined. This plot does not reveal any mis-specification or any other problems in

the fitted regression model. Observations 23 and 24 are again labelled.

Examining the marginal residuals, Figure 15, reveals the underlying time series error pro-

cess. In this plot, observation numbers 23 and 24 have residual values that are inconsistent

with the trend established by the other values. These two observations do not follow the

time series error model assumed to be responsible for autocorrelation in the observations.
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Figure 13: Plot of yi in time order for the metal production data.

Parameter Estimate Std.Err

Intercept 1.415 0.3259
X 0.479 0.0478
AR(1) Model
Lag 1 Coefficient 0.583

0.255

Table 4: Summary of parameter estimation for the metal production data.
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Figure 14: Studentized orthogonal residual plot for the metal production data. Observations
23 and 24 are numbered.
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Figure 15: Marginal residual plot for the metal production data. Observations 23 and 24
are numbered.

Finally, the conditional residuals are presented in Figure 16. This plot confirms observation

23 to be discordant. Since observations 23 and 24 are both large and have similar yi values,

the resulting conditional residual for observation 24 is not discordant.

The apparently inconsistent conclusions between the three residual plots illustrates the

point that these plots should be interpreted differently. In the metal production data

above, observations 23 and 24 have been highlighted as unusual observations. As far as the

regression model is concerned, these observations are not outliers. The yi and xi values for

these observations are consistent with other observations. However, the marginal residual

values suggest these observations to be discordant. Reconciling these two conclusions

suggests that the process was producing yi values (with associated xi values) consistent

with other observations, but that these values were not expected at time points 23 and

24 — these observations were produced contrary to the underlying autocorrelation. One

could surmise that some special cause was in effect over these two times.

7 Conclusion

We have considered the need for suitable residual diagnostic plots for time series regression.
, Although the marginal residual may be intuitively appealing, it has been shown that

it is not suitable for identifying mis-specification in the regression model. However, it

. is useful in checking the unobserved time series error process assuming the regression

model is correctly specified. For identifying model mis-specification, we have proposed the

orthogonal residual which is orthogonal to both the fitted values and covariates, and which
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Figure 16: Conditional residual plot for the metal production data.

possesses low-order autocorrelation. When used in conjunction with marginal residual

plots, the orthogonal residual plots can help identify mean shifts and other patterns.

Finally, conditional residuals have been shown to be useful in checking the white noise

error component. These residuals are sensitive to the regression and error model fitted,

and it is suggested that they be analysed only after orthogonal and marginal residuals are

examined.

Together, these three residuals provide the means for examining various aspects of the

fitted model and for identifying problems such as model mis-specification, mean shifts and

outliers.
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