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LEAD TIME DEMAND FOR SIMPLE EXPONENTIAL SMOOTHING

Abstract

A new simple formula is found to correct the underestimation of the standard

deviation for total lead time demand when using simple exponential smoothing. The

traditional formula for the standard deviation of lead time demand is to multiply the standard

deviation for the one-period-ahead forecast error (estimated by using the residuals) by the

square root of the number of periods in the lead time. It has been shown by others that the

traditional formula significantly underestimates variation in the lead time demand when the

mean of the process is somewhat changing and simple exponential smoothing is appropriate.

This new formula allows one to see readily the significant size of the underestimation of the

traditional formula and can easily be implemented in practice. The formula is derived by

using a state space model for simple exponential smoothing.

KEYWORDS: Lead time demand, exponential smoothing, prediction intervals, safety stock

Introduction

The incorrect estimation of the variance for forecast error when simple exponential

smoothing is used in computerized inventory control systems has been examined in many

studies (for example see Johnston and Harrison', Newbold and Bos2, and Harvey and

Snyder). Originally, R. G. Brovvn4 proposed estimating the standard deviation for the total

lead time demand by multiplying the standard deviation, a, for the demand one-period-ahead

by the square root of the number of periods, h, in the lead time (i.e., aA). We will call this

estimate the "traditional formula." This formula is appropriate if a stationary model is

generating the time series, that is, if the smoothing constant for the simple exponential



smoothing process is zero. However, the point of using exponential smoothing is to account

for the changing mean or level of the time series (a nonstationary process). Hence, it is

important to determine the effect of a nonzero smoothing constant on the variance of the total

lead time demand. Previous studies (Johnston and Harrisonl and Harvey and Snyder2) have

shown that this variance is significantly underestimated.

In this paper, we develop a simple formula for computing the variance of total lead

time demand that accounts for both the length of the lead time and the size of the smoothing

constant in simple exponential smoothing. For the generating model, we use one of the two

models studied by Muth'. Both models assume constant variance for the error term. We

choose the model with a single source of random error (SSRE) for several reasons. It is

directly equivalent to the ARIMA(0,1,1) model with no restriction on the correlations.

Muth's other model has two sources of random error and is appropriate only for time series

for which the correlation of the differenced time series at lag 1 is negative. The SSRE model

can be expressed in a form that allows one to see immediately the connection between the

exponential smoothing method and the model (Ord, Koehler, and Snyder6). Most

importantly, with the SSRE model one can easily compute the variance for the lead time

demand and correct for the underestimation of the variance by the traditional formula. In

fact, we show that the following adjustment factor replaces Ain the traditional formula:

f(cc,h) = 4(h + cc(h - 1)h(1 + a(2h - 1)/6))

where h is the length of the lead time and a is the smoothing constant.

In the next section we provide a background discussion of the models that assume

constant variance for the one-period-ahead errors and that produce point forecasts that

correspond to those from the simple exponential smoothing method. Then we use the SSRE

3

(1)
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model to compute the variance of the total lead time demand that contains the adjustment

factor in Equation (1). We present a table that illustrates the importance of applying this

adjustment factor in computing the standard deviation for different lead times and smoothing

constants. We end the paper with a discussion of the practical implications of this adjustment

factor for order-up-to levels in inventory control and for time series with trend.

Models for Simple Exponential Smoothing

The traditional formula (cniii) for the standard deviation of total lead time demand

(Brovvn4) is appropriate for the following model:

yt = m + et (2)

where yt is the value of the time series at time t, m is the mean of this time series, (72 is its

variance, and values of yt at different time periods are independent of each other. If we have

observed yt for t = 1,2,...,n, then

Var(total lead time demand for h time periods)

h
= Var( E Ynti )

= cy2h

j=1

(traditional formula)

Clearly this model does not allow for the changing mean, mt, that is implied by the

method of simple exponential smoothing. Muth' proposed two models which he rationalized

to underlie simple exponential smoothing. The first model has two sources of statistically

independent random errors, et and vt. The model has the form

Yt = mt-1 ± et

nit= mt-1 + vt

where additional assumptions are that mt_i is the mean of yt and of mt at time t-1, the et are

independent, the vt are independent, the variance of et is the constant cy,2, and the variance of

(3a)

(3b)

,
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vt is the constant av2.

The second model (SSRE) has one source of random error. We write it in a form that

clearly shows the connection with simple exponential smoothing (Snyder). This model is

Yt = mt-i + et (4a)

mt = mt_i + aet (4b)

where a is the smoothing parameter, mt., is the mean of yt at time t-1, the et are independent,

and a2 is the variance of et.

Both Models 3 and 4 are ARIMA(0,1,1) processes. However, for Model 3, it can be

shown that

Cov(Ayt, Ayt_i) = -a e2/(cye2 cyv2)

which can never be positive. The SSRE model does not have this restriction and is equivalent

to the ARIMA (0,1,1) model

Yt = yt-1 + et + (1 - a);.1. 

PredictionThe prediction of the typical series value ynti beyond period n is conditional on the

sample v v2,•••,Yn• For convenience, it is initially assumed that the seed level mo, the

smoothing parameter a, and the standard deviation a are known exactly. Information until

the end of period n is now denoted by I. = (y1,y2,...,yn,m0,a,a). The problem is to find the

distribution of y„+; I In. For the SSRE Model 4, back-substitution of the recurrence

relationship (4b) yields

Innti = nin + cc E e„i
i=1

so that

j-1

Ynt; = inn + a E en+i + enti
i=1

(5)

(6)

(7)



Thus, E ( yn+i I In ) = inn as suggested above. Furthermore,

Var (ynti I In) = (j - occ252 ± 52.

In inventory control applications, the primary interest is in total demand over a lead time h.

By aggregating (7) we obtain

h h-1

E ynti = /min + E (1 + (h - Da)en+; + en.th
j=1 j=1

h
Thus, the mean lead time demand, E( E yn+i I In) = hm,„ is given by the usual formula.

J=1

The variance, however, is given by the more complex formula

h
Var ( E ynti I In) = o-2[h + a(h - 1)h(1 +a (2h - 1)16)1

j=1

= &f2 (a,h)

where f(a,,h) is defined in Equation 1. See the Appendix 1 for more details on the derivation.

When there is no structual change and, as a consequence a =0, the standard deviation

reduces to the traditional square root formula (Th. The second term under the square root

symbol in Equation (1) (i.e., a(h-l)h(1+a(2h-1)/6)) may be viewed as the correction to the

traditional formula required to allow for the impact of structural change. The significance of

this correction term can be gauged from Table 1 where f(a,h) has been calculated for a range

of values of the lead time and the smoothing parameter. Focussing, in particular, on the case

of a lead time of h = 9 weeks, the first cell shows the I9,.\ the factor that would be used in

many conventional implementations of inventory control software. The remainder of the

column shows much larger values than 3. This indicates that the standard deviation of total

6

(8)

(9)

(10)

,

,
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lead time demand is seriously underestimated if the traditional formula is used with forecasts

from simple exponential smoothing in the usual context of positive smoothing parameter

values. This highlights, in a more transparent way, the problem associated with the

traditional formula originally exposed in Brown' and then elaborated by Johnston &

Harrison' and by Harvey & Snyder'.

- Insert Table 1 -

Conclusion

The adjustment factors are very important for computing safety stocks in inventory

that are not too small. Order-up-to levels when using simple exponential smoothing would

have the form:

hm. + kaga,h)

where k would depend on the customer service objective and the type of distribution for et.

Since we have a model for exponential smoothing, we can use a maximum likelihood

procedure to estimate mo, a, and s. However, the replacement of Jiii by f(a,h) can be

implemented in any computerized system that currently uses simple exponential smoothing.

While Equation 1 is simple to program, it may not be immediately obvious how the

standard deviation changes with h and a. A lower bound for f(cc,h) is given by

g(a,h) = a(h-1)/2)

where g(a,h) is correct for a = 0 or h = 1 and an underestimate otherwise (see Appendix 2).

When using g(a,h) as an approximation for f(cc,h) in Table 1, the maximum error occurs for

= 1 and h = 10 and is less than 12%. The limiting value of the error for all a as h increases

is 13.4%. Those values contrast with the use of in the traditional formula, where the
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corresponding errors are 84% and 100%.

From Equation 11 we can readily comprehend the impact of h and a on the standard

deviation. Indeed the approximate adjustment g(a,h) will often be accurate enough and can

be evaluated even more quickly than ga,h).

It is also very easy to extend these results to the case when there is trend in the

demand. Model 4 can be expanded to a model that underlies the Holt smoothing method as

follows (Snyders):

Yt = Int-1 + bt-1 + et

mt = mt-1 + bt-1 ± alet

bt = bt-1 + a2et

where mt is the level of the time series at time t, bt is the growth rate at time t, and al and a2

are parameters. If the level is changing (a1 # 0) and the growth rate is constant (a2 = 0), the

adjustment factor is f(al,h). If the growth rate is changing, the adjustment factor must

necessarily be larger and can be derived in the same manner as Equation 10.

,
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Appendix 1

Derivation of the Variance for Total Lead Time Demand

Starting with Equation (9) for total lead time demand,

h h-1
Var ( E yn ti I In) = v ar (limn + E (1 ± (h-Doc)enti + en+h I In)

i =1 i =1

h-1
= a2 (1 + E (1 +ia)2)

i=1

h-1
= a2 (1 + E (1 + 2ia + i2a2))

i=1

h- 1 h- 1
= a2 (h + E 2ia + E i2a2)

i=1 i=1

= a2 [h + 2a (h - 1)(h) + a2 (h - 1)(h)(2h-1)1
2 6

= a2 [h + a (h-l)h(1 + a (2h-1)/6)]

Appendix 2

Approximation to f(a,h)

Completing the square for 1 + a(h-1) in Equation 1, yields

f(a,h) = qh(1 + a(h-1)/2)2 + a2h(h2 - 1)/12

An approximation to f(a,h) is given by

g(a,h) = qh-(1 + a(h-1)/2),

which is clearly a lower bound.

9
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Table 1
Standard Deviation Adjustment Factor, f(a,h)

Lead time, h

a 1 2 3 4 5 6 7 8 9 10

0 1.00 1.41 1.73 2.00 2.24 2.45 2.65 2.83 3.00 3.16
0.1 1.00 1.49 1.91 2.31 2.70 3.09 3.48 3.87 4.27 4.67
0.2 1.00 1.56 2.10 2.64 3.19 3.77 4.36 4.98 5.62 6.28
0.3 1.00 1.64 2.29 2.98 3.70 4.47 5.27 6.12 7.00 7.92
0.4 1.00 1.72 2.49 3.32 4.22 5.18 6.19 7.27 8.39 9.57
0.5 1.00 1.80 2.69 3.67 4.74 5.89 7.12 8.43 9.80 11.24
0.6 1.00 1.89 2.90 4.03 5.27 6.62 8.06 9.59 11.21 12.91
0.7 1.00 1.97 3.11 4.39 5.81 7.35 9.00 10.76 12.62 14.58
0.8 1.00 2.06 3.32 4.75 6.34 8.07 9.94 11.93 14.04 16.26
0.9 1.00 2.15 3.53 5.11 6.88 8.81 10.89 13.11 15.46 17.94
1 1.00 2.24 3.74 5.48 7.42 9.54 11.83 14.28 16.88 19.62
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