

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

MONASH UNIVERSITY.

Model Selection When a Key Parameter is
Constrained to be in an Interval
Md. Zakir Hossain and Maxwell L. King

> Working Paper $15 / 98$
> October 1998

DEPARTMENT OF ECONOMETRICS
 AND BUSINESS STATISTICS

Model Selection When a Key Parameter

 is Constrained to be in an IntervalMd. Zakir Hossain and Maxwell L. King
Department of Econometrics and Business Statistics, Monash University Clayton, Victoria 3168, Australia

Abstract

This paper considers the construction of model selection procedures based on choosing the model with the largest maximised log-likelihood minus a penalty, when key parameters are restricted to be in a closed interval. The approach adopted is based on King et al.'s (1995) representative models method with the use of the parametric bootstrap to handle nuisance parameters. The method is illustrated by application to two model selection problems in the context of Box-Cox transformations and the linear regression model. Simulation results for both problems indicate that the new procedure clearly dominates existing procedures in terms of having higher probabilities of correctly selecting the true model.

Keywords: Box-Cox transformations; Controlled information criterion; Nuisance parameters; Parametric bootstrap; Regression model.

1. Introduction

Often in statistics and particularly in disciplines such as econometrics which require non-experimental data sets to be modelled, we are forced to use the data to make a choice of model specification from a range of possibilities. One approach often used is to apply a series of pairwise hypothesis tests to help make the choice. As Granger et al. (1995) and others have observed, this has a number of limitations. An alternative and increasingly popular approach favoured by Granger et al. is to use a model selection procedure based on an information criterion (IC). Typically this involves choosing the model specification with the largest maximised log-likelihood function minus a penalty which, among other things, reflects the number of estimated parameters in the model. Unfortunately, there is little agreement about what this penalty should be. For example, for Akaike's (1973) IC (AIC) it is q, for Schwartz's (1978) Bayesian IC (BIC) it is $q \log (n) / 2$, while for Hannan and Quinn's (1979) IC it is $q \log (\log (n))$ where q is the number of estimated parameters in the model and n is the sample size.

While there is a large and growing literature that gives different suggestions on what this penalty should be in a range of situations, very little has been written on how it should be calculated in the presence of inequality restrictions on important parameters. This is in contrast to the vast and growing literature on testing in the presence of such restrictions. It is somewhat surprising given that, as Pötscher (1991) points out, using an IC procedure amounts to testing each model against all other models by means of likelihood ratio tests and selecting that model which is accepted against all other models where the critical values are determined by the penalty terms of the criterion. Just as the likelihood ratio test requires different critical values when
used in the presence of inequality retrictions, one would expect IC procedures to have different penalties when the restrictions involve parameters in dispute.

Hughes and King $(1994,1998)$ and Hughes (1997) were perhaps the first to propose model selection procedures that use one-sided information on parameters in dispute. Based on asymptotic arguments, they developed a class of one-sided AIC procedures called OSAIC. Hossain and King (1998) (also see Hossain (1998)) modified AIC for the case where some parameters of interest are restricted to an interval and proposed a new procedure called PAIC. They also suggested an analogous modification to BIC which they called PBIC. A range of simulation experiments were conducted involving the Box-Cox (1964) transformation (BCT) on the dependent variable in the linear regression model, in which the Box-Cox parameter, λ, is restricted to be in the range $[0,1] . \lambda=0$ gives the log-linear model while $\lambda=1$ gives the classical linear model. They found the probabilities of correct selection (PCS) for this set of three competing models vary significantly from one design matrix to another, being undesirably small in some cases while being extremely large in other cases. Consequently, the idea of controlling PCS or alternatively, minimising the variation in PCS seems worthy of investigation.

In the context of hypothesis testing, it is well known that critical values are calculated in order to control the trade-off between the size and power of the test by fixing the PCS for the null hypothesis model. King et al. (1995) argued that this principle can be usefully applied to the problem of model selection. They proposed a general model selection procedure in which the penalties are calculated by controlling the probabilities of selection in such a way that no one model is unnecessarily favoured. To do this, they suggested two approaches; one called the common model
approach which involves controlling probabilities of selection for a common minimal model (usually with all parameters under dispute set to zero) and the other called the representative fixed points approach. The latter involves deciding on representative parameter values for each of the models and determining the penalties to make the PCS for these representative models equal. The philosophy behind this approach is similar to that for point optimal testing (see King (1987)). King et al. also presented a general algorithm for calculating penalties for both approaches using simulation methods.

The aim of this paper is to investigate whether King et al.'s fixed point approach can be successfully applied to selection problems in which parameters of interest are restricted to a closed interval. In particular we focus on selection problems involving the BCT regression model in order to see whether we can improve on Hossain and King's (1998) PAIC and PBIC procedure in small samples.

The plan of the paper is as follows. In Section 2 we illustrate our method of applying King et al.'s representative fixed points approach by discussing its application to a simple BCT regression model. The use of the parametric bootstrap to handle nuisance parameters is explained. The section closes with an outline of the algorithm for calculating the penalties. The illustration is extended to a more complicated model selection problem involving two restricted parameters and nine possible models in Section 3. A detailed algorithm for calculating the penalties in this case is presented. Two Monte Carlo experiments, designed to compare the small sample properties of the new procedure with those of existing procedures for the model selection problems outlined in Sections 2 and 3, are reported in Section 4. We find that the new procedure clearly dominates existing procedures in terms of having higher PCS. Some concluding remarks are made in the final section.

2. The Proposed Procedure for One Parameter Restriction

In this section, we illustrate our approach by discussing its application to a simple model selection problem in the context of the BCT regression model

$$
\begin{equation*}
y_{t}(\lambda)=\beta_{0}+\beta_{1} x_{t}+u_{t}, \quad t=1, \ldots, n, \tag{1}
\end{equation*}
$$

where β_{0} and β_{1} are regresssion coefficients, x_{t} is a single nonstochastic regressor and $y_{t}(\lambda)$ is defined as

$$
\begin{align*}
y_{t}(\lambda) & =\frac{y_{t}^{\lambda}-1}{\lambda} \text { when } 0<\lambda<1, \\
& =\log \left(y_{t}\right) \quad \text { when } \lambda=0, \tag{2}\\
& =y_{t}-1 \quad \text { when } \lambda=1 .
\end{align*}
$$

u_{t} is the disturbance term which, in theory, has a truncated distribution and therefore cannot be normally distributed. We assume that the truncation effect is insignificant and that

$$
u_{t} \sim I N\left(0, \sigma^{2}\right), \quad t=1, \ldots, n
$$

From (1) and (2) we obtain three possible models, the first (denoted model-1) being

$$
y_{t}=\beta_{0}^{*}+\beta_{1} x_{t}+u_{t},
$$

when $\lambda=1$, where $\beta_{0}^{*}=\beta_{0}+1$. The second model (model-2) is

$$
\log \left(y_{t}\right)=\beta_{0}+\beta_{1} x_{t}+u_{t}
$$

and the third model (model-3) is

$$
\left(y_{t}^{\lambda}-1\right) / \lambda=\beta_{0}+\beta_{1} x_{t}+u_{t}
$$

where $0<\lambda<1$. Observe that λ is our parameter of interest which we assume is restricted to lie in the interval $[0,1]$. The literature on the BCT does discuss the possibility of $\lambda<0$ and $\lambda>1$. Many researchers assume $\lambda \in[-1,1]$ although Spitzer (1978) pointed out that this model can result in poor forecasts when $\lambda \in[-1,0]$. Econometricians often have to decide whether to use a log-linear or a classical linear regression model. The BCT model with $\lambda \in(0,1)$ provides a range of models that cover the parameter space between these two alternative models. These arguments, taken together, make a case for sometimes restricting λ to the range $[0,1]$. Our challenge is to find an effective model selection procedure for the situation in which one may wish to impose this restriction and therefore choose between Model-1, Model2 and Model-3.

Denote the log-likelihood function for the $i^{\text {th }}$ model by $L_{i}(\theta)$ where θ is the parameter vector. $L_{i}(\theta)$ is well-known for $i=1,2$ and $\theta=\left(\beta_{o}^{*}, \beta_{1}, \sigma^{2}\right)^{\prime}$ for model-1 and $\theta=\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)^{\prime}$ for model-2 can be estimated via ordinary least squares. For model-3, $\theta=\left(\beta_{0}, \beta_{1}, \sigma^{2}, \lambda\right)^{\prime}$ and
$L_{3}(\theta)=\frac{-n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{t=1}^{n}\left(y_{t}(\lambda)-\beta_{0}-\beta_{1} x_{t}\right)^{2}+(\lambda-1) \sum_{t=1}^{n} \log \left(y_{t}\right)$.

Let $L_{i}(\hat{\theta})$ denote the maximized value of $L_{i}(\theta)$. Then, because model-1 and model-2 involve 3 parameters while model-3 involves 4 parameters, AIC (BIC) chooses the model corresponding to the largest value of

$$
\begin{array}{lll}
L_{1}(\hat{\theta})-3, & L_{2}(\hat{\theta})-3, & L_{3}(\hat{\theta})-4 \\
\left(L_{1}(\hat{\theta})-1.5 \log (n),\right. & L_{2}(\hat{\theta})-1.5 \log (n), & \left.L_{3}(\hat{\theta})-2 \log (n)\right) .
\end{array}
$$

In contrast, Hossain and King's (1998) PAIC (and PBIC) chooses the model corresponding to the largest value of

$$
\begin{array}{lll}
L_{1}(\hat{\theta})-3, & L_{2}(\hat{\theta})-3, & L_{3}(\hat{\theta})-3.5 \\
\left(L_{1}(\hat{\theta})-1.5 \log (n),\right. & L_{2}(\hat{\theta})-1.5 \log (n), & \left.L_{3}(\hat{\theta})-1.75 \log (n)\right)
\end{array}
$$

The first step in applying King et al.'s (1995) representative fixed points approach involves choosing representative parameter values for each of the three models. Given that the model selection problem boils down to choosing between $\lambda=1$ (model -1), $\lambda=0$ (model -2) or $0<\lambda<1$ (model-3); it is not hard to select $\lambda=1, \lambda=0$ and $\lambda=0.5$ as the representative values of λ for the respective models. For each model, there are three nuisance parameters namely β_{0} (or equivalently β_{0}^{*} for model-1), β_{1} and σ^{2}. Our suggestion for fixing values for these parameters is to employ the solution used in the parametric bootstrap. This involves calculating maximum likelihood estimates of the nuisance parameters using the data at hand and then using these estimates, together with the representative value of λ, to generate a large number of simulated data sets for each model. Just as the Monte Carlo method can be used to find critical values that solve the size equation in hypothesis testing, these sets of simulated data samples can be used to find penalty function values that
make the simulated probabilities of correctly selecting each model (at its representative parameter values) equal. By making the probabilities of correct selection equal, no particular model is favoured.

Let p_{i} be the penalty associated with $L_{i}(\hat{\theta})$ so that model i is chosen if

$$
\begin{equation*}
L_{i}(\hat{\theta})-p_{i}>L_{j}(\hat{\theta})-p_{j} \quad \text { for } \quad j=1,2,3 \text { and } j \neq i . \tag{3}
\end{equation*}
$$

Because the comparisons made in (3) depend only on penalty differences, namely $p_{j}-p_{i}$, we can set $p_{1}=0$ without loss of generality. The details of our approach for finding the remaining penalty values, p_{2} and p_{3}, are as follows.

Given the data (n observations of y_{t}) to be used to decide between the three models, we first estimate θ under each of model-1, model-2 and model-3. The respectively estimated values of β_{0}, β_{1} and σ^{2} together with $\lambda=1$ for model-1, $\lambda=0$ for model-2 and $\lambda=0.5$ for model-3, are used to generate 500 simulated sets of samples of size n for each of the three models. The maximized log-likelihood, $L_{i}(\hat{\theta})$, for each of the three competing models is calculated for each simulated sample of size n. This results in nine sets of 500 values of $L_{i}(\hat{\theta})$. The nine sets are made up of three sets (one for each true model) of three (one for each log-likelihood fitted). For each set of three fitted log-likelihoods, one represents the true model. This can be used to estimate the probability, for any value of p_{2} and p_{3}, of choosing model i when it is true based on (3) for $i=1,2,3$. Denote these estimated probabilities which depend on the values of p_{2} and p_{3} used, by

$$
P_{1}\left(p_{2}, p_{3}\right), P_{2}\left(p_{2}, p_{3}\right) \text { and } P_{3}\left(p_{2}, p_{3}\right)
$$

for when model-1, model- 2 and model-3 are respectively the true model.

The penalties p_{2} and p_{3} are then found by an iterative method so that they solve

$$
\begin{equation*}
P_{1}\left(p_{2}, p_{3}\right)=P_{2}\left(p_{2}, p_{3}\right)=P_{3}\left(p_{2}, p_{3}\right) . \tag{4}
\end{equation*}
$$

Observe that (4) represents two equations in two unknowns, namely p_{2} and p_{3}. To solve (4) in the Monte Carlo experiments outlined in Section 4, we used the following iterative method. Choose possible values for p_{2} and p_{3}. Calculate $P_{1}\left(p_{2}, p_{3}\right)$, $P_{2}\left(p_{2}, p_{3}\right)$ and $P_{3}\left(p_{2}, p_{3}\right)$ for these values. First adjust p_{3} to make

$$
\begin{equation*}
P_{1}\left(p_{2}, p_{3}\right)=P_{3}\left(p_{2}, p_{3}\right) . \tag{5}
\end{equation*}
$$

If $P_{1}\left(p_{2}, p_{3}\right)>P_{3}\left(p_{2}, p_{3}\right)$, then reduce p_{3} otherwise increase p_{3} until (5) holds (for a specified level of tolerance). Then check if

$$
\begin{equation*}
P_{1}\left(p_{2}, p_{3}\right)=P_{2}\left(p_{2}, p_{3}\right) . \tag{6}
\end{equation*}
$$

If $P_{1}\left(p_{2}, p_{3}\right)>P_{2}\left(p_{2}, p_{3}\right)$ then reduce p_{2} otherwise increase p_{2}. Each time p_{2} is changed, one has to find the value of p_{3} that makes (5) hold. This process is repeated until both (5) and (6) hold. We have then found the required p_{2} and p_{3} values which can be used for the original data and (3) to choose a model.

We call our new procedure controlled IC (CIC).

3. Our Proposed Procedure for Two Parameter Restrictions

In this section, we discuss the application of CIC to a more complicated model selection problem that involves two restricted parameters and nine competing models. The larger number of candidate models makes the procedure more time consuming and difficult to apply. We shall assess in Section 4 whether this extra effort is worthwhile.

Consider the following two parameter version of a BCT regression model,

$$
\begin{equation*}
y_{t}\left(\lambda_{1}\right)=\beta_{0}+\beta_{1} x_{t}\left(\lambda_{2}\right)+u_{t}, \quad t=1, \ldots, n, \tag{7}
\end{equation*}
$$

where it is assumed that $u_{t} \sim I N\left(0, \sigma^{2}\right)$. The notation used in (7) is as defined in (1) with $y_{t}\left(\lambda_{1}\right)$ given by (2) with $\lambda=\lambda_{1}$ and $x_{t}\left(\lambda_{2}\right)$ defined by (2) with $\lambda=\lambda_{2}$ and $y_{t}=x_{t}$. Again, for the reasons discussed in Section 2, we restrict λ_{1} and λ_{2} to the closed interval $[0,1]$.

For this model, there are nine possible combinations of boundary/non-boundary values of the two key parameters, λ_{1} and λ_{2}. For these nine possibilities, we obtain nine models to choose between. They are

M1 : $y_{t}=\beta_{0}+\beta_{1} x_{t}+u_{t}$,

M2 : $y_{t}=\beta_{0}+\beta_{1} \log \left(x_{t}\right)+u_{t}$,

M3 : $\log \left(y_{t}\right)=\beta_{0}+\beta_{1} x_{t}+u_{t}$,

M4: $\log \left(y_{t}\right)=\beta_{0}+\beta_{1} \log \left(x_{t}\right)+u_{t}$,

M5 : $y_{t}=\beta_{0}+\beta_{1}\left(x_{t}^{\lambda_{2}}-1\right) / \lambda_{2}+u_{t}, \quad 0<\lambda_{2}<1$,

M6 : $\log \left(y_{t}\right)=\beta_{0}+\beta_{1}\left(x_{t}^{\lambda_{2}}-1\right) / \lambda_{2}+u_{t}, \quad 0<\lambda_{2}<1$,

M7 : $\left(y_{t}^{\lambda_{1}}-1\right) / \lambda_{1}=\beta_{0}+\beta_{1} x_{t}+u_{t}$, $0<\lambda_{1}<1$,

M8 : $\left(y_{t}^{\lambda_{1}}-1\right) / \lambda_{1}=\beta_{0}+\beta_{1} \log x_{t}+u_{t}$, $0<\lambda_{1}<1$,

M9 :

$$
:\left(y_{t}^{\lambda_{1}}-1\right) / \lambda_{1}=\beta_{0}+\beta_{1}\left(x_{t}^{\lambda_{2}}-1\right) / \lambda_{2}+u_{t}, \quad 0<\lambda_{1}<1,0<\lambda_{2}<1, t=1, \ldots, n .
$$

Of these nine models, the first four contain three parameters each and therefore have AIC and BIC penalties of 3 and $1.5 \log (n)$, respectively. Because no restricted parameters are involved, the penalties are the same for Hossain and King's (1998) PAIC and PBIC, respectively. On the other hand, the second four models each contain four parameters, one of which is restricted to the open interval $(0,1)$. The usual AIC and BIC penalties for these models are 4 and $2 \log (n)$, respectively, while PAIC and PBIC have penalties of 3.5 and $1.75 \log (n)$, respectively. The last model, M9, has five parameters, two of which are restricted to be in the range $(0,1)$. The penalties for PAIC and PBIC are now

$$
4+\left(\sin ^{-1} \rho_{12}\right) / \pi \text { and }\left[2+\left(\sin ^{-1} \rho_{12}\right) /(2 \pi)\right] \log (n)
$$

respectively, where ρ_{12} is the correlation between the maximum likelihood estimates of λ_{1} and λ_{2} from M9.

Again the first step in applying King et al.'s (1995) representative fixed points approach involves choosing representative parameter values for each of the nine models. In this case, our model selection problem boils down to choosing between $\left(\lambda_{1}, \lambda_{2}\right)=(1,1),(1,0),(0,1),(0,0),\left(1, \lambda_{2}^{*}\right),\left(0, \lambda_{2}^{*}\right),\left(\lambda_{1}^{*}, 1\right),\left(\lambda_{1}^{*}, 0\right),\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)$, respectively, for

M1 - M9, where λ_{1}^{*} and λ_{2}^{*} are both restricted to be in the open interval $(0,1)$. Obvious representative values for $\left(\lambda_{1}, \lambda_{2}\right)$ for models M1 - M9 are (1,1), $(1,0),(0,1),(0,0)$, $(1,0.5),(0,0.5),(0.5,1),(0.5,0)$ and $(0.5,0.5)$, respectively.

Let $L_{i}(\varphi)$ be the log-likelihood for model $\mathrm{M} i, i=1, \ldots, 9$, and let φ be its associated parameter vector. If $L_{i}(\hat{\varphi})$ denotes the maximized value of $L_{i}(\varphi)$ and p_{i} denotes the penalty associated with $L_{i}(\hat{\varphi})$, then our procedure involves setting $p_{1}=0$ and finding p_{2}, \ldots, p_{9}. Then model $\mathrm{M} i$ is chosen if

$$
\begin{equation*}
L_{i}(\hat{\varphi})-p_{i}>L_{j}(\hat{\varphi})-p_{j} \text { for } j=1, \ldots, 9 \text { and } j \neq i \tag{8}
\end{equation*}
$$

Our procedure finds values for p_{2}, \ldots, p_{9} as follows.

Given the n observations of y_{t} to be used to choose between the nine models, we first obtain maximum likelihood estimates of φ for each of M1, M2, ..., M9. For each model, the estimated values of β_{0}, β_{1} and σ^{2} together with the corresponding representative values of λ_{1} and λ_{2} are used to generate 200 simulated samples of size n. The maximized log-likelihood, $L_{i}(\hat{\varphi})$, for each of the nine competing models is calculated for each simulated sample of size n. We therefore end up with $81(=9 \times 9)$ sets of 200 values of $L_{i}(\hat{\varphi})$. We have nine sets (one for each true model) of nine (one for each fitted log-likelihood). These 81 sets of 200 values of $L_{i}(\hat{\varphi})$ can be used to estimate the probability of correctly choosing model Mi based on (8) for any values of p_{2}, \ldots, p_{9}. Denote these estimated probabilities by

$$
P_{i}\left(p_{2}, \ldots, p_{9}\right) \text { when model } \mathrm{M} i \text { is true, } \quad i=1, \ldots, 9 .
$$

The penalties p_{2}, \ldots, p_{9} are then found by an iterative method (similar to that outlined in Section 2) so that they solve

$$
\begin{equation*}
P_{1}\left(p_{2}, \ldots, p_{9}\right)=P_{2}\left(p_{2}, \ldots, p_{9}\right)=\ldots=P_{9}\left(p_{2}, \ldots, p_{9}\right) . \tag{9}
\end{equation*}
$$

Note that (9) is eight equations in eight unknowns, which has to be solved to find p_{2}, \ldots, p_{9}. It can be solved using a generalization of the iterative method outlined in Section 2 as follows:

1. Choose possible values for p_{2}, \ldots, p_{9}.
2. Calculate $P_{i}\left(p_{2}, \ldots, p_{9}\right), \quad i=1, \ldots, 9$.
3. Check (to a specified tolerance) if

$$
\begin{equation*}
P_{1}\left(p_{2}, \ldots, p_{9}\right)=P_{9}\left(p_{2}, \ldots, p_{9}\right) . \tag{10}
\end{equation*}
$$

If (10) holds, proceed to step 4 , otherwise if $P_{1}\left(p_{2}, \ldots, p_{9}\right)-P_{9}\left(p_{2}, \ldots, p_{9}\right)$ is positive (negative), reduce (increase) p_{9} and return to step 2.
4. Check if

$$
\begin{equation*}
P_{1}\left(p_{2}, \ldots, p_{9}\right)=P_{8}\left(p_{2}, \ldots, p_{9}\right) . \tag{11}
\end{equation*}
$$

If (11) holds, proceed to step 5 , otherwise if $P_{1}\left(p_{2}, \ldots, p_{9}\right)-P_{8}\left(p_{2}, \ldots, p_{9}\right)$ is positive (negative), reduce (increase) p_{8} and return to step 2.
5. Check if

$$
\begin{equation*}
P_{1}\left(p_{2}, \ldots, p_{9}\right)=P_{7}\left(p_{2}, \ldots, p_{9}\right) . \tag{12}
\end{equation*}
$$

If (12) holds, proceed to step 6 , otherwise if $P_{1}\left(p_{2}, \ldots, p_{9}\right)-P_{7}\left(p_{2}, \ldots, p_{9}\right)$ is positive (negative), reduce (increase) p_{7} and return to step 2.
6. Check if

$$
\begin{equation*}
P_{1}\left(p_{2}, \ldots, p_{9}\right)=P_{6}\left(p_{2}, \ldots, p_{9}\right) . \tag{13}
\end{equation*}
$$

10. Check if

$$
\begin{equation*}
P_{1}\left(p_{2}, \ldots, p_{9}\right)=P_{2}\left(p_{2}, \ldots, p_{9}\right) . \tag{14}
\end{equation*}
$$

If (14) holds, then the required values of p_{2}, \ldots, p_{9} have been found, otherwise if $P_{1}\left(p_{2}, \ldots, p_{9}\right)-P_{2}\left(p_{2}, \ldots, p_{9}\right)$ is positive (negative), reduce (increase) p_{2} and return to step 2.

4. Monte Carlo Simulation

In order to evaluate the small sample performance of the new procedure, CIC, and compare it with the performance of AIC, BIC, PAIC and PBIC, we conducted two Monte Carlo experiments. The first experiment involved the simple selection problem discussed in Section 2 and the second the more complicated problem of Section 3. Note that for each iteration of a Monte Carlo experiment, CIC requires the bootstrap method to be applied in order to find the appropriate penalties for that set of simulated
data. In other words, we simulated the application of the simulation method used to find the penalty values. As might be imagined, this required considerable computational time, although the fact that it was able to be simulated does demonstrate that the computation required in order to choose between nine models is not prohibitive.

4.1 Experimental Design

For the first experiment of choosing between model-1, model-2 and model-3, the regressor x_{t} was generated from the $\mathrm{AR}(1)$ process

$$
\begin{equation*}
x_{t}=\rho x_{t-1}+v_{t}, \quad v_{t} \sim I N\left(0, \sigma_{v}^{2}\right), \quad t=1, \ldots, n, \tag{15}
\end{equation*}
$$

with $\sigma_{v}^{2}=1.0$ and four different values of ρ, namely $\rho=0,0.25,0.95,1.0$. The values of x_{t} were generated once from (15) and then held fixed from iteration to iteration. The four values of ρ result in four different design matrices denoted X1, X2, X3 and X4, respectively. This choice of artificially generated regressors was influenced by Engle et al.'s (1985) Monte Carlo study. The four ρ values cover four different types of regressor, namely white noise, low autoregressive, high autoregressive and random walk. This covers a range of different types of economic data.

Data was simulated from each of model-1, model-2 and model-3 with $\beta_{0}=10.0, \beta_{1}=1.0$ and $\sigma^{2}=1.0$. In the case of model $-3, \lambda=0.5$ was always used as the representative value of λ in the application of CIC, but in the comparison, data was simulated for a range of λ values, namely $\lambda=0.1,0.3,0.5,0.7,0.9$. The experiment was conducted for four different sample sizes which were $n=20,50,100,500.1000$
replications were used except when calculating probabilities of selection for CIC for which 200 replications were used. As noted in Section 2, 500 bootstrap samples were used in each replication in order to calculate the penalties for CIC.

As already observed, the second experiment of simulating the problem of choosing between M1 - M9, is extremely computationally intensive for CIC. We were therefore forced to reduce the extent of the second experiment compared to the first. We only used two design matrices, X 2 and X 4 , two samples sizes, $n=20,100$, and for the application of CIC, 200 bootstrap samples. Data was simulated for each of M1 M9 with $\beta_{0}=10.0, \beta_{1}=1.0$ and $\sigma^{2}=1.0$. In the case of M7 - M9, data was simulated for each of $\lambda_{1}=0.25,0.5,0.75$ and for M5, M6 and M9, it was simulated for each of $\lambda_{2}=0.25,0.5,0.75$.

4.2 Results

The simulations involved estimating the probabilities of choosing each of the competing models for each of the data generating processes and each of the selection procedures. This is a large number of probabilities in total, especially when in the second experiment, nine competing models are involved. We have therefore concentrated on PCS. These are presented in Tables 1 and 2 for the first experiment and in Tables 3 and 4 for the second experiment. Full results may be found in Hossain (1998) or may be obtained from the authors on request.

4.2.1 Results of the First Experiment

An obvious feature of the results is how they differ for X 1 and X 2 compared to X 3 and X 4 . For the former design matrices, model-3 seems to be a difficult model to
correctly select (with BIC never able to detect it when $\lambda=0.9$) while for X 3 and X 4 , model-3 is correctly selected by all procedures almost always.

As is well known, BIC favours models with fewer parameters while AIC favours models with larger numbers of parameters. This pattern is clearly evident in a comparison between AIC and BIC and also between PAIC and PBIC. There are times that BIC achieves large probabilities of correctly selecting model-1 and model-2, at the expense of, for some λ values, relatively low probabilities of correctly selecting model-3. Through looking at the results for X 1 and X 2 , one would conclude that BIC is poorly balanced, although the same conclusion would be difficult to draw from the results for X 3 and X 4 . For X 1 and X 2 , PAIC perhaps provides the most balanced results of the existing procedures (AIC, BIC, PAIC and PBIC) with PBIC and BIC being best for smaller and larger sample sizes, respectively, in the case of X3 and X4.

The other obvious feature of the results is how CIC tends to dominate all other procedures. It almost always has the highest probability of correct selection. The only exceptions occur for model-3, $\lambda=0.1$ for X 1 and X 2 and in some circumstances for $\lambda=0.3$. These exceptions are obviously a consequence of it always correctly selecting model-2 $(\lambda=0)$ when it is true. In many circumstances, there is a large improvement in the probability of correct selection when one moves from an existing procedure to CIC, particularly for larger λ values when model- 3 is true for either X 1 or X 2 . It should also be noted that, unlike the other procedures, for X 3 and X 4 CIC has a perfect record at selecting the correct model for all sample sizes except $n=20$.

4.2.2 Results of the Second Experiment

Again we see considerable contrast between the results for X 2 and X 4 . For X 2 , models M5 - M9 appear to be extremely difficult to detect, especially in the case of $n=20$, while for X4, PCS for these models are a lot higher especially for $n=100$.

The importance of making good use of knowledge of inequality restrictions in calculating appropriate penalties is clearly seen for X 2 when $n=20$. For models M5 M9, AIC and BIC are almost always unsuccessful at choosing the correct model. PAIC and PBIC are marginally better in this regard. A similar pattern is observed for X2 when $n=100$, although for M7 and perhaps M8, some PCS are more respectable.

For design matrix X 4 , the results for the existing procedures tend to follow expected patterns although in some cases (for example M9), there are some unexpected results.

Again a feature of the results is that CIC dominates the other procedures in terms of almost always having the highest PCS. The only exceptions occur for M7 and M8 when $\lambda_{1}=0.5$ in the case of X2 and for M9 and $\left(\lambda_{1}, \lambda_{2}\right)=(0.25,0.5)$ when $n=20$ and $\left(\lambda_{1}, \lambda_{2}\right)=(0.25,0.25)$ when $n=100$ in the case of X 4 . It is quite remarkable how CIC is almost always able to improve on PCS of the best of the existing procedures, no matter whether the true model is one with the smallest, average or largest number of parameters. In this sense, it can be regarded as a powerful procedure.

5. Concluding Remarks

The aim of this paper was to investigate whether King et al.'s (1995) representative fixed points approach could be successfully applied to model selection problems in which parameters of interest are restricted to a closed interval. The answer to this question seems to be a very clear yes, at least for the particular problems considered above. It is difficult to think of another case in the literature where a new procedure has so clearly dominated other existing procedures in terms of PCS. Given this extraordinary result, it is perhaps worth asking why CIC works so well.

There are two things that are novel about CIC. The first is that nuisance parameters are handled via the bootstrap. The growing literature on modified likelihood functions (see for example Kalbfleisch and Sprott (1970), Cox and Reid (1987) and Laskar and King (1998)) does observe that the presence of nuisance parameters can affect the quality of likelihood based inference. The second is that the penalties are calculated to suit the circumstances - the particular sample size, design matrix and likely values of the nuisance parameters. This extra care in calculating appropriate penalties, which has a heavy price in terms of computation, seems to be well rewarded in the presence of interval restrictions on key parameters.

Acknowledgements

This research was supported in part by an ARC grant and in part by a Post Graduate Publication Award grant of Monash University where the research was conducted. We are grateful to Tony Hughes for helpful comments and assistance.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In: B.N. Petrov and F. Csaki, Eds., Proceedings of the Second International Symposium on Information Theory. Akademiai Kiado, Budapest, 267-281.

Box, G.E.P. and D.R. Cox (1964). An analysis of transformations. Journal of the Royal Statistical Society B, 26, 211-252.

Cox, D.R. and N. Reid (1987). Parameter orthogonality and approximate conditional inference (with discussion). Journal of the Royal Statistical Society B, 49, 139.

Engle, R.F., D.F. Hendry and D. Trumble (1985). Small sample properties of ARCH estimators and tests. Canadian Journal of Economics, 18, 66-93.

Granger, C.W.J., M.L. King and H. White (1995). Comments on testing economic theories and the use of model selection criteria. Journal of Econometrics 67, 173-187.

Hannan, E.J. and B.G. Quinn (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society B, 41, 190-195.

Hossain, M.Z. (1998). Model selection problems involving interval restricted parameters in econometrics, Ph.D. thesis, Monash University, unpublished.

Hossain, M.Z. and M.L. King (1998). Model selection using AIC in the context of inequality restrictions on key parameters. Mimeograph, Dept. of Econometrics and Business Statistics, Monash University.

Hughes, A.W. (1997). Improved model selection based on AIC-type criteria, Ph.D. thesis, Monash University, unpublished.

Hughes, A.W. and M.L. King (1994). One-sided model selection procedures. Paper presented at the 1994 Australasian Meeting of the Econometric Society, Armidale.

Hughes, A.W. and M.L. King (1998). Model selection using AIC in the presence of one-sided information. Mimeograph, Dept. of Econometrics and Business Statistics, Monash University.

Kalbfleisch, J.D. and D.A. Sprott (1970). Application of likelihood methods to models involving large numbers of parameters. Journal of the Royal Statistical Society B 32, 175-208.

Laskar, M.R. and M.L. King (1998). Estimation and testing of regression disturbances based on modified likelihood functions. Journal of Statistical Planning and Inference, forthcoming.

Pötscher, B.M. (1991). Effects of model selection on inference. Econometric Theory, 7, 163-185.

Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461-464.

Spitzer, J.J. (1978). A Monte Carlo investigation of the Box-Cox transformation in small samples. Journal of the American Statistical Association, 73, 488-494.

Table 1 Comparison Between PAIC, AIC, PBIC, BIC and CIC Based on Estimated Probabilities of Correctly Choosing Model-1, Model-2 and Model-3.

			X1					X2				
Model	λ	n	PAIC	AIC	PBIC	BIC	CIC	PAIC	AIC	PBIC	BIC	CIC
1	1	20	. 607	. 611	. 610	. 611	. 665	. 549	. 559	. 556	. 559	. 600
2	0		. 892	. 957	. 932	. 978	1.00	. 933	. 973	. 957	. 984	1.00
3	. 1		. 233	. 126	. 172	. 073	. 010	. 190	. 098	. 132	. 079	. 005
	. 3		. 221	. 085	. 127	. 034	. 320	. 251	. 104	. 157	. 045	. 260
	. 5		. 089	. 012	. 037	. 001	. 600	. 136	. 029	. 063	. 004	. 605
	. 7		. 021	. 002	. 006	. 001	. 545	. 041	. 006	. 017	. 000	. 400
	. 9		. 005	. 001	. 002	. 000	. 260	. 012	. 001	. 001	. 000	. 225
1	1	50	. 755	. 765	. 765	. 766	. 790	. 738	. 758	. 758	. 758	. 765
2	0		. 865	. 942	. 940	. 986	1.00	. 890	. 947	. 945	. 984	1.00
3	. 1		. 411	. 263	. 269	. 117	. 070	. 404	. 270	. 273	. 132	. 075
	. 3		. 539	. 365	. 370	. 114	. 530	. 567	. 401	. 406	. 181	. 545
	. 5		. 307	. 078	. 083	. 003	. 695	. 423	. 169	. 176	. 025	. 710
	. 7		. 090	. 005	. 008	. 000	. 555	. 162	. 027	. 029	. 000	. 425
	. 9		. 015	. 000	. 000	. 000	. 305	. 042	. 001	. 002	. 000	. 175
1	1	100	. 799	. 826	. 826	. 826	. 850	. 778	. 812	. 814	. 814	. 825
2	0		. 853	. 937	. 951	. 990	1.00	. 858	. 940	. 949	. 991	1.00
3	. 1		. 482	. 342	. 312	. 142	. 135	. 496	. 370	. 337	. 181	. 130
	. 3		. 692	. 534	. 483	. 247	. 690	. 704	. 570	. 526	. 309	. 715
	. 5		. 562	. 287	. 217	. 012	. 785	. 622	. 374	. 318	. 053	. 795
	. 7		. 238	. 038	. 017	. 000	. 670	. 297	. 093	. 055	. 000	. 570
	. 9		. 053	. 001	. 001	. 000	. 420	. 085	. 007	. 004	. 000	. 230
1	1	500	. 842	. 921	. 969	. 988	1.00	. 833	. 915	. 960	. 974	1.00
2	0		. 838	. 924	. 966	. 995	1.00	. 847	. 927	. 962	. 997	1.00
3	. 1		. 891	. 790	. 675	. 388	. 860	. 882	. 776	. 660	. 397	. 850
	. 3		. 991	. 970	. 945	. 810	. 995	. 977	. 951	. 911	. 762	. 950
	. 5		. 996	. 984	. 954	. 788	1.00	. 989	. 963	. 922	. 705	1.00
	. 7		. 768	. 619	. 460	. 122	. 765	. 739	. 566	. 407	. 073	. 850
	. 9		. 293	. 157	. 080	. 000	. 375	. 283	. 149	. 053	. 000	. 295

Table 2 Comparison Between PAIC, AIC, PBIC, BIC and CIC Based on Estimated
Probabilities of Correctly Choosing Model-1, Model-2 and Model-3.

			X3					X4				
Model	λ	n	PAIC	AIC	PBIC	BIC	CIC	PAIC	AIC	PBIC	BIC	CIC
1	1	20	. 793	. 885	. 850	. 924	. 995	. 860	. 897	. 861	. 933	. 990
2	0		. 822	. 906	. 867	. 953	1.00	. 820	. 910	. 869	. 941	1.00
3	. 1		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 3		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 5		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 7		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 9		. 922	. 830	. 873	. 726	1.00	. 997	. 994	. 994	. 986	1.00
1	1	50	. 847	. 921	. 920	. 973	1.00	. 838	. 933	. 931	. 982	1.00
2	0		. 820	. 907	. 902	. 964	1.00	. 827	. 915	. 914	. 972	1.00
3	. 1		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 3		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 5		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 7		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 9		1.00	1.00	1.00	. 997	1.00	1.00	1.00	1.00	1.00	1.00
1	1	100	. 831	. 902	. 929	. 983	1.00	. 816	. 911	. 924	. 981	1.00
2	0		. 843	. 921	. 936	. 988	1.00	. 849	. 921	. 933	. 983	1.00
3	. 1		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 3		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 5		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 7		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 9		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1	1	500	. 832	. 912	. 952	. 992	1.00	. 840	. 923	. 952	. 989	1.00
2	0		. 850	. 939	. 972	. 993	1.00	. 907	. 969	. 978	1.00	1.00
3	. 1		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 3		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 5		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 7		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	. 9		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table 3 Comparison Between PAIC, AIC, PBIC, BIC and CIC Based on Estimated Probabilities of Correctly Choosing Competing Models M1, M2, M3, M4, M5, M6, M7, M8 and M9 for Design Matrix X2.

X2			$n=20$					$n=100$				
Model	λ_{1}	λ_{2}	PAIC	AIC	PBIC	BIC	CIC	PAIC	AIC	PBIC	BIC	CIC
1	1	1	. 175	. 246	. 186	. 268	. 360	. 567	. 656	. 673	. 738	. 820
2	1	0	. 181	. 225	. 155	. 225	. 370	. 425	. 551	. 399	. 551	. 620
3	0	1	. 832	. 873	. 857	. 883	. 980	. 791	. 895	. 913	. 978	1.00
4	0	0	. 367	. 593	. 376	. 600	. 650	. 431	. 679	. 469	. 716	. 790
5	1	. 25	. 031	. 000	. 024	. 000	. 120	. 039	. 000	. 009	. 000	. 200
5	1	. 50	. 027	. 000	. 020	. 000	. 100	. 105	. 008	. 006	. 000	. 240
5	1	. 75	. 008	. 000	. 009	. 000	. 070	. 174	. 050	. 032	. 000	. 270
6	0	. 25	. 001	. 000	. 000	. 000	. 100	. 027	. 000	. 000	. 000	. 120
6	0	. 50	. 003	. 000	. 000	. 000	. 120	. 088	. 010	. 004	. 000	. 160
6	0	. 75	. 017	. 001	. 003	. 000	. 170	. 207	. 086	. 062	. 000	. 210
7	. 25	1	. 043	. 002	. 024	. 000	. 080	. 411	. 318	. 304	. 178	. 420
7	. 50	1	. 057	. 001	. 057	. 000	. 110	. 361	. 185	. 158	. 005	. 280
7	. 75	1	. 076	. 000	. 074	. 000	. 130	. 111	. 004	. 010	. 000	. 140
8	. 25	0	. 008	. 001	. 001	. 000	. 080	. 246	. 229	. 139	. 037	. 270
8	. 50	0	. 001	. 000	. 001	. 000	. 070	. 162	. 027	. 007	. 001	. 160
8	. 75	0	. 003	. 000	. 006	. 000	. 100	. 018	. 000	. 000	. 000	. 110
9	. 25	. 25	. 004	. 000	. 000	. 000	. 070	. 000	. 000	. 000	. 000	. 050
9	. 25	. 50	. 001	. 000	. 019	. 000	. 080	. 001	. 001	. 000	. 000	. 060
9	. 25	. 75	. 000	. 000	. 015	. 000	. 060	. 016	. 001	. 000	. 000	. 100
9	. 50	. 25	. 035	. 000	. 000	. 000	. 100	. 000	. 000	. 000	. 000	. 060
9	. 50	. 50	. 029	. 000	. 087	. 000	. 130	. 000	. 000	. 000	. 000	. 070
9	. 50	. 75	. 008	. 000	. 035	. 000	. 100	. 007	. 002	. 000	. 000	. 090
9	. 75	. 25	. 079	. 000	. 154	. 000	. 210	. 003	. 000	. 037	. 000	. 110
9	. 75	. 50	. 048	. 000	. 116	. 000	. 160	. 000	. 000	. 013	. 000	. 080
9	. 75	. 75	. 022	. 000	. 081	. 000	. 100	. 000	. 000	. 001	. 000	. 070

Table 4 Comparison Between PAIC, AIC, PBIC, BIC and CIC Based on Estimated Probabilities of Correctly Choosing Competing Models M1, M2, M3, M4, M5, M6, M7, M8 and M9 for Design Matrix X4.

X4			$n=20$					$n=100$				
Model	λ_{1}	λ_{2}	PAIC	AIC	PBIC	BIC	CIC	PAIC	AIC	PBIC	BIC	CIC
1	1	1	. 627	. 748	. 742	. 872	. 950	. 721	. 849	. 911	. 978	. 990
2	1	0	. 340	. 508	. 349	. 520	. 560	. 633	. 794	. 737	. 825	. 850
3	0	1	. 792	. 882	. 844	. 925	1.00	. 832	. 910	. 923	. 978	1.00
4	0	0	. 565	. 843	. 622	. 888	. 900	. 701	. 876	. 846	. 977	1.00
5	1	. 25	. 286	. 233	. 259	. 186	. 330	. 574	. 590	. 651	. 640	. 660
5	1	. 50	. 416	. 416	. 441	. 431	. 460	. 522	. 526	. 587	. 592	. 610
5	1	. 75	. 439	. 440	. 458	. 460	. 470	. 473	. 474	. 502	. 502	. 570
6	0	. 25	. 679	. 594	. 652	. 516	. 650	. 854	. 861	. 930	. 936	. 940
6	0	. 50	. 800	. 803	. 830	. 837	. 840	. 709	. 710	. 784	. 787	. 800
6	0	. 75	. 695	. 697	. 738	. 740	. 750	. 654	. 661	. 725	. 730	. 730
7	. 25	1	. 485	. 485	. 503	. 503	. 540	. 441	. 441	. 453	. 453	. 470
7	. 50	1	. 487	. 487	. 507	. 507	. 550	. 438	. 438	. 447	. 447	. 460
7	. 75	1	. 484	. 484	. 501	. 502	. 530	. 451	. 451	. 453	. 453	. 460
8	. 25	0	. 108	. 070	. 067	. 025	. 200	. 537	. 507	. 415	. 307	. 580
8	. 50	0	. 036	. 008	. 014	. 000	. 130	. 516	. 372	. 269	. 055	. 520
8	. 75	0	. 002	. 001	. 000	. 000	. 090	. 212	. 058	. 033	. 000	. 310
9	. 25	. 25	. 120	. 073	. 156	. 017	. 400	. 870	. 856	. 994	. 675	. 910
9	. 25	. 50	. 556	. 545	. 791	. 498	. 630	. 999	. 999	. 999	. 999	1.00
9	. 25	. 75	. 808	. 807	. 808	. 791	. 880	. 999	. 999	. 999	. 999	1.00
9	. 50	. 25	. 023	. 010	. 504	. 001	. 540	. 840	. 820	. 750	. 615	. 910
9	. 50	. 50	. 442	. 373	. 313	. 199	. 510	1.00	1.00	. 999	. 998	1.00
9	. 50	. 75	. 811	. 811	. 790	. 789	. 860	. 999	. 999	. 999	. 999	1.00
9	. 75	. 25	. 004	. 002	. 000	. 000	. 110	. 448	. 421	. 232	. 162	. 590
9	. 75	. 50	. 334	. 312	. 274	. 232	. 460	. 956	. 956	. 935	. 934	1.00
9	. 75	. 75	. 557	. 456	. 417	. 282	. 590	. 995	. 994	. 970	. 938	1.00

