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Abstract

This paper considers the construction of model selection procedures based on

choosing the model with the largest maximised log-likelihood minus a penalty, when

key parameters are restricted to be in a closed interval. The approach adopted is based

on King et al.' s (1995) representative models method with the use of the parametric

bootstrap to handle nuisance parameters. The method is illustrated by application to

two model selection problems in the context of Box-Cox transformations and the linear

regression model. Simulation results for both problems indicate that the new procedure

clearly dominates existing procedures in terms of having higher probabilities of

correctly selecting the true model.

Keywords: Box-Cox transformations; Controlled information criterion; Nuisance

parameters; Parametric bootstrap; Regression model.



1. Introduction

Often in statistics and particularly in disciplines such as econometrics which

require non-experimental data sets to be modelled, we are forced to use the data to

make a choice of model specification from a range of possibilities. One approach often

used is to apply a series of pairwise hypothesis tests to help make the choice. As

Granger et al. (1995) and others have observed, this has a number of limitations. An

alternative and increasingly popular approach favoured by Granger et al. is to use a

model selection procedure based on an information criterion (IC). Typically this

involves choosing the model specification with the largest maximised log-likelihood

function minus a penalty which, among other things, reflects the number of estimated

parameters in the model. Unfortunately, there is little agreement about what this

penalty should be. For example, for Akaike's (1973) IC (AIC) it is q, for Schwartz's

(1978) Bayesian IC (BIC) it is qlog(n)/2, while for Hannan and Quinn's (1979) IC it is

q log(log(n)) where q is the number of estimated parameters in the model and n is the

sample size.

While there is a large and growing literature that gives different suggestions on

what this penalty should be in a range of situations, very little has been written on how

it should be calculated in the presence of inequality restrictions on important

parameters. This is in contrast to the vast and growing literature on testing in the

presence of such restrictions. It is somewhat surprising given that, as Potscher (1991)

points out, using an IC procedure amounts to testing each model against all other

models by means of likelihood ratio tests and selecting that model which is accepted

against all other models where the critical values are determined by the penalty terms

of the criterion. Just as the likelihood ratio test requires different critical values when
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used in the presence of inequality retrictions, one would expect IC procedures to have

different penalties when the restrictions involve parameters in dispute.

Hughes and King (1994, 1998) and Hughes (1997) were perhaps the first to

propose model selection procedures that use one-sided information on parameters in

dispute. Based on asymptotic arguments, they developed a class of one-sided AIC

procedures called OSAIC. Hossain and King (1998) (also see Hossain (1998))

modified AIC for the case where some parameters of interest are restricted to an

interval and proposed a new procedure called PAIC. They also suggested an analogous

modification to BIC which they called PBIC. A range of simulation experiments were

conducted involving the Box-Cox (1964) transformation (BCT) on the dependent

variable in the linear regression model, in which the Box-Cox parameter, X, is

restricted to be in the range [0,1]. X = 0 gives the log-linear model while X = 1 gives

the classical linear model. They found the probabilities of correct selection (PCS) for

this set of three competing models vary significantly from one design matrix to

another, being undesirably small in some cases while being extremely large in other

cases. Consequently, the idea of controlling PCS or alternatively, minimising the

variation in PCS seems worthy of investigation.

In the context of hypothesis testing, it is well known that critical values are

calculated in order to control the trade-off between the size and power of the test by

fixing the PCS for the null hypothesis model. King et al. (1995) argued that this

principle can be usefully applied to the problem of model selection. They proposed a

general model selection procedure in which the penalties are calculated by controlling

the probabilities of selection in such a way that no one model is unnecessarily

favoured. To do this, they suggested two approaches; one called the common model
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approach which involves controlling probabilities of selection for a common minimal

model (usually with all parameters under dispute set to zero) and the other called the

representative fixed points approach. The latter involves deciding on representative

parameter values for each of the models and determining the penalties to make the PCS

for these representative models equal. The philosophy behind this approach is similar

to that for point optimal testing (see King (1987)). King et al. also presented a general

algorithm for calculating penalties for both approaches using simulation methods.

The aim of this paper is to investigate whether King et al.' s fixed point

approach can be successfully applied to selection problems in which parameters of

interest are restricted to a closed interval. In particular we focus on selection problems

involving the BCT regression model in order to see whether we can improve on

Hossain and King's (1998) PAIC and PBIC procedure in small samples.

The plan of the paper is as follows. In Section 2 we illustrate our method of

applying King et al.' s representative fixed points approach by discussing its application

to a simple BCT regression model. The use of the parametric bootstrap to handle

nuisance parameters is explained. The section closes with an outline of the algorithm

for calculating the penalties. The illustration is extended to a more complicated model

selection problem involving two restricted parameters and nine possible models in

Section 3. A detailed algorithm for calculating the penalties in this case is presented.

Two Monte Carlo experiments, designed to compare the small sample properties of the

new procedure with those of existing procedures for the model selection problems

outlined in Sections 2 and 3, are reported in Section 4. We find that the new procedure

clearly dominates existing procedures in terms of having higher PCS. Some

concluding remarks are made in the final section.
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2. The Proposed Procedure for One Parameter Restriction

In this section, we illustrate our approach by discussing its application to a

simple model selection problem in the context of the BCT regression model

Yt(A) = So +f31; +u, t = 1,...,n, (1)

where Po and )6, are regresssion coefficients, xt is a single nonstochastic regressor and

y(A) is defined as

y1 (A) =
a,y-1 

when O<A,<1,
A

= log(ye) when A =0,

= ye — 1 when A = 1.

(2)

ut is the disturbance term which, in theory, has a truncated distribution and therefore

cannot be normally distributed. We assume that the truncation effect is insignificant

and that

being

ut — IN(0,c2), t=1,...,n.

From (1) and (2) we obtain three possible models, the first (denoted model-1)

0. o
Yt =Po +PI; +ut,

when A =1, where fro = 130 +1. The second model (model-2) is
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log(y1) = Po +J3; +ut

and the third model (model-3) is

(y,A —1)/ 2., = Po +six, +u,

where 0< A <1. Observe that A is our parameter of interest which we assume is

restricted to lie in the interval [0,1]. The literature on the BCT does discuss the

possibility of A <0 and A, >1. Many researchers assume 2. E [-1,1] although Spitzer

(1978) pointed out that this model can result in poor forecasts when A, E [—LO].

Econometricians often have to decide whether to use a log-linear or a classical linear

regression model. The BCT model with A E (0,1) provides a range of models that

cover the parameter space between these two alternative models. These arguments,

taken together, make a case for sometimes restricting A, to the range [0,1]. Our

challenge is to find an effective model selection procedure for the situation in which

one may wish to impose this restriction and therefore choose between Model-1, Model-

2 and Model-3.

Denote the log-likelihood function for the ith model by 4(6) where 0 is the

parameter vector. Lim is well-known for i = 1,2 and 0 = 00*,,6,,0-2y for model-1 and

0= 00,,6,,0-2y for model-2 can be estimated via ordinary least squares. For model-3,

0 =(/30,/31,a2,2)' and

1 v-in „ f,

— )61.; )2 + (A —1)t log(y,) .
2 2c r=1 t=i

.
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Let Li(b) denote the maximized value of Li (9). Then, because model-1 and model-2

involve 3 parameters while model-3 involves 4 parameters, AIC (BIC) chooses the

model corresponding to the largest value of

(b) — 3, L2(b)-3, L3(b) — 4

(LI (e) —1.5 log(n), L2 (0)-1.5 log(n), L3 (0)-2 log(n)).

In contrast, Hossain and King's (1998) PAIC (and PBIC) chooses the model

corresponding to the largest value of

Li(b) 1,2(b) — 3, L3(b) — 3.5

(LI (0) —1.5 log(n), L2 (0)-1.5 log(n), L1 (0)-1.75 log(n)).

The first step in applying King et al.'s (1995) representative fixed points

approach involves choosing representative parameter values for each of the three

models. Given that the model selection problem boils down to choosing between

A, =1 (model -1), A. =0 (model -2) or 0< A. <1 (model -3); it is not hard to select

A, =1, A. =0 and A. = 0.5 as the representative values of A. for the respective models.

For each model, there are three nuisance parameters namely po (or equivalently fro for

model-1), pl and o-2. Our suggestion for fixing values for these parameters is to

employ the solution used in the parametric bootstrap. This involves calculating

maximum likelihood estimates of the nuisance parameters using the data at hand and

then using these estimates, together with the representative value of A, to generate a

large number of simulated data sets for each model. Just as the Monte Carlo method

can be used to find critical values that solve the size equation in hypothesis testing,

these sets of simulated data samples can be used to find penalty function values that
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make the simulated probabilities of correctly selecting each model (at its representative

parameter values) equal. By making the probabilities of correct selection equal, no

particular model is favoured.

Let pi be the penalty associated with Li(6) so that model-i is chosen if

Li(e)— > Li(6)— pi for j=1, 2, 3 and j (3)

Because the comparisons made in (3) depend only on penalty differences, namely

pi — pi, we can set p1 =0 without loss of generality. The details of our approach for

finding the remaining penalty values, p2 and p3, are as follows.

Given the data (n observations of yt) to be used to decide between the three

models, we first estimate 0 under each of model-1, model-2 and model-3. The

respectively estimated values of po, pi and a2 together with A, =1 for model-1, A. =0

for model-2 and A. = 0.5 for model-3, are used to generate 500 simulated sets of

samples of size n for each of the three models. The maximized log-likelihood, Li(b),

for each of the three competing models is calculated for each simulated sample of size

n. This results in nine sets of 500 values of L1 (0). The nine sets are made up of three

sets (one for each true model) of three (one for each log-likelihood fitted). For each set

of three fitted log-likelihoods, one represents the true model. This can be used to

estimate the probability, for any value of p2 and p3, of choosing model-i when it is true

based on (3) for i = 1, 2, 3. Denote these estimated probabilities which depend on the

values of p2 and p3 used, by

11(P2,133), P2(P2,p3) and P3(P2,P3)
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for when model-1, model-2 and model-3 are respectively the true model.

The penalties p2 and p3 are then found by an iterative method so that they solve

P1 (/32 P3 ) = P2 (P2 P3 ) = P3 (P2 /33 ) (4)

Observe that (4) represents two equations in two unknowns, namely p2 and p3. To

solve (4) in the Monte Carlo experiments outlined in Section 4, we used the following

iterative method. Choose possible values for p and p3. Calculate P1(p2,p3),

P2 (p2, p3) and P3 (p2, p3) for these values. First adjust p3 to make

Pi (P2 P3 ) = P3 (132 P3 ) • (5)

If PI (p2, p3)> P3(p2, p3) , then reduce p3 otherwise increase p3 until (5) holds (for a

specified level of tolerance). Then check if

Pi (P2 P3 ) = P2 (P2 P3)- (6)

If .13, (p2, p3) > P2 (p2, p3) then reduce p2 otherwise increasep2. Each time p2 is

changed, one has to find the value of p3 that makes (5) hold. This process is repeated

until both (5) and (6) hold. We have then found the required p2 and p3 values which

can be used for the original data and (3) to choose a model.

We call our new procedure controlled IC (CIC).
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3. Our Proposed Procedure for Two Parameter Restrictions

In this section, we discuss the application of CIC to a more complicated model

selection problem that involves two restricted parameters and nine competing models.

The larger number of candidate models makes the procedure more time consuming and

difficult to apply. We shall assess in Section 4 whether this extra effort is worthwhile.

Consider the following two parameter version of a BCT regression model,

yt(21)=-- Po+ P1xt(22)+ut, (7)

where it is assumed that ut — IN(0,c2). The notation used in (7) is as defined in (1)

with y1(21) given by (2) with A. = AI and x1 (A2) defined by (2) with A = 2,2 and y, = xt.

Again, for the reasons discussed in Section 2, we restrict Al and 2?2 to the closed

interval [0,1].

For this model, there are nine possible combinations of boundary/non-boundary

values of the two key parameters, Al and 2L2. For these nine possibilities, we obtain

nine models to choose between. They are

M1 : yt = Po+ Axt+u„

M2 : yt = po + ,61 log(x1) + u„

M3 : log(yt) = Po + Plxt + u„

M4 : log(y) = Po ± Pi log(x1) ± /It ,

M5 : yr = Po + Pi (xt2.2 —1)/A2 +Ur , 0 < A.2 <1,

_.
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M6 : log(y) = po+si kA2 —02+11„ 0< A,2 <1,

M7 : (y,A1 —101 = po+ pix,+u„ 0 <A1 <1,

M8 : V' —101 = So +Pi log xt + u„ O<A,1 <1 ,

M9 : (yt21 —101 = po+pi(42 —02+u, o< 2-1 <1 ,O< A2 <1 , t=1,...,n .

Of these nine models, the first four contain three parameters each and therefore

have AIC and BIC penalties of 3 and 1.5log(n), respectively. Because no restricted

parameters are involved, the penalties are the same for Hossain and King's (1998)

PAIC and PBIC, respectively. On the other hand, the second four models each contain

four parameters, one of which is restricted to the open interval (0,1). The usual AIC

and BIC penalties for these models are 4 and 2log(n), respectively, while PAIC and

PBIC have penalties of 3.5 and 1.751og(n), respectively. The last model, M9, has five

parameters, two of which are restricted to be in the range (0,1). The penalties for PAIC

and PBIC are now

4 +(sin-1 p12)/z and [2 +(sin-l p/2)/(2qlog(n) ,

respectively, where p12 is the correlation between the maximum likelihood estimates of

Al and A2 from M9.

Again the first step in applying King et al.'s (1995) representative fixed points

approach involves choosing representative parameter values for each of the nine

models. In this case, our model selection problem boils down to choosing between

A,2) = (1,1), (1,0), (0,1), (0,0), (1,2:2), (0,2:2), (4,1), (2:,,o),(2.71,2:2), respectively, for
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M1 - M9, where 2,*, and 2*2 are both restricted to be in the open interval (0,1). Obvious

representative values for (Al, 22) for models M1 - M9 are (1,1), (1,0), (0,1), (0,0),

(1, 0.5), (0,0.5), (0.5,1), (0.5,0) and (0.5,0.5), respectively.

Let Li((p) be the log-likelihood for model Mi, i = 1,...,9, and let (p be its

associated parameter vector. If Li (0) denotes the maximized value of L1 (p)and pi

denotes the penalty associated with L (i), then our procedure involves setting p1 =0

and finding p2,..., /39. Then model Mi is chosen if

Li((70)— pi > Li(ep)— pi for j = 1, ,9 and j # i . (8)

Our procedure finds values for p2,..., p, as follows.

Given the n observations of y, to be used to choose between the nine models,

we first obtain maximum likelihood estimates of go for each of Ml, M2, ..., M9. For

each model, the estimated values of po, p, and a2 together with the corresponding

representative values of Al and 22 are used to generate 200 simulated samples of size

n. The maximized log-likelihood, Li*, for each of the nine competing models is

calculated for each simulated sample of size n. We therefore end up with 81 (=9 x 9)

sets of 200 values of 4(0). We have nine sets (one for each true model) of nine (one

for each fitted log-likelihood). These 81 sets of 200 values of Li(0) can be used to

estimate the probability of correctly choosing model Mi based on (8) for any values of

p2,..., p9. Denote these estimated probabilities by

(p2,•••,A) when model Mi is true, i = 1,...,9 .

11



The penalties p2,..., p9 are then found by an iterative method (similar to that

outlined in Section 2) so that they solve

11(132, = P2(P2, —,139 ) = • • • = P9 (P2, —,139) • (9)

Note that (9) is eight equations in eight unknowns, which has to be solved to find

p2,..., /39. It can be solved using a generalization of the iterative method outlined in

Section 2 as follows:

1. Choose possible values for p2,..., /39.

2. Calculate F; (p2,...,p,), i =1,...,9.

3. Check (to a specified tolerance) if

11(P2,•••,P9)= P9(P2,•••,P9) • (10)

If (10) holds, proceed to step 4, otherwise if PI (132, • • • /39)— P9(P2,•••,p9) is

positive (negative), reduce (increase) p, and return to step 2.

4. Check if

1302,••• 9)=1302,•••,P9) •

If (11) holds, proceed to step 5, otherwise if Pi(p2,...,p9)— P8 (p2,...,p9) is

positive (negative), reduce (increase) p8 and return to step 2.

5. Check if

(12)
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If (12) holds, proceed to step 6, otherwise if PI (p2,•••, 139) — PI (P2 7 • p9) is

positive (negative), reduce (increase) p7 and return to step 2.

6. Check if

Pi(P2,—,P9)= P6(P2,•••,P9)

10. Check if

(132, • - • P9) = P2(I32, • • • P9) -

(13)

(14)

If (14) holds, then the required values of p2,..., p, have been found, otherwise if

Pi(p, p9)— P2 C"2'... p9) is positive (negative), reduce (increase) p2 and

return to step 2.

4. Monte Carlo Simulation

In order to evaluate the small sample performance of the new procedure, CIC,

and compare it with the performance of AIC, BIC, PAIC and PBIC, we conducted two

Monte Carlo experiments. The first experiment involved the simple selection problem

discussed in Section 2 and the second the more complicated problem of Section 3.

Note that for each iteration of a Monte Carlo experiment, CIC requires the bootstrap

method to be applied in order to find the appropriate penalties for that set of simulated
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data. In other words, we simulated the application of the simulation method used to

find the penalty values. As might be imagined, this required considerable

computational time, although the fact that it was able to be simulated does demonstrate

that the computation required in order to choose between nine models is not

prohibitive.

4.1 Experimental Design

For the first experiment of choosing between model-1, model-2 and model-3,

the regressor x, was generated from the AR(1) process

= px,_, +v „ v, 1.1\1(0,a2,), t =1,...,n, (15)

with o-,2 =1.0 and four different values of p, namely p = 0, 0.25, 0.95, 1.0. The

values of x, were generated once from (15) and then held fixed from iteration to

iteration. The four values of p result in four different design matrices denoted X 1, X2,

X3 and X4, respectively. This choice of artificially generated regressors was

influenced by Engle et al.'s (1985) Monte Carlo study. The four p values cover four

different types of regressor, namely white noise, low autoregressive, high

autoregressive and random walk. This covers a range of different types of economic

data.

Data was simulated from each of model-1, model-2 and model-3 with

po =10.0, si = 1.0 and 0.2 = 1.0. In the case of model-3, 2 = 0.5 was always used as

the representative value of A. in the application of CIC, but in the comparison, data was

simulated for a range of A values, namely A. = 0.1, 0.3, 0.5, 0.7, 0.9. The experiment

was conducted for four different sample sizes which were n = 20, 50, 100, 500. 1000
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replications were used except when calculating probabilities of selection for CIC for

which 200 replications were used. As noted in Section 2, 500 bootstrap samples were

used in each replication in order to calculate the penalties for CIC.

As already observed, the second experiment of simulating the problem of

choosing between M1 - M9, is extremely computationally intensive for CIC. We were

therefore forced to reduce the extent of the second experiment compared to the first.

We only used two design matrices, X2 and X4, two samples sizes, n = 20, 100, and for

the application of CIC, 200 bootstrap samples. Data was simulated for each of M1 -

M9 with Po .1ao, ,61 =1.0 and 0-2 = 1.0. In the case of M7 - M9, data was simulated

for each of 2-1 = 0.25, 0.5, 0.75 and for M5, M6 and M9, it was simulated for each of

A.2 = 0.25, 0.5, 0.75.

4.2 Results

The simulations involved estimating the probabilities of choosing each of the

competing models for each of the data generating processes and each of the selection

procedures. This is a large number of probabilities in total, especially when in the

second experiment, nine competing models are involved. We have therefore

concentrated on PCS. These are presented in Tables 1 and 2 for the first experiment

and in Tables 3 and 4 for the second experiment. Full results may be found in Hossain

(1998) or may be obtained from the authors on request.

4.2.1 Results of the First Experiment

An obvious feature of the results is how they differ for X1 and X2 compared to

X3 and X4. For the former design matrices, model-3 seems to be a difficult model to
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correctly select (with BIC never able to detect it when A, = 0.9) while for X3 and X4,

model-3 is correctly selected by all procedures almost always.

As is well known, BIC favours models with fewer parameters while AIC

favours models with larger numbers of parameters. This pattern is clearly evident in a

comparison between AIC and BIC and also between PAIC and PBIC. There are times

that BIC achieves large probabilities of correctly selecting model-1 and model-2, at the

expense of, for some A, values, relatively low probabilities of correctly selecting

model-3. Through looking at the results for X1 and X2, one would conclude that BIC

is poorly balanced, although the same conclusion would be difficult to draw from the

results for X3 and X4. For X1 and X2, PAIC perhaps provides the most balanced

results of the existing procedures (AIC, BIC, PAIC and PBIC) with PBIC and BIC

being best for smaller and larger sample sizes, respectively, in the case of X3 and X4.

The other obvious feature of the results is how CIC tends to dominate all other

procedures. It almost always has the highest probability of correct selection. The only

exceptions occur for model-3, A, = 0.1 for X1 and X2 and in some circumstances for

A. = 0.3. These exceptions are obviously a consequence of it always correctly selecting

model-2 (A, = 0) when it is true. In many circumstances, there is a large improvement

in the probability of correct selection when one moves from an existing procedure to

CIC, particularly for larger A, values when model-3 is true for either X1 or X2. It

should also be noted that, unlike the other procedures, for X3 and X4 CIC has a perfect

record at selecting the correct model for all sample sizes except n = 20.
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4.2.2 Results of the Second Experiment

Again we see considerable contrast between the results for X2 and X4. For X2,

models M5 - M9 appear to be extremely difficult to detect, especially in the case of

n = 20, while for X4, PCS for these models are a lot higher especially for n = 100.

The importance of making good use of knowledge of inequality restrictions in

calculating appropriate penalties is clearly seen for X2 when n = 20. For models M5 -

M9, AIC and BIC are almost always unsuccessful at choosing the correct model. PAIC

and PBIC are marginally better in this regard. A similar pattern is observed for X2

when n = 100, although for M7 and perhaps M8, some PCS are more respectable.

For design matrix X4, the results for the existing procedures tend to follow

expected patterns although in some cases (for example M9), there are some unexpected

results.

Again a feature of the results is that CIC dominates the other procedures in

terms of almost always having the highest PCS. The only exceptions occur for M7 and

M8 when A,, = 0.5 in the case of X2 and for M9 and (2,1, 2,2) = (0.25,0.5) when n = 20

and ( 1,1 2) = (0.25,0.25) when n = 100 in the case of X4. It is quite remarkable how

CIC is almost always able to improve on PCS of the best of the existing procedures, no

matter whether the true model is one with the smallest, average or largest number of

parameters. In this sense, it can be regarded as a powerful procedure.
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5. Concluding Remarks

The aim of this paper was to investigate whether King et al.'s (1995)

representative fixed points approach could be successfully applied to model selection

problems in which parameters of interest are restricted to a closed interval. The answer

to this question seems to be a very clear yes, at least for the particular problems

considered above. It is difficult to think of another case in the literature where a new

procedure has so clearly dominated other existing procedures in terms of PCS. Given

this extraordinary result, it is perhaps worth asking why CIC works so well.

There are two things that are novel about CIC. The first is that nuisance

parameters are handled via the bootstrap. The growing literature on modified

likelihood functions (see for example Kalbfleisch and Sprott (1970), Cox and Reid

(1987) and Laskar and King (1998)) does observe that the presence of nuisance

parameters can affect the quality of likelihood based inference. The second is that the

penalties are calculated to suit the circumstances - the particular sample size, design

matrix and likely values of the nuisance parameters. This extra care in calculating

appropriate penalties, which has a heavy price in terms of computation, seems to be

well rewarded in the presence of interval restrictions on key parameters.
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Table 1 Comparison Between PAIC, AIC, PBIC, BIC and CIC Based on Estimated

Probabilities of Correctly Choosing Model-1, Model-2 and Model-3.

X1 X2

Model 2,, n PAIC AIC PBIC BIC CIC PAIC AIC PBIC BIC CIC

1 1 .607 .611 .610 .611 .665 .549 .559 .556 .559 .600

2 0 .892 .957 .932 .978 1.00 .933 .973 .957 .984 1.00

.1 .233 .126 .172 .073 .010 .190 .098 .132 .079 .005

.3 20 .221 .085 .127 .034 .320 .251 .104 .157 .045 .260

3 .5 .089 .012 .037 .001 .600 .136 .029 .063 .004 .605

.7 .021 .002 .006 .001 .545 .041 .006 .017 .000 .400

.9 .005 .001 .002 .000 .260 .012 .001 .001 .000 .225

1 1 .755 .765 .765 .766 . .790 .738 .758 .758 .758 .765

2 0 .865 .942 .940 .986 1.00 .890 .947 .945 .984 1.00

.1 .411 .263 .269 .117 .070 .404 .270 .273 .132 .075

.3 50 .539 .365 .370 .114 .530 .567 .401 .406 .181 .545

3 .5 .307 .078 .083 .003 .695 .423 .169 .176 .025 .710

.7 .090 .005 .008 .000 .555 .162 .027 .029 .000 .425

.9 .015 .000 .000 .000 .305 .042 .001 .002 .000 .175

1 1 .799 .826 .826 .826 .850 .778 .812 .814 .814 .825

2 0 .853 .937 .951 .990 1.00 .858 .940 .949 .991 1.00

.1 .482 .342 .312 .142 .135 .496 .370 .337 .181 .130

.3 100 .692 .534 .483 .247 .690 .704 .570 .526 .309 .715

3 .5 .562 .287 .217 .012 .785 .622 .374 .318 .053 .795

.7 .238 .038 .017 .000 .670 .297 .093 .055 .000 .570

.9 .053 .001 .001 .000 .420 .085 .007 .004 .000 .230

1 1 .842 .921 .969 .988 1.00 .833 .915 .960 .974 1.00

2 0 .838 .924 .966 .995 1.00 .847 .927 .962 .997 1.00

.1 .891 .790 .675 .388 .860 .882 .776 .660 .397 .850

.3 500 .991 .970 .945 .810 .995 .977 .951 .911 .762 .950

3 .5 .996 .984 .954 .788 1.00 .989 .963 .922 .705 1.00

.7 .768 .619 .460 .122 .765 .739 .566 .407 .073 .850

.9 .293 .157 .080 .000 .375 .283 .149 .053 .000 .295
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Table 2 Comparison Between PAIC, AIC, PBIC, BIC and CIC Based on Estimated

Probabilities of Correctly Choosing Model-1, Model-2 and Model-3.

X3 X4

Model X, 11 PAIC AIC PB IC BIC CIC PAIC AIC PB IC BIC CIC

,

1 1 .793 .885 .850 .924 .995 .860 .897 .861 .933 .990

2 0 .822 .906 .867 .953 1.00 .820 .910 .869 .941 1.00

.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.3 20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 .5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
,

.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00. ,

.9 .922 .830 .873 .726 1.00 .997 .994 .994 .986 1.00

1 1 .847 .921 .920 .973 1.00 .838 .933 .931 .982 1.00 1

2 0 .820 .907 .902 .964 1.00 .827 .915 .914 .972 1.00

.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.3 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3
,

.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.9 1.00 1.00 1.00 .997 1.00 1.00 1.00 1.00 1.00 1.00

1 1 .831 .902 .929 .983 1.00 .816 .911 .924 .981 1.00

2 0 .843 .921 .936 .988 1.00 .849 .921 .933 .983 1.00

.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.3 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 .5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

. .9 . 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 1 .832 .912 .952 .992 1.00 .840 .923 .952 .989 1.00

2 0 .850 .939 .972 .993 1.00 .907 .969 .978 1.00 1.00

.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.3 500 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 .5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

- .9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 3 Comparison Between PAIC, AIC, PBIC, BIC and CIC Based on Estimated

Probabilities of Correctly Choosing Competing Models Ml, M2, M3, M4, M5,

M6, M7, M8 and M9 for Design Matrix X2.

X2 n = 20 n = 100

Model Xi 2,,2 PAIC AIC PB IC BIC CIC PAIC AIC PB IC BIC CIC

1 1 1 .175 .246 .186 .268 .360 .567 .656 .673 .738 .820

2 1 0 .181 .225 .155 .225 .370 .425 .551 .399 .551 .620

3 0 1 .832 .873 .857 .883 .980 .791 .895 .913 .978 1.00

4 0 0 .367 .593 .376 .600 .650 .431 .679 .469 .716 .790

5 1 .25 .031 .000 .024 .000 .120 .039 .000 .009 .000 .200

5 1 .50 .027 .000 .020 .000 .100 .105 .008 .006 .000 .240

5 1 .75 .008 .000 .009 .000 .070 .174 .050 .032 .000 .270

6 0 .25 .001 .000 .000 .000 .100 .027 .000 .000 .000 .120

6 0 .50 .003 .000 .000 .000 .120 .088 .010 .004 .000 .160

6 ' 0 .75 .017 .001 .003 .000 .170 .207 .086 .062 .000 .210

' 7 .25 1 .043 .002 .024 .000 .080 .411 .318 .304 .178 .420

7 .50 1 .057 .001 .057 .000 .110 .361 .185 .158 .005 .280

7 .75 1 .076 .000 .074 .000 .130 .111 .004 .010 .000 .140

8 .25 0 .008 .001 .001 .000 .080 .246 .229 .139 .037 .270

8 .50 0 .001 .000 .001 .000 .070 .162 .027 .007 .001 .160

8 .75 0 .003 .000 .006 .000 .100 .018 .000 .000 .000 .110

9 .25 .25 .004 .000 .000 .000 .070 .000 .000 .000 .000 .050

9 .25 .50 .001 .000 .019 .000 .080 .001 .001 .000 .000 .060

9 .25 .75 .000 .000 .015 .000 .060 .016 .001 .000 .000 .100

9 .50 .25 .035 .000 .000 .000 .100 .000 .000 .000 .000 .060

9 .50 .50 .029 .000 .087 .000 .130 .000 .000 .000 .000 .070

9 .50 .75 .008 .000 .035 .000 .100 .007 .002 .000 .000 .090

9 .75 .25 .079 .000 .154 .000 .210 .003 .000 .037 .000 .110

9 .75 .50 .048 .000 .116 .000 .160 .000 .000 .013 .000 .080

9 .75 .75 .022 .000 .081 .000 .100 .000 .000 .001 .000 .070
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Table 4 Comparison Between PAIC, AIC, PBIC, BIC and CIC Based on Estimated

Probabilities of Correctly Choosing Competing Models MI, M2, M3, M4, M5,

M6, M7, M8 and M9 for Design Matrix X4.

X4 n=20 n = 100

Model Xi 22 PAIC AIC PB IC BIC CIC PAIC AIC PB IC BIC CIC

k1 1 1 .627 .748 .742 .872 .950 .721 .849 .911 .978 .990

2 1 0 .340 .508 .349 .520 .560 .633 .794 .737 .825 .850

3 0 1 .792 .882 .844 .925 1.00 .832 .910 .923 .978 1.00

4 0 0 .565 .843 .622 .888 .900 .701 .876 .846 .977 1.00

5 1 .25 .286 .233 .259 .186 .330 .574 .590 .651 .640 .660

5 1 .50 .416 .416 .441 .431 .460 .522 .526 .587 .592 .610

5 1 .75 .439 .440 .458 .460 .470 .473 .474 .502 .502 .570

6 0 .25 .679 .594 .652 .516 .650 .854 .861 .930 .936 .940

6 0 .50 .800 .803 .830 .837 .840 .709 .710 .784 .787 .800

6 0 .75 .695 .697 .738 .740 .750 .654 .661 .725 .730 .730

7 .25 1 .485 .485 .503 .503 .540 .441 .441 .453 .453 .470

7 .50 1 .487 .487 .507 .507 .550 .438 .438 .447 .447 .460

7 .75 1 .484 .484 .501 .502 .530 .451 .451 .453 .453 .460

8 .25 0 .108 .070 .067 .025 .200 .537 .507 .415 .307 .580

8 .50 0 .036 .008 .014 .000 .130 .516 .372 .269 .055 .520

8 .75 0 .002 .001 .000 .000 .090 .212 .058 .033 .000 .310

9 .25 .25 .120 .073 .156 .017 .400 .870 .856 .994 .675 .910

9 .25 .50 .556 .545 .791 .498 .630 .999 .999 .999 .999 1.00

9 .25 .75 .808 .807 .808 .791 .880 .999 .999 .999 .999 1.00

9 .50 .25 .023 .010 .504 .001 .540 .840 .820 .750 .615 .910

9 .50 .50 .442 .373 .313 .199 .510 1.00 1.00 .999 .998 1.00

9 .50 .75 .811 .811 .790 .789 .860 .999 .999 .999 .999 1.00

9 .75 .25 .004 .002 .000 .000 .110 .448 .421 .232 .162 .590

9 .75 .50 .334 .312 .274 .232 .460 .956 .956 .935 .934 1.00

9 .75 .75 .557 .456 .417 .282 .590 .995 .994 .970 .938 1.00
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