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Abstract

Any model is accompanied by a set of assumptions. These assumptions are based ei-

ther on the underlying theory of the phenomena being modelled or on stylized statistical

evidence, or more commonly on both. These, along with functional considerations such as

variances being positive, often imply that values of some parameters characterizing a model

are restricted to one side of a point in the parameter space. This information can be used

to improve the power of hypothesis testing procedures. In this paper, we discuss some re-

cent developments on testing against such one-sided alternative hypotheses with particular

emphasis on the econometrics literature. The focus is on two main approaches: that based

on maximum likelihood estimation and that based on local power optimization facilitated

by the generalized Neyman-Pearson lemma. Both single parameter and multi-parameter

testing problems are considered.
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1. Introduction

The practice of econometrics involves an integration of economic theories and mathe-

matical statistical methods. Economic theories usually provide initial models of the phe-

nomena of interest. Statistical methods are then used to estimate and assess the adequacy

of these models. One feature of the interaction between economic theories and statistical

methods is that many economic concepts are captured by parameters in models and the

range of values these parameters may take are therefore typically restricted. For example,

the parameter which characterizes the speed of adjustment in a partial adjustment model

is believed to be non-negative and less than one.

Inequality restricted parameters can also arise from stylized statistical evidence. For

example, in linear regression models of undifferenced macroeconomic time series, a stan-

dard phenomenon is that residual series typically exhibit, if any, positive autocorrelation.

It is then natural to model error terms in such models with parameters characterizing low

lag autocorrelations that are non-negative.

There are also situations where the parameter space is restricted for functional rea-

sons. An obvious and important example is that variance parameters cannot be negative.

Variance parameters play key roles both in traditional variance-component models and

random-coefficient models. In these situations, one is typically interested in whether vari-

ances are zero (so that the corresponding random terms disappear from the model). This

leads to testing problems in which the null hypothesis is on the boundary of the parameter

space which consists of non-negative parameters.

It is expected that statistical methods that take explicit account of this kind of non-

sample information yield more efficient estimates of the parameters. See for example

Thompson (1982) in the case of two regressors and non-negative restrictions on the two

coefficients in the linear regression model. More detailed discussion, including pre-test

procedures, is contained in Judge and Yancey (1986). In hypothesis testing, using non-

sample information should result in greater power. For example, in the context of testing

for a linear form of heteroscedasticity in the simple time trend regression with 20 obser-

vations, King and Evans (1984) observed an increase in power ranging from 39% to 63%
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when a one-sided Lagrange multiplier (LM) test is used instead of the familiar two-sided

test. Thus, statistical methods that incorporate this information are highly desirable. It

is therefore not surprising to see a significant increase in the econometrics and statistics

literature on testing against one-sided alternatives. In this paper we review this literature

with an emphasis on newly developed methods.

There seem to be two main approaches to the testing problem. One is based on local

optimization of power through the use of the generalized Neyman-Pearson lemma. A

variation of this approach is to construct a test that is most powerful among all the tests

at a chosen point in the alternative parameter space. This is called a point optimal test.

An alternative is to construct tests by maximizing power locally at the null hypothesis.

These tests are called locally best (LB) tests. The second approach is to construct one-

sided versions of conventional likelihood ratio (LR), Wald and LM tests. We shall call

these likelihood-based tests as they involve maximization of the likelihood function with

respect to parameters subject to the inequality restrictions. Estimation is then a part of

the test procedure.

The plan of this paper is as follows. Section 2 reviews LB tests followed by point optimal

tests. We observe that the majority of applications of these procedures involve tests of

regression disturbances. Section 3 deals with asymptotic likelihood-based tests and begins

with discussion of one-sided LR, Wald and LM tests of one parameter. This leads on to

multi-parameter one-sided testing and partially one-sided testing where likelihood-based

tests have asymptotic null distributions that are probability mixtures of various chi-squared

distributions. The derivation of the probability weights in these asymptotic distributions

is also discussed in detail. Section 3 includes a brief survey of one-sided testing of linear

regression coefficients and closes with a review of the literature on exact and asymptotic

locally most mean powerful (LMMP) tests. Concluding remarks are made in the final

section.

2. Optimal Tests

For any testing problem we would obviously like to use a uniformly most powerful_

(UMP) test. Unfortunately such tests rarely exist. Cox and Hinkley (1974, p.102) discuss
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three alternative approaches to test construction in the absence of a UMP test. They are:

(i) using a test which maximizes power at a "somewhat arbitrary 'typical' point" in the

alternative parameter space, (ii) removing this arbitrariness by choosing the point to be

close to the null hypothesis which leads to the LB test and (iii) choosing the test which

maximizes some weighted average of power over the alternative parameter space. In this

section, we review the literature on one-sided testing from the point of view of Cox and

Hinkley's three alternatives. Historically, option (ii) has been the most popular so we

will consider it first. Option (i) is sometimes known as the point optimal solution and

is the subject of subsection 2.2. There is a fledgling literature on option (iii) which is

not considered here; see Andrews and Ploberger (1994) and Andrews, Lee and Ploberger

(1994).

2.1 Locally Best Tests

The LB solution is reasonably well accepted in the testing literature. Suppose we wish

to test 1/0 : 0 = 00 against Ha+ : 0 > 00 based on the n x 1 random vector x which has

probability density function f(x J 0) where 0 is p x 1. Here 0> 90 denotes 91 > 90i for each

i with inequality for at least one i so that 0 00.

When p = 1, the LB test can be constructed simply as a direct consequence of the

Neyman-Pearson Lemma as follows. The most powerful test of Ho against H. : 9 = Oo +

where A 0 involves rejecting Ho for large values of

or equivalently

r(x) = f(x eo + AV f(x 90)

log r(x) = log f(x I 00 ± A) — log f(x I Go). (2.1)

If we replace log f(x 1 Go + A) in (2.1) with its Taylor's series expansion with respect to 0,

we get
alog f(x 0)

log r(x) =  50 
0=00

6.2 a2 log f(x 1 6)

A3 53 log f(x I 0)
4-

3! 593

4

2! 002

+....

0=00

0=00

(2.2) -



By letting A tend to zero and dropping those terms involving squares and higher powers

of A, we see that the LB test of H0 is given by critical regions of the form

alog f (x I 0)

ae >c
0=00

(2.3)

where .c is the critical value; i.e. we reject H0 for large values of the score evaluated at Ho•

A number of other results flow from (2.2). If we wish to test H0 against Ha— : 9 < 90,

then the inequality in (2.3) is reversed. Occasionally, the score evaluated at 00 is zero in

which case (2.3) no longer constitutes a test. We see immediately from (2.2) that the LB

test against H: : 9 > 00 is now based on

ai log f(x I 0)

0=00

where i is the smallest positive integer for which this term is nonzero. It is interesting to

note that the LB test against H: :9 < 90 only has the inequality sign in (2.4) reversed

when i is an odd integer. This means for even values of i, one-sided and two-sided tests

coincide.

The test based on (2.3) is equivalent to the one-sided LM test based on the square-root

of the standard LM test statistic with the square-root taking the sign of the score evaluated

at I/0. This test maximizes the slope of the power curve at H0 in the one-sided direction

within the class of all tests of the same size. It is often also called the locally most powerful

(LMP) test because it is constructed to maximize power in the neighbourhood of H0. For

reasons of continuity, all powers at 1/0 will equal size, so it is difficult to see that this test

is "most powerful" locally at H0. We prefer the term locally best because we know the

test's power curve .has the best slope at the null hypothesis.

.•

There are few applications of this test to problems in which there is truly only one pa-

rameter. One such example is SenGupta's (1987) test for nonzero values of the equicorrela-

tion coefficient of a standard symmetric multivariate normal distribution. Most typically,

applications involve the use of invariance, similarity or marginal likelihood arguments to

effectively eliminate nuisance parameters.
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The most popular application involves testing Ho :9 = 0 against Ha :9 > 0 when

p = 1 in the linear regression model

in which

y=XP-Fu,

U N(0, a2S2(6)),

where y is n x 1, X is an n x k nonstochastic matrix of rank k <n, n(9) is a positive definite
matrix for the 9 values of interest and the k x 1 vector # and the scalar c2 are unknown

nuisance parameters. Without loss of generality, we assume that S2(0) = In because if this

is not the case, (2.5) can be transformed by premultiplying by n(o)-1/2 to make it true.
This testing problem is invariant to transformations of the form

y +

where 70 is a positive scalar and -y is a k x 1 vector. King and Hillier (1985) show that the

LB invariant (LBI) test of Ho against Ha+ has critical regions of the form

> c (2.7)

where z is the OLS residual vector from (2.5) and

an(e)
A --= ae 0=0

acloyi
a° 0=0

The most noteworthy application of this result is the Durbin-Watson (1950, 1951, 1971)

test which is approximately LBI against first-order autoregressive (AR(1)) disturbances.

The true LBI test for this problem has been discussed by King (1981a) and also found to

be LBI against first-order moving average (MA(1)) disturbances (King (1983b)); the sum

of white noise and independent AR(1) disturbances (King (1982)) and particular forms of

spatial first-order autocorrelated disturbances (King and Evans (1985)). Other applications

include testing random walk disturbances (Sargan and Bhargava (1983) and Dufour and

King (1991)); testing simple higher-order autoregressive disturbances (Wallis (1972), Vinod

(1973) and King (1984)); testing for heteroscedasticity (Evans and King (1988)); testing

for random regression coefficients (King (1987c), Nabeya and Tanaka (1988), Leybourne
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and McCabe (1989) and Nyblom (1989)) and testing for spatial autocorrelation (King

(1981b)). An example of a testing problem in which the score evaluated at Ho is zero, is

testing the null hypothesis of a unit root in MA(1) regression disturbances; see for example

Tanaka and Satchell (1989).

The form of (2.7) means that critical values can be found using methods developed for

the Durbin-Watson test statistic. These are based on Imhof's (1961) algorithm, see Koerts

and Abrahamse (1969), Davies (1980), King (1987b), Shively, Ansley and Kohn (1990)

and Ansley, Kohn and Shively (1992). An alternative approach involves using Tanaka's

(1990) Fredholm technique of inverting the characteristic function of the test statistic in

order to find critical values. Methods of approximating critical values of (2.7) have been

investigated by Evans and King (1985a).

Recently, Hillier (1987) observed that there is an exact equivalence between similar

tests and invariant tests of Ho : 9 = 0 in the context of (2.5) and (2.6) for any value of p.

Ara and King (1993) have shown a similar equivalence between tests based on a maximal

invariant (i.e., invariant tests) and tests based on the marginal likelihood.

A major question is how LB tests can be generalized from one parameter (p = 1) to

many parameters (p> 1). For testing 1/0 against Ha : 9 0, Neyman and Pearson (1938)

suggested the use of type C LB unbiased (LBU) regions when p = 2. These tests have

constant power in the neighbourhood of 0 = 640 along a given family of concentric ellipses.

Isaacson's (1951) type D regions maximize the Gaussian curvature of the power function at

= 90 but are extremely difficult tests to apply in practice. One version of the type D test

which admits nuisance parameters is also mentioned by Lehmann (1986) who refers to it as

a type E test. As implied by Lehmann, a type E test can be viewed as a type D test applied

to the density of a maximal invariant which does not depend on nuisance parameters.

Locally most mean powerful unbiased (LMMPU) tests were introduced by SenGupta and

Vermeire (1986). They maximize the mean curvature of the power hypersurface in the

neighbourhood of 19 = 0 within the class of unbiased tests. Their critical regions are of the

form
52 f(x ( 0)

i=1 = 0=00
> cof(x I 0) 10=00 +

7
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where the constants co, cl, , cp are chosen so that the critical region is locally unbiased

and of the required size.

Of course our interest is in testing Ho :9 = 90 against H: : 9 > Go when. p> 1. To

understand the complexities involved in constructing a LB test in this case, observe that

the equivalent multivariate expansion to (2.2) is

log r(x) = 46.1 
a log f(x I 0) 

-F
. 

2

1

1
A' 

a2 log f(x
A -I- • • • (2.8)-592ae 0=00 •

I 60
9=00

where A is now a p x 1 vector and rejecting for large values of log r(x) is the most powerful

test of Ho :9 = 00 against Ha : 19 = 00 + A. Write A = Sw where w is a vector of unit

length (i.e., such that w'w = 1) representing direction from 00 and 5> 0 is distance from

00. Then as S tends to zero we find the LB test is based on critical regions of the form

, alog f(x I 0)

ae 0=00

EP 
wi
a log f(x

i.1
which we can see depends on the direction w.

One possibility is that each of the components

a log f(x 0)

aoi 0=80
> Ci

I 0)
>c

0=00
(2.9)

treated as an individual test, results in the same class of critical regions, for i = 1, ,p,

so that (2.9) corresponds to the same class of critical regions no matter which w value is

chosen. This results in a test that is LB in all directions from Ho under H. Neyman and

Scott (1967) called this property "robustness.of optimality" while King and Evans (1988)

call such tests uniformly LB (ULB). Like UMP tests, they seem to rarely exist. King

and Evans identified that the true LBI test for AR(1) disturbances in (2.5) (a modified

version of the Durbin-Watson test) is also ULB invariant against the sum of q independent

ARMA(1,1) disturbance processes, certain spatial autocorrelation disturbance processes

involving up to four parameters and a stochastic cycle disturbance model which is a special

case of an ARMA(2,1) process.

The next question is what to do when a ULB test does not exist. One option is to choose

a w value that corresponds to a central direction and then apply (2.9) King and Wu (1993)
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advocated the application of SenGupta and Vermeire's optimality criteria of maximizing

the mean curvature of the power curve at Ho in all directions under HI : 0 > 00. They

showed the LMMP test results in critical regions of the form

to log f(x 0)
i=1 0 

(2.10)

which one can readily see from (2.9) is equivalent to the LB test in the direction of 01 =

02 = • • • = Op > 0. Thus maximizing the mean curvature of the power function at Ho is

achieved by maximizing its slope in the most central direction.

The test is based on the sum of scores which makes it easy to apply as we shall see in

subsection 3.8.

2.2 Point Optimal Tests

For any testing problem and a given significance level, in theory there is always at least

one test procedure that optimizes power at a predetermined point under the alternative

hypothesis. Such a test is a point optimal test. It obviously will have excellent relative

power around the point at which power is optimized. It can also have good power away

from this point. For example, if a UMP test exists, then the point optimal test will be

UMP. Examples have also been found of point optimal tests that are approximately UMP

(Shively (1988b)) or are UMP over a subset of the alternative parameter space (King and

Smith (1986)). On the other hand, in some situations, the relative power performance of

point optimal tests can drop away quickly as one moves away from the point at which power

is optimized (see the tests for unit roots and explosive disturbance processes investigated

by Dufour and King (1991)).

While point optimal tests are not suited to every testing problem, they appear to work

best in situations in which the alternative hypothesis is severely restricted which is the

case for one-sided testing problems. It also helps if the null hypothesis can be reduced to

a simple hypothesis through invariance, similarity or marginal likelihood arguments.

For our problem of testing Ho against II: based on the random vector x with prob-

ability density function f(x 1 0) where 0 is p x 1, the Neyman-Pearson Lemma implies

9



that rejecting Ho for large values of f(x I f(x I eo) is most powerful at 0 = 01 > 19o.

This provides a straightforward method of test construction in the case of a simple null

hypothesis.

Now consider the more general problem of testing

Ho : x has density g(x I w)

where w is a q x 1 vector of parameters restricted to the set SI against

Ha : x has density f(x I 0)

where 6' is a p x 1 vector of parameters restricted to the set O. This general testing problem

includes both nested and nonnested problems as special cases. We assume all knowledge

about the range of possible parameter values such as one-sided information is explicitly

included in the formulation of S2 and O. If S2 is restricted to one point, w1, then the test

which optimizes power at 0 = 01 involves rejecting Ho for

r(w1,91) = f(x I 01)/g(x I col) > c*. (2.11)

King (1987a) explored the question of whether a test of the form of (2.11) still optimizes

power at 6' = 01 when CZ is broadened from a single point to a set of points. He observed

that this required c* to remain the critical value when the null hypothesis changes from

w = w1 to w E CI This is the case if w1 and c* can be chosen such that

Pr[r(wi, 01) > c* I x has density g(x I (4)1)] = a

and

sup Pr [r(wi , 01) > c* x has density g(x I co)] = a. (2.12)
wEfi

In other words, we need to be able to choose w1 such that the maximum size of the test

occurs at w --= (-01.

In situations in which such an w1 value cannot be found, King (1987a) suggests the

construction of approximately point optimal tests. This involves searching for that w1

value which minimizes

a — Pr [r(wi, 01) > c* I x has density g(x I w1)]

10



subject to (2.12) holding.

In order to make a point optimal (or approximately point optimal) test operational,

the point at which power is to be optimized must be chosen. Suggestions for choosing this

point have included the end-point of the range of 0 values (Berenblut and Webb (1973)),

mid-points of this range (King (1983a, 1983b, 1985a)) and choosing 01 so that the power at

01 has a predetermined value such as 0.5 or 0.8 (King (1985b, 1989), Shively (1988b), and

Bhatti and King (1990)). If when p = 1, Ho is a simple hypothesis and the power envelope

is monotonic increasing as 9 gets further from 1/0, then the point optimal test with 91
chosen using the latter rule gives rise to a beta-optimal test. Davies (1969) defined the

beta-optimal test to be that test whose power reaches a predetermined level such as 0.5 or

0.8 most quickly as one moves away from Ho in the alternative hypothesis parameter space.

Bhatti and King (1990) illustrate this in the case of testing for a non-zero equicorrelation

coefficient in a standard symmetric multivariate normal distribution.

A variation on this method of choosing 01 has been suggested by King (1989) for

the problem of testing for simple AR(4) disturbances in (2.5) in the presence of AR(1)

disturbances. Invariance allows the problem to be reduced to one in which

and

= {pi : 0 < p1 <i}

= {Pi, P4 :0 < Pi < 1, 0 < p4 <1)

where pi and p4 are the correlation coefficients of the AR(1) and simple AR(4) processes,

respectively. If (p', P4 1 )' denotes the point at which power is to be optimized, King

suggested it be chosen to make the minimum power on p4 = p41 equal to 0.5. Other

suggestions for the ,choice of 01 value are reviewed by King (1987a).

The majority of successful applications of the point optimal approach have been in

the area of testing 0 in the context of the linear regression (2.5) and (2.6). Noteworthy

examples include testing for AR(1) disturbances (Berenblut and Webb (1973), Fraser,

Guttman and Styan (1976), King (1985a) and Dufour and King (1991)); testing for MA(1)

disturbances (King (1983b, 1985b)); testing for heteroscedasticity (Evans and King (1985b,
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1988)), testing for random walk disturbances (Sargan and Bhargava (1983)); testing for

random coefficients (Franzini and Harvey (1983), Nyblom (1986), Shively (1986, 1988a,

1988b), Brooks and King (1994) and Rahman and King (1994)); testing for moving average

unit roots in ARIMA models (Saikkonen and Luukkonen (1993)); testing for block effects

in regression disturbances (Bhatti (1992) and Bhatti and King (1993)); and non-nested

tests of autoregressive versus moving average disturbances (King (1983a, 1987a), Silvapulle

(1991) and Silvapulle and King (1991, 1993)). King and Smith (1986) applied the point

optimal approach to joint one-sided testing of regression coefficients. They showed that

the one-sided t-test applied to a weighted sum of the associated regressors is UMPI along

the ray in the alternative parameter space whose direction is defined by the weights. An

alternative formulation of this test is given by Hillier (1986) who suggested the weights be

chosen to maximize minimum power at the boundary of the alternative parameter space.

3. Asymptotic Likelihood-Based Tests

Research on inequality restricted testing started in the early 1950's and was mainly

in the context of multivariate analysis. Much of the early work was concerned with the

testing problem in which the null hypothesis specifies that the mean of a multivariate

normal distribution lies on the boundary of a non-negative part of a parameter space,

and LR procedures were used. The main results before the 1970's are contained in the

book by Barlow, Bartholomew, Bremner and Brunk (1972). A more recent account of the

likelihood-based approach is found in Robertson, Wright and Dykstra's (1988) book.

This section is planned as follows. The general testing problem is outlined in subsection

3.1. This is followed by a survey of asymptotic likelihood-based procedures for single pa-

rameter testing. Subsection 3.3 outlines some standard results for general multiparameter

one-sided LR, Wald and LM tests. The one-sided LM test is also called the Kuhn-Tucker

(KT) test. Analogous tests of partially one-sided multivariate hypotheses are reviewed in

subsection 3.4. Subsection 3.5 considers the calculation of the probability weights which

characterize the asymptotic null distributions of these one-sided and partially one-sided

test statistics. Related tests that were specifically designed to avoid these weight calcu-

lations are discussed in subsection 3.6 while subsection 3.7 is concerned with applications
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in the context of the linear regression model. The final subsection outlines asymptotic

LMMP tests and reviews the literature on LMMP tests.

3.1 The General Testing Problem

The key issue in testing against inequality restrictions is how to take account of the one-

sided nature of the problem. The conventional two-sided Wald and LM test statistics are

typically quadratic forms of maximum likelihood (ML) estimators and scores, respectively.

Where the number of parameters under test is one, appropriately signed square roots of

these statistics can be applied as one-tailed tests.

Consider a general density function f(x I 0,7) of an n x 1 random vector x, where 7 E r
is a q X 1 nuisance parameter vector, r is a subset of Rq,0 E 0 is a p X 1 parameter vector
under test and 0 is a subset of R. The problem of interest is to test

against

Ho : 9 = 00

Ha : 9 > 00. (3.1)

It is important to note that 00 is assumed to be an interior point of O. This assumption

is needed because the derivations of the asymptotic distributions of many likelihood-based

test statistics rely on the Taylor's expansion of the score function around 00, and more

fundamentally, on the probability of Oi <&0j, where O. is the unrestricted ML estimator of 9.

It is then easy to see why testing a null hypothesis that is on the boundary of the parameter

space is difficult. For example in the case of testing cr-2 = 0 against (72 > 0 where a2 is a

variance, the probability of 5-2 < 0 is meaningless because the density function extended

to cr2 <0 is no longer a valid density function. Subsequently, (3-2 <0 is not a ML estimate.

For a fuller discussion of these difficulties see Self and Liang (1987).

At this point it is convenient to introduce the following notation. Define the asymptotic

information matrix as
1 a2L

1= lim --E( ),
n —co n asasi

13
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where 8 = (0' Let I be partitioned as

I = [Iee 107

Lye Lry 7

and let Pie be the block in .1-1 corresponding to /09, i.e.

I00 (roe? — 1-0114;149)-1.

3.2 Tests of One Parameter

For the case of p = 1, the conventional two-sided Wald test is given by

su, = n(e — 9fl 0)/11/9

which under Ho is asymptotically distributed xi (chi-squared with one degree of freedom)

where ̂  indicates unrestricted ML estimation. To take account of the one-sided nature of

(3.1), we can apply

W = n1/2(O — 90)/(i00)1/2 (3.3)

which under Ho is asymptotically distributed N(0,1) as a test statistic and use the upper

tail of the N(0,1) distribution as the critical region. This test, applied to testing the

regression coefficients f3 in (2.5) and (2.6) with S2 known, and with i" being properly

adjusted, becomes the familiar one-sided t-test and therefore is UMPI.

The two-sided LM test when p = 1 is based on

(alog f(x I 0, io)
S3 = ae

0.00 2)

ge in

which under 1/0 is asymptotically distributed x? where ̂ 0 indicates ML estimation under

Ho. It is obvious then that the test based on

S
n_ipalogf(x

ae (40)1/2
0=00

(3.4)

and the upper tail of the N(0,1) distribution is a proper asymptotic test for (3.1). Note

that this test is a variant of the LB test discussed in subsection 2.1..
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For (3.1) with p = 1, one can also use a signed square root (denoted by R) of the

two-sided LR statistic. Let L(0,7) be the log likelihood function induced by f(x I 0,7).

Then R is defined by

R = sgm(e — 640)[2(L(o,;) — L(eo, ;Yo))] 1/2 (3.5)

which under Ho is asymptotically distributed N(0,1), where sgn(s) = 1, -1, 0 if x > 0,

x <0, x = 0, respectively. The upper tail of the N(0,1) distribution is used as the critical

region.

It is well known that the error of the normal approximation to R (and W, S as well) is

of order Op(n-1/2), (see for example Barndorff-Nielsen (1986)) that is,

R— Z Op(n-112),

where Z denotes a standard normal random variable. Recently, Barndorff-Nielsen (1986,

1991) proposed the modification to R by

R* = R -F R-1 log(U/R)

which under Ho is asymptotically distributed N(0,1) to a high degree of approximation

where U is a statistic depending on a ancillary statistic, say, A and has the same sign as

R. He showed that

R* — Z

conditioning on A. Thus, a one-sided test for (3.1) based on R* and the N(0,1) null

distribution is expected to perform better in terms of size in small samples than does the

N(0,1) approximation for R,W or S. In practice, finding the ancillary statistic A can be

difficult. To handle this problem, DiCiccio and Martin (1993) proposed to replace U by a

suitably chosen T to ,obtain

with

R** = R+ R-1 log(T/R)

R** — Z Op(n-1).

The derivation of T is based on Bayesian methods. Typically, T is a known function of the

derivatives of L(0,7) and a prior density r(0, 7), where 0 and 7 are replaced either with
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unrestricted ML estimates or H0 restricted ML estimates, and r(0,7) is chosen to satisfy

certain conditions. While the normal approximation to R** in small samples is not as good

as to R*, it is better than that to R. For further discussion on the use of higher-order

asymptotics to improve accuracy of this form of one-sided LR test, see Pierce and Peters

(1992).

3.3 General Tests

Instead of taking square roots of the two-sided LR, Wald and LM statistics for the

case p = 1, another approach to testing against an inequality restricted alternative (3.1)

is to follow the traditional ways of constructing one-sided LR, Wald and LM tests. This

involves comparing the log-likelihood function under Ha to that under H0 for the LR test,

comparing ML estimates of 0 under Ha to those under 1/0 for the Wald test, and comparing

scores under Ha to those under H0 for the LM (KT) test. This in turn involves two issues:

inequality (H.) restricted ML estimation, and more importantly finding the asymptotic

distributions of the test statistics under I/0. These one-sided tests can be used for p > 1.

In the rest of this subsection, we review some general results.

Gourieroux, Holly and Monfort (1980) (also see Farebrother (1988) for a summary)

considered testing against (3.1). Let 8 = (0', v')' and 50 = (010,7)' where 70 is the true

unknown value, of the parameter 7. It is assumed that 70 is an interior point of r. Let
A be the score vector that corresponds to 0, scaled by dividing by sample size, that is,

= n-laLlae. Let -S. = 5,1' be the solution (inequality restricted ML estimate) of

max n-1L(0,7)

subject to 0 > 00, 7 E r,
SO

6=3

and

rol (3.6)

(3.7)

where the last equality is the Kuhn-Tucker condition (see Kuhn and Tucker (1951)) which

means that the components of A in (3.6) must be either zero or negative. This is because
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the presence of a positive component in "A implies that L(0,7) has not yet been maximized.

Equation (3.6) can be viewed as the definition of A. Let So = (0'0,iL)' be the solution of

max n-1L(9, -y)

subject to 8 = 00,7 Er,

SO

= _ r
as ö=50— o j •

Note that So is the ML estimate of 8 under the null hypothesis. Gourieroux et al. noted

that for (3.1), the one-sided LR, Wald and LM test statistics are, respectively,

sLR = 2(L(3) — L(80)), (3.8)

SW = n(ad — 00)'(1")-1(8— Go), (3.9)

sKT = — Vir(A‘o —), (3.10)

where i" denotes Pie evaluated under the alternative hypothesis with S = (9', i')' and fp
denotes P98 evaluated at the null hypothesis with So = (010, %)'. The critical regions are the

upper tails of the null distributions of these tests. Obviously, (3.8) and (3.9) are exactly

the general definitions of the LR and Wald tests, respectively, as discussed before. Note

the presence of the inequality restricted score 'A' in (3.10). This implies the computational

advantage of the two-sided LM test only requiring estimates under Ho disappears largely

because A is obtained under the alternative hypothesis.

Gourieroux et al. show that asymptotically sLR = sw = sKT under Ho so the three

tests are asymptotically equivalent under the null hypothesis. (A similar result for gener-

alized linear models is proved in Silvapulle (1994)). This also implies the three tests are

asymptotically equivalent under local alternatives. The asymptotic distribution of sKT

under Ho (sLR and sw as well) is given by

P (sKT <c) — p,i)Pr(x <c) (3.11) -
i=o

for c E R. This is a probability mixture of independent chi-squared distributions, x?, with

different degrees of freedom. The weights w(p, i), i = 0, ,p, represent the asymptotic
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probability of the event that under Ho any i elements of a — 90 are strictly positive, and

the remaining p — i elements are zeros (thus El:_o w(p, i) =1). By (3.6) and (3.7), this is

also the event that i corresponding elements in 'A' are zero and the remaining p—i elements

are strictly negative. Thus, the weights are dependent on the distribution of 'A. which is

information matrix, and therefore density function, f(x I 0,7), specific. We note that

w(p, 0) is the asymptotic probability that 9 — 90 < 0 strictly, and x is the degenerate

distribution with unit mass at zero. Let a be the significance level of the test. If the

w(p,i)'s are known, the positive value c satisfying Pr(sKT > c) = a asymptotically under

Ho can be found by solving

a = w(p,i)Pr(x > c). (3.12)

Note that w(p, 0) is not involved. Also note that a cannot be larger than 1 — w(p, 0) as

asymptotically Pr(sKT > 0) = 1—w(p, 0) and Pr(sKT = 0) = w(p, 0). Because w(p, 0) 5_

in all cases, this causes no difficulty for the conventional choice of a. The probability (3.12)

can be calculated if a subroutine to compute probabilities from chi-squared distributions

is available.

3.4 Partially One-Sided Testing

A generalization of the above problem involves testing

Ho : ei = 9107 02 = 020

against

Ha : 91 > 01009 W1078120 )11 (3.13)

where for 0 = (011,0'2)' ,O1 is pi x 1,02 is p2 x 1,pi p2 = p, and 02 is unrestricted. This

is a partially one-sided testing problem. By defining g = 921 , 511 as the ML estimator

under the alternative hypothesis, So =(91o,98OY as the ML estimator under Ho, and

the corresponding scaled scores as, respectively,

6=3

18

-A1

0



and

6=-40

A'10

A20 1

then the LR, Wald and KT tests are given by rejecting Ho for large values of

S LR = 2(L(8) -

- 9- uni (f09)1[ 1 10
=fl 

[e 
' 6

2 u20 -920]'

i

S KT = n 
[ X-1 --:-. Aio ] fr [ -A.1 7 Ai° I
-A20 -A20 

,

respectively. As in the purely one-sided case, these tests are asymptotically identical under

Ho. The asymptotic distribution under Ho is given by

w(Pi Pr(422+i < (3.17)
i=0

The probability weights have a similar interpretation to those in (3.11).

So far we have presented the main features of the one-sided or partially one-sided LR,

Wald and KT tests. The results are more general than they appear. Instead of (3.13), one

may be interested in testing functions of the parameters. That is, testing

against

Ho : h1(9) =0, h2(0) = 0

Ha h1(0) > 0, excluding Ho, (3.18)

for some functions h1(.) and h2(-) where h1(•) is m1 x 1 and h2(•) is m2 x 1. By regarding

h2(9) as a parameter transformation (cki = hi(9)) and calculating the information ma-

trix and scores accordingly, the results (3.14) to (3.17) remain the same with respect to

= (¢c, 012)' with pi in (3.17) replaced by mi, i = 1,2. Of course, additional regularity

conditions on the differentiability of hi(.) are assumed.
•••

Kodde and Palm (1986) constructed a test for (3.18) from another angle. They consid-

ered comparing the minimum distance, Do, from n1/2çf to the space of Ho to the distance,
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D1, from n112 to to the space of Ho U Ha, where -(4 is any unrestricted consistent estimator

of 0. For example, 0- can be the ML estimator 40̂ = h(o). Suppose E is the asymptotic

covariance matrix of nliCk and the distances Do and D1 are in the metric of E-1, see

below. Then the test statistic is D = Do — D1. The test has the asymptotic distribution

implied by (3.17) (with p1 = ml, P2 = n22)-

3.5 Probability Weights

The essential step in the construction of one-sided LR and Wald tests, and of the KT

test is to find the probability weights w(p,i) which determine the mixture of chi-squared

distributions for the asymptotic null distribution. Let IJ,j = 1,2,... , 2" denote 2" subsets

of {1,2, , p} where i indicates the number of elements in /3:, let Mi be the collection

of (f) /ji.'s with a particular i value. Associated with Mi, let Ai be the event that any

i elements of a — 00 are strictly larger than zero, and the remaining p — i elements are

zero. Thus, E Mi determines which i elements in a — 00 are strictly positive. Note Ai

can happen in (f) mutually exclusive ways according to lj E Mi. We use Em,to denote

summation over these (f) exclusive subevents. Recall that w(p,i) = P(Ai). We first

discuss how to determine the weights by considering the limiting case as n oo.

The weights depend on the asymptotics that lead to the null distribution (3.11). An

essential assumption is that the unrestricted ML estimator n1/2(O — 00) is asymptotically

normal with Pe as its covariance matrix. Since Pe can be consistently estimated, it can

be treated as if it is known. Heuristically, by regarding x as n1/2(O — 90) and E as Pe, the

weights for the problem (3.1) are equal to the weights in the specific problem of testing

H0: 9 = 0 against Ha: 9 > 0 when x N(9, E) (3.19)

where E is p x p and known. KuclO (1963) proposed the one-sided LR test for this case.

In particular, because x is normal and E is known, the null distribution (3.11) was proved

to hold exactly in finite samples for the LR test. The same exact null distribution also

holds for testing linear regression coefficients when the error vector is normal with known

covariance matrix; see subsection 3.7.
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Because a multi-variate normal distribution is characterized by its covariance matrix E,

the weights are functions of E and that part of the parameter space under test, denoted as

C. Therefore we may denote the weights as w(p,i) = w(p, i I E, C), where i is the degrees

of freedom of the chi-squared distribution to which the weight w(p,i I E, C) is attached.

Typically when C is implied by Ho U Ha from (3.19); i.e., C = {9, 9 > 0}, w(p,i I E, C) is

simply written as w(p,i IE).

Within the framework of (3.19), the determination of P(Ai) = w(p,i I E) becomes

relatively straightforward. Given the observation x, 9 is the solution of

D1 = min(x — 9)'E-1(x — (9);
0>o

i.e., a is the projection of x onto the cone C = 10; 9 > 0) in the metric of E-1. (D1 is

called the distance from x to C in the metric of E-1.) P(Ai) is the probability of the set of

those x in the sample space whose projections on C = {9, 9 > 0) contain exactly i elements

•that are larger than zero. From this, it is obvious that if E = I, due to symmetry,

w(p,i I I) = (12—P , i = 0,1,...,p.

Kuclo (1963) demonstrates that for a general E,

w(P, E) = P((Emo-i )P(Emi;m0
Ali

(3.20)

where M: is the complement of M, Emf is the covariance matrix of the marginal distribu-

tion of those elements of x whose coordinates belong to MI, Emoif is the covariance matrix

of the conditional distribution of elements of x whose coordinates belong to Mi given the re-

maining elements are zero, P(A) is the probability of y > 0 for y N(0, A), P(Emo;m) = 1

and P((Em; ) = 1. As an example, for p = 2, it is easily seen that w(2, 1 I E) = 0.5,

w(2, 0 I E) = cos-1 p/27r and w(2, 2 I E) = 0.5 — w(2, 0 I E) where p is the correlation

coefficient between x1 and x2 for x = (x1, x2)' 1V(0,E).

Now consider testing Ho : RO = 0 against Ha : RO > 0 given x N(9, E) where R is a

known k x p matrix with k <p and of rank k. This is the case where C = 19; RO > 01. _

When k = p, by regarding RO as a new parameter vector, it is easy to see that w(p,i
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E, C) = w(p,i I RER'), i = 0, 1, ... p, and therefore Kuclo's formulae can be used to find

w(p,i J RER'). When k <p, w(p,p — k E, C) = w(k,i I RER'), i = 0, 1, . . . ,k,

and w(p, j J E, C) = 0, j = 0, 1, ,p — k — 1. As we see in this example, when the

parameter space under the alternative hypothesis is specified as a cone such as C, the

basic idea is to transform the parameters to get a testing problem of the form of (3.19),

so the weight formulae can be applied (see Shapiro (1988), pp.54-55, for more details).

This idea can also be found in Wolak (1988). Note however that in practice, when p

(the number of restrictions) is greater than 4, calculation of the weights becomes very

complicated. Computer programs for calculating the weights based on (3.20) have been

written by Bohrer and Chow (1978).

3.6 Tests That Avoid Weight Calculations

To avoid the difficulty of calculating the weights, Kodde and Palm (1986) provided

lower and upper bounds of the critical values for the general case of (3.18). These can

be used for cases such as (3.1) and (3.13) and for special cases such as (3.22) in the next

subsection. This method is quite easy to apply in practice. However the inconclusive

region becomes wider as p2 increases.

Rogers (1986) proposed a modified KT test for (3.1) with 00 = 0. This test avoids the

calculation of ML estimates under the alternative hypothesis. Specifically, this involves

constructing 2P cones Oj that partition RP according to the 2P sets ill:, j = 1,2,... , 2P. Let

Wo be c1 where /0 is the asymptotic information matrix I evaluated at 80. The structure

of Cl(li is determined by elements of Wo. Also define do = n-10L/a8 1,5=50. Let

VO = p : 01W 0[1-

Construct the p x (p q) matrix

Z0 = [I p VO[1" p 0}W o[0 Id]

and let Boi be the (p q) x (p q) symmetric matrix of zeros whose top p x p block is

170 — (([in diag(ej)] O)Vo a/p — diag(ei)]
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in which (•)± denotes the Moore-Penrose inverse and ei is the p x 1 vector whose kth

element is one if k EIJand zero otherwise, where /ji• is associated with the cone C.

The construction of these cones and matrices is motivated by the fact that asymptotically

n-1/2 Zodo E C1,j if and only if the i elements (whose coordinates are elements of /I': on

which Oi is based) of n 21 "6 are strictly positive and the remaining n — i elements are zero.

Rogers shows that under Ho,

S KT - ndoW0BoiWodo 0 if ni/2z0a E C, (3.21)

and the unconditional limiting distribution of ndoW0BojWodo is In practice,
O• A

CFO WO BO iWO dO is not observable, and it is estimated by d'oW0BoiWodo. Note that un-

like the notation in Rogers' paper, we have used "0 to denote estimation under H0 and

have omitted the subscript n. Define

and

Qn = ncroW0BoiWodo

Sn = cilokijoifiTocio

if n1/2Zodo E Coii,

if n1/220cio E

where oi is Coi i when So is replaced by So. Rogers shows that under Hooi 

Sn — Qn40.

This, combined with (3.21), implies Sn — sKT-40. Thus, the test based on Sn and the KT

test are asymptotically equivalent under the null hypothesis of 0 = 0. •

The calculation of Sn involves calculating n1/2204 first as Zo is not .4j specific, iden-

tifying the set 61(i)i (therefore the set /-&i) such that n1/2204 E 611)j, and consequently

finding boj which is ij;i specific. The calculation does not require inequality restricted ML

estimation. The asymptotic distribution of Sn under Ho is still (3.11) as Sn — SKT -:-134 0

implies Sn and sKT have the same asymptotic distribution. The weights are

w(P,i) = P(Zox E C-i) = P(Ai)

where Zox N(0, Z0/0Z), C-i is the union of the p!/(i!(p— i)!) cones C for fixed i. The

weights w(p,i) can be found from (3.20). They may also be estimated by integrating the

N(0, 20i02) density over the sets
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To avoid calculating all the weights, Rogers suggested that the test be conducted based

on critical values obtained separately from component individual x2 distributions. Specifi-

cally, let ci,,,* denote the a*-level critical values of the x distribution for i = 1,... ,p. Ho

is accepted if n1/2204 E O, for one of i = 1, ,p and S. < ci,a* for the corresponding

i, is rejected if S. > ci,c,* for the same i, and is accepted whenever n1/220it0 E 61-0. The

overall asymptotic size of this strategy is

a*w(p,i) = a*(1 — w(p, 0)).
i.1

Thus if a test of asymptotic size a is desired, one should take a* = a/(1 — w(p, 0)).

Using this testing strategy, the burden of calculating weights reduces to calculating w(p, 0)

only, which is very simple from (3.20) once I is estimated. Rogers (p.350) pointed out

possibilities of further simplification.

The modified KT test may be used when the null hypothesis is on the boundary of the

admissible parameter space. The validity of this is guaranteed if, among other regularity

conditions, the normalized score vector under the null is asymptotically normal with mean

zero.

3.7 The Linear Regression Model

More specific results may be obtained for the linear regression model (2.5) and (2.6).

To avoid possible confusion in notation, we replace S2(9) in (2.6) by 12(i).

The problem of interest is one of testing

against

Ho : Ri3 = r

: Rfl > r, (3.22)

where R is a known p x k matrix with rank p < k, and r is p x 1 and known. This is in

the form of (3.18) with 0 replaced by O. Gourieroux, Holly and Monfort (1982) show that,
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if (3-2S2(77) is known,

SLR = 2(441(72 7 71) — .7270)

= —(y XS)'(a2C2(0)-1(Y — X/3) (y X40 )1(a2f2(0)-1(Y X1610),

sw = (R4 — r)'[R(Xl(cr2f2(77))-1 X)— R1-1(R - r),
S KT = (A0 :\)1 R(X' (a2 f2(77))— X)RI ( c) —

and sLR = sw = sKT, where So is the equality constrained (under 1/0) estimator of 13.

These tests have exact null distributions as probability mixtures of chi-squared distribu-

tions and the degenerate distribution at zero, as in (3.11). If cr2S2(77) is unknown, cr2 and 77

in sr,R, sw and sKT above are replaced in the conventional way by the ML estimators 6i

and 7,0 under 1/0 and 5-2 and fj under Ha, respectively. The familiar finite sample inequality

SW > SLR > SKT still holds, and the above null distribution holds asymptotically.

Farebrother (1986) considered the case where Q(0 = In so the error covariance matrix

is unknown up to the scalar parameter cr2. He found

SO SW > SLR > SKT.

sw
sLR = n log (1 —

n

SKT
SLR = —n log (1 — n ,

In addition, the exact null distribution of sKT

mixture of (central) Beta distributions so that

is a probability

Pr(sKT In < c) — (p,i) Pr(B(i/2,(n — k p — 0/2) < c),
i=o

where B(•,•) denotes the Beia random variable. Thus, all three tests have the same

critical regions in the sample space. For the same problem, Hillier (1986) used similarity

arguments to obtain the one-sided LR test, whose critical region is characterized by the

tails of F(i, n — k p — i) distributions. The equivalence of this critical region to that by

Farebrother may be checked by using the fact that B(i/2,j/2) = iF(i,j)/(iF(i,j) j).

Note that for the special case of p = 1, sw (say) does not reduce to the familiar one-sided

t-test or its asymptotically identical variant W given by (3.3.). For 12(77) = In, Silvapulle
(1992a) developed tests of one-sided hypotheses which are robust against non-normal error

distributions. These tests are based on M-estimators and bounded influence estimators.
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For the linear regression model (2.5), Wolak (1987, 1989) considered the problem of

testing Ho : Rfl > r against Ha : r. This problem is of interest when one cannot be

sure about ruling out the possibility of Rig > r not being true. For an interesting example,

see Silvapulle (1992b). Wolak (1989) was able to find the null distributions of the KT (Wald

and LR) statistics for respectively testing Ri3 = r against Ri3 > r and Rf3 > r against

RO r as probability mixtures of products. of two independent x2 distributions when

o-2S2(77) is known. If o-2f2(77) is unknown up to finite parameters, these null distributions

hold asymptotically. Also SLR = sw = sicT if a2Q(77) is known. If cr2C2(77) is unknown,

sLR < sw < sKT in finite samples and the three tests are equivalent asymptotically.

By utilizing primal and dual relationships in quadratic programming, he also established

the equivalence of the KT (Wald and LR) test for Rig > r against R3 r to the KT

(Wald and LR) test of Ho :A = 0 against Ha : A> 0 where A is the vector of Lagrange

multipliers implied in the inequality restricted ML estimation of (3. Thus power studies

can be concentrated on cases which test a point null against one-sided alternatives.

In subsection 3.5, we discussed ways of calculating the probability weights in the asymp-

totic null distributions of the test statistics. Another way to deal with these weights is to

use Monte Carlo methodology. Under this principle, in addition to simulating the weights,

one can also consider certain variants of the one-sided LR, Wald or KT tests. For example,

Farebrother (1990) considered using

rrwc — r)IVar(bi(RS — r))

as a test statistic for testing (3.22), where bi is the ith row of (R(X' X)' R')-1 . Though

critical values of this test may also be obtained by numerical integration, Farebrother

pointed out that simulation techniques can be employed for the same kind of statistics

used when R has row rank deficiency.

3.8 Asymptotic LMMP Tests

In subsection 2.2, King and Wu's (1993) LMMP test was introduced as a multi-

parameter generalization of the LB test of a single parameter. The test is based on the sum

of the scores of the parameters under test evaluated at the null hypothesis with critical
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regions given by (2.10). If there are difficulties in finding exact critical values or if nuisance

parameters are present, an asymptotic version of the test for the general problem outlined

in subsection 3.1 can be constructed as follows. Ho is rejected for large values of

ialogf(x Ie ao e=e0

(neget)-1/2 (3.23)

which under Ho is asymptotically distributed N(0, 1), where is the p x 1 vector of ones.

Since King and Wu first presented their test procedure (King and Wu (1989)), a range

of applications of both the exact test (2.10) and the asymptotic test (3.23) have been

suggested and/or investigated by various authors. Leybourne and McCabe (1992) and

McCabe and Leybourne (1994) proposed their use in testing for multiple random-walk co-

efficients in nonlinear and linear regression models, respectively. King and Shively (1993)

suggested the use of the exact LMMP invariant (LMMPI) test for two random coefficient

testing problems which they had reparameterized to overcome difficulties caused by nui-

sance parameters that are present only under the alternative hypothesis. Their Monte

Carlo results suggest that at least for testing for the presence of a single Rosenberg (1973)

AR(1) regression coefficient, the test has good small-sample power properties. Shively

(1993) also recommended the use of the exact LMMPI test in the case of testing for AR(p)

disturbances with missing observations in the linear regression model. His empirical power

investigation suggests the test has good power properties against AR(p) disturbances. Wu

and Bhatti (1989) investigated the power of the exact LMMPI test for three-stage block

effects in linear regression disturbances.

Lee and King (1993) proposed the use of the asymptotic LMMP test for the presence

of autoregressive conditional heteroscedastic (ARCH) and generalized ARCH (GARCH)

regression disturbances. Their Monte Carlo results show that the test has better power

properties and possibly more accurate critical values than the standard two-sided LM

test for second-order ARCH and GARCH disturbances. They also found the asymptotic

LMMP test to be reasonably robust under nonnormality.

Wu (1991) and King and Wu (1989, 1993) give general formulae for exact LMMPI

tests of the error covariance matrix in the linear regression model (2.5). They investigated

the power of exact LMMPI tests for various testing problems and found that for certain
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problems and regression matrices, the test can perform relatively poorly especially on the

boundary of the parameter space. Baltagi, Chang and Li (1992) report similar findings in

the case of testing for two-way error components in (2.5) as do Ara and King (1993) and

Rahman and King (1993) (also see Rahman and King (1994)) for the asymptotic LMMP

test for multiple Hildreth-Houck (1968) random regression coefficients in (2.5). These prob-

lems with power are caused by situations in which there is a degree of cancellation occurring

in the sum of scores. The test appears to work well .when scores are positively correlated

and break down, particularly near boundaries, when scores are negatively correlated.

Among other things, Ara and King (1993) and Rahman and King (1993) investigate

the application of asymptotic LMMP tests to marginal likelihoods or equivalently the

likelihood of a maximal invariant in the case of testing linear regression disturbances. Ara

and King (1993) assume all nuisance parameters can be eliminated by invariance while

Rahman and King (1993) allow for nuisance parameters which cannot be eliminated. In

the latter case in particular, this approach appears to result in a slightly more accurate

test than (3.23) applied to the full likelihood function.

4. Concluding Remarks

After surveying the literature on one-sided testing, it is not difficult to conclude that

testing one parameter is much easier than testing multiple parameters. Consequently the

literature on one-sided testing of one parameter is much better developed than that on

one-sided multi-parameter testing. Locally best tests and point optimal tests typically

work well in the one parameter case while if there are nuisance parameters that cannot be

eliminated by invariance, similarity or marginal likelihood arguments, true one-sided LR,

Wald or LM tests can be applied. When it comes to one-sided multi-parameter testing, it

is not clear we have all the answers. A ULB test is unlikely to exist and there is evidence

that LMMP tests do not necessarily work well in all situations. We suspect the same

is true of point optimal tests. There are the general asymptotic one-sided tests based

on inequality-restricted ML estimates that were discussed in subsection 3.3. A question

mark hangs over these because in the one-sided case there are examples where these tests

differ from known uniformly most powerful tests for large significance levels. In addition,
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when the number of parameters under test is large, the calculation of the weights for the

asymptotic distribution under the null hypothesis is not easy. Because they are problem

specific, they typically need to be estimated using simulation methods.

One option in the multi-parameter case that has not been discussed above is multiple

single-parameter testing. This involves a sequence of separate one-sided tests of single

parameters, a good example being separate t-tests of different coefficients in the linear

regression model. The main difficulty with these procedures is in controlling the overall

probability of a Type I error. They are known as induced tests and almost always involve

the use of probability inequalities to approximately control overall size. An excellent survey

of this literature is given by Savin (1984). With the exception of Savin's (1980, 1984) work,

there are very few comparisons of the small-sample power properties of induced tests and

multi-parameter tests. In general, induced tests often have a relative power advantage

along or near axes when the null hypothesis involves zero parameter values.

In conclusion, the incorporation of inequality information into statistical procedures

can help improve the quality or accuracy of statistical inference. How this is best done in

the case of testing multiple parameters still appears to be an open question which requires

further research.
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