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Abstract

There is a considerable literature in econometrics on varying coefficient regression mod-

els. Some of the proposed models are simple and parsimonious. However given that even

the simplest varying coefficient model is more complex than the constant coefficient model,

researchers need to be able to test the adequacy of the constant coefficient simplification.

This paper surveys the literature on testing for the presence of varying regression coeffi-

cients. We outline the wide variety of tests that have been proposed and look in detail at

comparisons of the properties of different tests. In general, the literature indicates that tests

that take into account the one-sided nature of the testing problem do best. Therefore tests

such as point optimal tests and locally most mean powerful tests typically have superior

power properties relative to other available tests. The paper concludes with a review of the

application of this methodology in two areas of empirical finance. These involve testing the

time constancy of systematic risk in the market model and testing the unbiased prediction

hypothesis in forward and futures markets.
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1. Introduction

The literature on varying coefficient regression models dates from the early days of

econometrics, with Keynes' (1939) critique of the use of constant coefficient models by

Tinbergen (1939). Despite this early advocacy of the use of such models, their popularity

was not enhanced until the development of simple parametric forms of varying coefficient

models such as those suggested by Hildreth and Houck (1968), Rosenberg (1973) and Coo-

ley and Prescott (1973a), and Lucas' (1976) econometric policy evaluation critique based

on the rational expectations revolution in macroeconomics. Since then, the use of varying

coefficient models has taken off with published surveys on the topic including Raj and

Ullah (1981), Beck (1983), Chow (1984), Nicholls and Pagan (1985) and Swamy, Conway

and LeBlanc (1988a, 1988b, 1989). Accordingly, applied econometric work has begun to

take interest in the varying coefficient regression model as a serious alternative to tradi-

tional fixed coefficient modelling. Of particular recent interest has been Granger's (1993)

suggestion that varying coefficient models are likely to provide an adequate approximation

to non-linear models.

The aim of this paper is to review the literature on hypothesis testing of varying co-

efficient models. Accordingly, Section 2 describes the main varying coefficient models in

which the coefficient varies stochastically over time. While limited consideration is given

to models of discrete regime shifts in Section 3.4, the main focus of this paper is stochastic

varying coefficient models where the parameters of interest evolve continuously over time

as opposed to changing discretely. Section 3 then reviews the literature on testing for the

presence of varying coefficients in the context of the linear regression model. It finds a

variety of testing strategies have been used and that the evidence on power considerations

favours tests that take into account the one-sided nature of the testing problem such as

point optimal tests (see King 1987a) and locally most mean powerful tests (see King and
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Wu 1990 and Wu and King 1994). Section 4 reviews the theory of point optimal testing

and its application to testing varying coefficient models. Section 5 discusses some of the

applied work using varying coefficient models, focusing on two main applications in em-

pirical finance. These applications are the time constancy of systematic risk in the market

model, and the unbiased prediction hypothesis in forward and futures markets. In general,

both of these applications have provided some evidence in favour of the presence of varying

coefficient regression models. Section 6 contains some concluding remarks.

2. Varying Coefficient Models

Of interest is the linear regression model with a single.time varying coefficient,

Yt = xtOt + zita + et, (1)

in which yt is the dependent variable, xt is the non-stochastic regressor with the single

varying coefficient fit, zt is a k x 1 vector of non-stochastic explanatory variables with fixed

coefficient vector a, et EV(0, o-2) and t = 1,2, ..., n.

2.1 The Hildreth-Houck Random Coefficient Model

The Hildreth and Houck (1968) random coefficient model states that the single varying

coefficient i3t from (1) follows the process,

fit = fi ut,

in which ut IN(0, Aoo-2) and is independent of et•

If fl t follows this process then by substitution, the model (1) becomes,

5
yt = xtp zta vt,

in which vt = Et -I- XtUt. The properties of vt are that it is normally distributed with,

E(V) = 0,

Var(vt) = (72(1 Aox2t)i

3
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and

Coy (vt , vs) = 0,

Therefore, if the single varying coefficient flt follows the Hildreth-Houck random co-

efficient model, then the disturbance term in the reparameterised model (3) will be het-

eroscedastic, making ordinary least squares (OLS) estimates of the parameters of the model

inefficient, confidence intervals based on those estimates misleading and forecasts generated

from the estimated model inefficient. The Hildreth-Houck random coefficient model col-

lapses back to the constant coefficient model when Ao = 0, making this the key parameter

for the model.

From an economic perspective, the Hildreth-Houck model has an instantaneous mean

reversion property. When the coefficient (3t is shocked away from its mean, it always

instantaneously reverts back to /3. Therefore the effect of any shock is merely transitory

and confined to the period in which it occurs.

2.2 Rosenberg's Return to Normalcy Random Coefficient Model

The Rosenberg (1973) return to normalcy random coefficient model states that the

single time varying coefficient #t from (1) follows the process,

fit = Oflt-i + (1 - 0)13 + at, (4)

in which at iN(0, Ala') and is independent of et. For (4) to be a stationary process, it is

required that I i< 1. However a more economically meaningful restriction is 0 < q5 < 1,

as it produces a smooth evolution of the coefficient over time as opposed to the oscillations

which would be associated with a negative ç value. As Collins, Ledolter and Rayburn

(1987) point out, a smooth evolution of the coefficient over time is what applied researchers

would expect to find. Further, a negative 4 value poses difficulties in interpretation and

analysis if the period between observations is changed.

Under this process, the model (1) transforms to,

Yt = xt zta vt,

4
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in which vt = xt(i3t. — /3) + et. The properties of vt are that it is normally distributed with,

and

E(vt) = 0,

var(vt) = 0-2(1+ 4A1/(1—

COV(Vt, Vs) = (A10-2XtX301t-31)/(1 — 02), t s.

Therefore, when the single varying coefficient 13t from the model (1) follows the Rosen-

berg return to normalcy random coefficient process, the disturbance term in the reparam-

eterised model (5), will be both autocorrelated and heteroscedastic. This makes OLS an

inefficient method by which to estimate this model. It again leads to misleading confi-

dence intervals on the estimated parameters and inefficient forecasts from the estimated

model. The model collapses back to the constant coefficient model when Ai = 0 leaving

unidentified and unnecessary in the case of the constant coefficient model.

From an economic perspective, Rosenberg's model still possesses a mean reversion prop-

erty. However, unlike the Hildreth-Houck model this mean reversion is not instantaneous.

The speed of mean reversion depends on the value of the AR(1) parameter 0. The speed

of mean reversion is greater the smaller is the value of 0. In the limiting case of ç5 = 0, the

Rosenberg model collapses back to the Hildreth-Houck model, and mean reversion becomes

instantaneous. In the more general setting of non-zero 0, any shocks do have a persistent

effect, the duration of that effect being dependent on 0. However, these shocks eventually

die out, returning the process to its mean.

2.3 Other Models

There exist a variety of other varying coefficient models. A popular alternative is the

random walk coefficient model introduced by Cooley and Prescott (1973a, 1973b), where

Ot from (1) follows the process,

(6)

in which bt iN(0, )2u2) and is independent of et.
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This random walk coefficient model can be viewed as a limiting case of the Rosenberg

model, in which = 1. In this case, the coefficient has no mean reversion properties

and the effects of any shocks are permanent. It is this property which makes this model

unappealing in most economic situations. Typically economic theory, will provide likely

mean values for the coefficients, therefore implying that any suggested varying coefficient

process should allow the coefficients to return to this mean.

This model was extended to the ARIMA(0,1,1) case by Cooley and Prescott (1976)

where fit from (1) follows the process,

flt= ,@t-i +Pt - (7)

in which pt r.s /N(0, A3o-2) and is independent of et. The unfortunate feature of this model,

given that it is an extension of the random walk coefficient model, is that it also does not

have a mean reversion property. For this reason, Ashley (1984) claimed that the Rosenberg

model should be preferred to the Cooley-Prescott model as the mean of a coefficient will

typically be a value of some economic significance.

A different extension of the random walk coefficient model is the ARIMA(1,1,0) model

introduced by Shively (1988a). This model has fit from (1) following the process,

13t — —13t-2)+ct• (8)

in which ct /N(0, A4a2) and is independent of et. The ARIMA(1,1,0) coefficient model

collapses back to the random walk coefficient model in the case where = 0. The

ARIMA(1,1,0) coefficient model also has no mean reversion property, and hence may prove

unappealing in most economic modelling situations.

The possibility of the varying coefficient following a more general process, such as an

ARIMA(1,0,1) process has been suggested by Ohlson and Rosenberg (1982) and Collins,

Ledolter and Rayburn (1987). This would give the process for the single time varying

coefficient #t from (1) as,

fit = POt—i +(1 — p)13 vt Ovt—i-

in which vt IN(0,A5a2) and is independent of et.

6
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Finally, in the regime of stochastic parameter regression models, Nicholls and Pagan

(1985) suggested a more general view of an ARIMA(p, d, q) model. In this case,

p(L)(i3t - 0) = 6(L)v.

where L is the lag operator and p(L) and O(L) are polynomials in the lag operator.

(10)

The difficulty with a.general process such as this, lies in identification of the appropriate

model. In the context of identifying a process for the coefficient, one has even greater

difficulty than in the case of identification of an ARIMA model for a time series. This is

because while the researcher is able to directly observe a time series, no such luxury is

present with a time varying coefficient.

In general, these other models are not as satisfactory as either the .Hildreth-Houck or

Rosenberg models. The two main reasons for this are the absence of mean reversion prop-

erties in the integrated models and the lack of parsimony in the more general ARMA(p, q)

models. The mean reversion property of the varying coefficient model is of critical impor-

tance. Frequently economic theory will suggest testable restrictions on the mean response

of the coefficient. If the varying coefficient model chosen does not possess a mean reversion

property then one is unable to test these theoretically significant restrictions. The need to

restrict attention to simple parsimonious models with a mean reversion property is on the

grounds of making the estimation of the model simple. As such, estimation of even the

simple models is difficult (see Swamy, Conway and Le Blanc (1988b)).

2.4 Multiple Time Varying Coefficients

An obvious generalisation of the single time varying coefficient model (1) is to allow

multiple time varying coefficients so that (1) becomes,

Yt = xItth ztI a + et,

in which xt is a p x 1 vector of regressors and f 3t is a p x 1 vector of time varying coefficients.

A special case of (11) is,

Yt = xitfit + Et, (12)
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in which all the coefficients vary and a = 0.

For Hildreth-Houck random coefficients,

fit ut, (13)

where now ;61 is a p x 1 vector of constants and ut is a p x 1 disturbance vector such that

ut N(0, a2C2). The disturbances ut and et are assumed independent and often f2 is

assumed diagonal. The analogous model to (3) is,

yt = 4(3 zita vt, (14)

where vt EV(0, o.2(1 + xitf2xt))-

In the case of Rosenberg's return to normalcy model, the most general coefficient process

is for t t — :64 to follow a general first-order vector autoregressive (VAR(1)) process,

(fit - 13) = A(13t-i - 0) + at, (15)

where L is ap xp matrix of coefficients and at r•., N(0, o-2R). The disturbances at and

et are assumed independent and for (15) to be a stationary process the eigenvalues of A

must be within the unit circle. As before, A and f are often assumed to be diagonal. The

analogous model to (5) is now (14) in which,

E(V) = 0,

Var(vt) = a2(1 x't(S2 + ASIA' + A2fi(A')2 --)xt),

and,

Cov(vt, vs) = a2xItAt—s(Q AQA' A2S2(A1)2 ...)x,), for t > s.

The random walk coefficient model generalises to fit following the process,

fit = ot_i bt, (16)

where fit is a p x 1 vector, b N(0, cr2S2), and bt is assumed independent of et. Then (11)

can be written as,

Yt = xitfio zita vt,
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where now,

so that,.

and

vt = et +

E(vt) = 0,

Var(vt) = cr2 (1 + tx1tnxt),

Cov(vt, v,) = o-2 min(s, t)xisf2x1.t.

3. Testing For Varying Coefficient Models

3.1 Constant versus Hildreth-Houck Random Coefficients

The problem of testing the constant coefficient model against the single Hildreth-Houck

(1968) random coefficient model (1) and (2) can be viewed as testing the constant coefficient

model (3) for a special case of the more general form of heteroscedasticity,

Var(vt) = 72 (1 + Aogand,

in which,

qt* = (qt qmin)/(qmax — qmin).

The Hildreth-Houck model is the special case of this where d = 1, and qt = 4. The key

parameter in this testing problem is )o, with. the testing problem of interest being,

: Ao = 0 against Ha : A0 > 0.

The testing problem is one-sided, because Ao is a ratio of variances and therefore must be

strictly non-negative.

Tests for this problem can therefore be divided into two main categories. We will first

consider general tests for additive heteroscedasticity, and then tests specifically designed

for detecting the Hildreth-Houck random coefficient model. An early test for additive

heteroscedasticity is that suggested by Goldfeld and Quandt (1965).
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Goldfeld and Quandt's test first requires the observations to be ordered according to

the magnitude of the additive heteroscedasticity. Then c central observations are omitted,

and seperate regressions run on the first (n — c)/2 observations and the last (n — c)/2

observations. The test statistic is

F = SSE2ISSE1,

in which SSEi is the sum of squared residuals from the regression involving the first

(n — c)/2 observations and SSE2 is the sum of squared residuals from the regression

involving the last (n — c)/2 observations. The statistic is distributed F((n — c — 2k —

2)/2, (n — c— 2k — 2)/2) under the null hypothesis and rejects the null hypothesis for large

values of the test statistic.

Szroeter (1978) suggested a test for heteroscedasticity based on the Durbin-Watson

(1950, 1951) bounds. He suggested the statistic,

=

in which the observations are ordered in a manner consistent with an increasing disturbance

variance, is the OLS residual vector from the regression (3) and,

di = 2(1 — cos(irin + 1)).

The test rejects the null hypothesis of homoscedasticity when

> 4 — di(n + 1, k + 2),

where cli(n +1,k +2) is the Durbin-Watson lower bound for n 1 observations and k +2

regressors including the constant dummy. The test fails to reject the null hypothesis when

< 4 — clu(n +1,k + 2),

where du(n +1,k +2) is the Durbin-Watson upper bound for n 1 observations and k +2 •

regressors including the constant dummy. Otherwise the test is inconclusive. Harrison

(1980) examined the small sample properties of this test and found it to be subject to a high
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degree of inconclusiveness. As a consequence he proposed two supplementary procedures

for circumventing this problem. King (1981) tabulated tighter bounds for Szroeter's test.

Harrison and McCabe (1979) suggested a bounds test based on the statistic

b=

where A is a matrix with m ones on its diagonal and zeros everywhere else. Critical

values and bounds for this statistic can be derived in an identical manner to that for the

Durbin-Watson test. Harrison and McCabe found their test to have similar power to the

Goldfeld-Quandt F test.

King (1982) (also see Evans and King 1988) suggested an alternative bounds test which

is approximately locally best invariant (LBI) (see King and Hillier 1985) in testing for

additive heteroscedasticity. His test statistic is

S = (Etn--1e2t(t 

Bounds on the critical value for the test statistic are provided by King (1982). He compared

the power of his test and the Goldfeld-Quandt F test, and found his test to have better

small sample power properties.

A problem with the above tests is that they require the observations to be ordered

according to the heteroscedasticity. This makes them difficult to apply, a problem which

is amplified if one is dealing with multiple varying coefficients. Accordingly consideration

is now given to tests designed with specific recognition given to the problem of testing for

the Hildreth-Houck random coefficient model. An early test specifically designed for the

single parameter Hildreth-Houck model is the t test introduced by Theil (1971). This test

is based on OLS residuals from (3). Working with residuals:one can write:

^2 
et = 

2 rnn 2 2 0.2 muAoU m w:=1 t: t t,

in which mij is the (i, j)th element of the M matrix from the regression (3), i.e., In —

X(X1 X)-1 X1 , where the tth row of X is (zit, x1). This relationship can be interpreted

as a regression relationship with a disturbance term Wt and, after estimation by OLS, a
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t test can be conducted on Ao. There exist three main problems with this test. First,

the properties of wt are such that generalised least squares (GLS) has to be applied,

and the GLS estimator is a function of the unknown Ao. Second, estimation is typically

unconstrained and a large number of negative estimates are obtained for Ao, a result

which is not consistent with theory given the non-negativity restriction on Ao as it is

a ratio of variances. Negative estimates of Ao are not unexpected with unconstrained

estimation because for case when A0--= ,O, unconstrained estimation is likely to generate

some insignificantly negative estimates. Third, the size and power properties of this test

are largely unknown. This t test can be generalised to testing for multiple Hildreth-Houck

random coefficients by running a regression on x?t, 4t, through to 4 and then conducting

an F test. All of the problems are amplified in this setting.

A classic asymptotic test for this testing problem is the Lagrange multiplier (LM)

test suggested by Breusch and Pagan (1979). Their test is designed as a test for general

heteroscedasticity of the form h(1+wit8), where wt is a vector of known exogenous variables

and 8 is a vector of unknown parameters. The null hypothesis is 8 = 0. A special case is

the multiple Hildreth-Houck random coefficient model (11) and (13) in which,

S2 = diag(81, 8p), (17)

so that w't = (41, ..., 4) and h(.) = cr2(.). The LM test statistic for this problem is

calculated by forming the variable,

gt = i‘2t to.2

where Et are the OLS residuals from (14) and 3-2 = ErtLi qin, and then regressing gt on

Wt supplemented with an intercept term. The calculated value of the LM test statistic is

then half of the explained sum of squares from this regression or,

g'W(TVW)-1W1g/2, (18)

where W is an n x (p +1) matrix whose ith row is (1, /p). Under Ho : S = 0 this statistic

has the conventional asymptotic x2 distribution with p degrees of freedom.

12



Breusch and Pagan's LM test was constructed assuming normal disturbances. Koenker

(1981) observed that its size and power can be affected by non-normality and suggested

the modified statistic,

ng'W(WITV)-1WI g g = nR2 , (19)

where R2 is the squared multiple correlation between g and W. Both Koenker (1981)

and Evans (1992) have found this modified version of the LM test to be more robust to

non-normality.

Because for our testing problem, .5 is a vector of ratios of variances, its elements can only

take non-negative values. Breusch and Pagan argued that the LM test is to be preferred

to the likelihood ratio (LR) test, because the parameters of interest (Ao or n from (17))
fall on the boundary of the parameter space under Ho, meaning that the LR test no longer

has its conventional asymptotic distribution. They also found that the use of asymptotic

critical values for the LM test leads to a test which is undersized in small samples. This

result has been confirmed in simulation studies by Griffiths and Surekha (1986), Honda

(1988) and more recently Ara and King (1993). Honda suggested what appears to be a

reliable method of size correcting the test so that it has actual size closer to the nominal

level.

Ara and King have shown that this problem of lower than nominal size can be overcome

. by the use of marginal likelihoods in place of conventional likelihoods when the LM test is

constructed. In the case of testing 1/0 :S = 0 where S is defined by (17) in the context of

(11) and (13), let X be the n x (p k) matrix of observations on the regressors in (13),

m = n — p — k, E7_10/m and mij be The (i,j)th element of the projection matrix

In — X(X1 X)-1 X' . The marginal likelihood based LM test statistic is of the form,

s(0)1/(0)-1s(0), (20)

where s(0) is the p X 1 score vector whose ith element is,

s(0) 
= Ein_lx2ti(i2t ra2 mtt)/2

and /(0) is the p X p matrix with (i, j )th element,

m(Etn_ix2tiE3n.ix2sin22t3)/(2rn + 4) _
lrnitX2ti)(

E2
t—lrnittX2tj)/(2M 4)•
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Under Ho, (20) has an asymptotic x2 distribution with p degrees of freedom.

An obvious weakness of these three forms of the LM test is that they are two-sided tests

while our testing problem is one-sided in nature because variances cannot be negative.

Clearly the one-sided information should be exploited to improve power. This is most

easily done in the single parameter case, i.e. in the context of (1) and (2). A one-sided LM

test can be constructed by taking the square root of the LM statistic (18) and giving it the

sign of the score evaluated at Ho estimates, namely the sign of ETtLix?gt. This also applies

to Koenker's robust LM test statistic given by (19). The one-sided marginal likelihood

based LM test statistic corresponding to (20) is,

a--1/2Etn.ix2tkle1/62 mtt)'

where,

(21)

a 2(m[Ex2t Ex2sm2ts} _ [Etn.i
mttxt2]2)/(m + 2).

In all three cases the test statistics have standard normal asymptotic distributions under

Ho and the tests reject Ho for large values of their statistics. As Ara and King note, the

one-sided LM test based on (21) is equivalent to King and Hillier's (1985) one-sided LBI

test using the standard normal approximation to obtain critical values (see Evans and King

1985c).

Another class of tests which successfully exploit the one-sided nature of the testing

problem are point optimal tests (see King 1987a for a survey). A point optimal invariant

(POI) test for a general form of heteroscedasticity and the special case of a single Hildreth-

Houck random coefficient has been developed .by Evans and King (1985a, 1988). Their test

involves rejecting 1/0 for small values of:

g(\) = + Ai;trlEreii

••
in which E is a diagonal matrix with typical element qt*, E is the GLS residual vector from

••

the estimation of (1) assuming covariance matrix (I + )o*E) and ê is the OLS residual

vector.

To make the test operational, a value for Ai; must be chosen. Evans and King (1985a,

1988) experimented with values for Ai; of 2.5, 5.0, 7.5, 10.0, with increasing Asd, values

14



reflecting more severe heteroscedasticity. They compared these four different versions of

the point optimal test with Goldfeld and Quandt's F test, the bounds tests suggested

by Szroeter (1978), Harrison and McCabe (1979) and King (1982) and Breusch and Pa-

gan's LM test. They found the point optimal test to have superior power properties and

advocated a choice of A; equal to 5.0.

Evans and King (1985a) also suggested an alternative method by which a value for

A; can be chosen. They advocated choosing A; so that the coefficient of variation of the

variance of the residuals from (3) is 0.5. Milan (1984) extended their result to develop

a POI test for multiple Hildreth-Houck random coefficients. He then showed the power

superiority of his POI test to the bounds tests advocated by Szroeter and Harrison and

McCabe and Breusch and Pagan's LM test.

Brooks (1993b) proposed an alternative version of the point optimal test for the presence

of a single Hildreth-Houck random coefficient. His version of the test rejects the constant

coefficient model for small values of the statistic,

g(4) = A*0t)-1 E

in which t is a diagonal matrix with typical element x?, is the GLS residual vector from

the estimation of (1) assuming covariance matrix (I + 4E) and ê is the OLS residual

vector. He suggested choosing A; so that the power of the test equalled some desired value

for that particular Ao value. The basis for this suggestion was the fact that Shively (1988a,

1988b) had recommended such a choice for the A value in testing for the Rosenberg random

coefficient model and the random walk coefficient model. No power comparison has been

conducted between these different versions of the point optimal test.

An alternative form of the LM test for one-sided testing problems has recently been

suggested by King and Wu (1990). Their test statistic is based on the sum of scores. If

there are no nuisance parameters, this test is locally most mean powerful (LMMP) as it

maximises the mean slope of the power hypersurface at the null hypothesis. Just as for

the regular LM test, the information matrix can be used to construct a test statistic based

on the sum of scores which has an asymptotic standard normal distribution under Ho.
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Wu (1991) and Ara and King (1993) have investigated the application of these tests

to testing for the presence of multiple Hildreth-Houck random coefficients in the context

of (11), (13) and (17). The asymptotic LMMP test derived from the standard likelihood

function is based on rejecting Ho for large values of,

Etn=lgtEli3=1X2ti/(2Etn=i [Ef=i X2ti - 
Eitz=1ELix2ti/nD1/2

which has an asymptotic standard normal distribution under Ho. The corresponding

asymptotic LMMP test statistic derived from the marginal likelihood is of the form of

(21) but with x? (and x23) replaced by E..1x j (and Ef_ix23i) wherever they appear. Wu

compared powers of the LMMPI test with the power envelope while Ara and King compared

powers of the asymptotic LMMP test with those of Breusch and Pagan's LM test and

their marginal likelihood counterparts. In most circumstances the LMMP based tests

are more powerful than the two-sided LM tests, particularly when the squared regressors

corresponding to the coefficients under test are positively correlated. If these regressors are

uncorrelated or negatively correlated, the two-sided LM tests seem to be generally more

reliable in terms of power. Rahman and King (1993) have extended Ara and King's study

to the problem of testing for multiple Hildreth-Houck coefficients in the presence of AR(1)

regression disturbances.

3.2 Constant versus Rosenberg Random Coefficients

In the context of testing for the presence of-a single Rosenberg (1973) coefficient, the key

parameter that leads to a departure from the constant coefficient model is Ai. Therefore

the problem of interest is testing,

Ho : Ai = 0 against Ha : Ai > O.

This testing problem is one-sided because Ai is a ratio of variances which by definition

must be non-negative. An interesting feature is the presence of the nuisance parameter

only under the alternative hypothesis. The consequence of this is that classical large

sample tests are invalid.
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An early test for this problem is the t test suggested by Sunder (1980). This test is

based on OLS residuals from (5). Working with these residuals one can write:

where,

Et =
2
Mtt Aio-2ET.1 irni-m#•x•x •O• • -i- w2, 3.i .2 .3 t- 3 13 .

= 02) + oli-jjElk=102k,

in which 1 is the minimum of i and j.

By choosing a value for the unknown ç5 and treating wt as a disturbance term, one

can interpret this as a regression equation and then carry out a t test on the estimate of

A. There are four main problems with this test. The first of these is the choice of the

unknown g5 value. Sunder provides no evidence on the sensitivity of the test to the choice

of value. The remaining difficulties are identical to those of Theil's (1971) t test for the

Hildreth-Houck model. These are the need for GLS estimation because of the properties

of wt, the fact that the GLS estimator is a function of the unknown Ai, the possibility

of negative estimates of A1 and the lack of evidence on the size and power properties of

the test. As is the case with the t test for the Hildreth-Houck model, the t test for the

Rosenberg model also generalises to an F test in the case of testing for multiple varying

coefficients.

The key difficulty with this testing problem is that çi5 is not identified under Ho. To

overcome this, Watson and Engle (1985) suggested a different approach to testing. They

noted that the size of any test for this problem will be uneffected by 0. They therefore

suggested a Davies (1977) test based on the application of Roy's (1953) union-intersection

principle. Unfortunately for this problem there is no closed form solution to the Davies

test, so they suggested an approximation to that test. •

Their approximation produces the statistic,

where,

S(ç) = (s1 s2(0))/s3 (0),

Si = (Ert!=ix?((q/f.) — 1))/2,
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S2(c)
= (Etn=2etstEti:1

s3(0) = ((Etn=1x4t Etn_2,2t =1"'A)/2 ((c-Etn=ix2t )2 on)1/2
: 

and 71 is the sample correlation between xt and it. The test depends upon the unknown 0,

which Watson and Engle choose by conducting a grid search for over the range (-1,+1)

and choosing the c value that maximises 5(0). The explanation of this test is that the Si

component of the statistic checks for heteroscedasticity, while the S2(0) component checks

for autocorrelation.

Watson and Engle compared their test to both the Breusch-Pagan LM test for the

Hildreth-Houck random coefficient model, and the Durbin-Watson bounds test for AR(1)

disturbances. Not surprisingly they found their test to have superior power properties to

both of these tests in detecting the Rosenberg coefficient model.

King (1987b) criticised the Watson and Engle test on the grounds that both its exact

and asymptotic distributions are unknown. King therefore suggested the use of a LBI test.

His test also turns out to be LBI against the random walk coefficient alternative. The test

statistic is given by:

s = 2E2(Etn_1x)2/Etn_1.

The test rejects the null hypothesis of the constant coefficient model for large values of the

test statistic. An advantage of this test is that it can be written as a ratio of quadratic

forms in normal variables. Therefore exact critical values for the statistic can be calculated

using analogous methods to those for the Durbin-Watson test.

Shively (1988a) suggested the use of a POI test for this problem, arguing that an

appropriate choice of points would produce a test which has good power over a wide range

of the parameter space. A POI test rejects 1/0 for small values of

T(AT,01) = !(I+
in which which E is the GLS residual vector from the estimation of (1) assuming covariance matrix

(I + ATS2(01)) and is the OLS residual vector. cr2(/ A1S2(0)) is the covariance matrix

for the return to normalcy process, and S2(0) has a typical element of

c2(o)3t = xsxtois—tii(1— c62).
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To make the test operational, values must be chosen for Al` and 01. On the basis of an

empirical power comparison, Shively recommended that one set 01 = 0.7. He proposed

that Ai* be chosen so that the optimised power of the test is 0.5 against that Ai value when

= 0.7. This choice of AT is denoted as A. The point optimal test is therefore based on

0.7).

Shively conducted a Monte Carlo power comparison of his test and those suggested by

Watson and Engle and King. The difficulty in making such a comparison is that for the

Watson and Engle test its exact and asymptotic distributions are unknown. Therefore

Shively derived a small sample equivalent of the Watson and Engle test for which ap-

proximate small sample critical values can be found. Including this version of the Watson

and Engle test in his Monte Carlo power comparison, he found that for all three regressor

sets he considered, his POI test is always superior to King's LBI test. His test is also

nearly always superior to the small sample equivalent version of Watson and Engle's test.

From this, one concludes that on the basis of power considerations, Shively's POI test is

to be preferred when testing the constant coefficient model against the alternative of the

presence of a single return to normalcy random regression coefficient.

Brooks (1993a) suggested a modification to Shively's POI test by advocating a different

mechanism for choosing a value for the nuisance parameter ch. Instead of an arbitrary

.choice of 01 = 0.7, he advocated choosing 01 to maximise the average power of the POI

test over a grid of ç points. After experimenting with a variety of different grids he found

that a power gain over the arbitrary choice could be obtained by this method.

King and Shively (1993) have suggested that the problem associated with the fact that

cannot be identified under the null hypothesis can be overcome by reparameterisation.

They reparameterised the testing problem in terms of polar co-ordinates leading to a one-

sided multiparameter testing problem in terms of the length of a vector (the ) component)

and.the angle that vector makes with the horizontal axis (the ç5 component). They solved

this reparameterised testing problem by the application of King and Wu's (1990) LMMPI

test. Their suggested test was found to have mildly superior power properties relative to

the Watson and Engle test, but they did not investigate their test's properties relative to

the point optimal test, which does not have a problem with q5 being unidentified when the
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null hypothesis is. true.

3.3 Constant versus Other Forms of Varying Coefficients

There is also a wide literature on testing the constant coefficient model against other

forms of varying coefficient model. In cases where the point optimal test has been consid-

ered it has usually been found to have superior power properties to alternative tests.

In the context of testing the constant coefficient model against the random walk coef-

ficient alternative, classical asymptotic tests have been proposed by Garbade (1977) and

Pagan and Tanaka (1979). Garbade proposed the use of the LR test for this problem. De-

spite noting the fact that the distribution of the test statistic is not the usual asymptotic

x2 distribution, because the null hypothesis of constant coefficients falls on the boundary

of the parameter space, he preferred this test in a power comparison over the CUSUM

and CUSUMSQ tests suggested by Brown, Durbin and Evans (1975). Pagan and Tanaka

criticised Garbade's advocacy of the LR test because of the problems with its null dis-

tribution. They advocated the LM test because its null distribution is the conventional

asymptotic x2 distribution. They then conducted an empirical power comparison between

the LM and LR tests, and found the LM test to have superior power properties close to

the null hypothesis, and the LR test to have superior power properties further from the

null hypothesis. Tanaka (1983) has considered the LM test in the context of testing for

the presence of a single random walk coefficient and derived an asymptotically standard

normal one-sided version of the LM test.

Sunder (1980) proposed a t test for this problem similar to the t test he proposed for

the Rosenberg case and the t test proposed by Theil (1971) for the Hildreth-Houck case.

The test is again based on a secondary regression involving OLS residuals of the form:

-2
ft = C

r2
mitt + AYEiEimtimtixisi j) wt,

where the notation is identical to that used for the t tests discussed in the case of the

Hildreth-Houck and Rosenberg models. The test is carried out by running a regression of

this form and then carrying out a t test on the estimate of A.
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The problems with this test are the same as in the cases of the Hildreth-Houck and

Rosenberg models. The properties of wt are such that the regression needs to be estimated

by GLS, but the GLS estimator is a function of the unknown A. Estimation is typically

unconstrained so again there is no guarantee of a non-negative A estimate. The test also

generalises to the case of multiple varying coefficients.

LaMotte and McWhorter (1978) proposed an exact F test for the presence of multiple

random walk regression coefficients, which includes the testing problem of a single random

walk regression coefficient as a special case. In their context of (11) and (16) their test is

as follows. Let V be the matrix whose (i, j)th element is,

3/45 = min(i, j)xiiS2xj,

where S/ is assumed diagonal. Let X be the n x (p k) matrix of observations on the

regressors in (13), 172 = n — p — k and let P be an m x n matrix such that P'P = Irn and

PP' = — X(X'X)-1X1. Suppose qi , qd are the distinct eigenvalues for PIVP with

multiplicities ri,...,rd, respectively. Corresponding to qi, let Hi be an m x ri matrix whose

columns are orthonormal eigenvectors of P'VP and define,

Qi =VPHiH:PV.

LaMotte and McWhorter's test statistic is given by,

Fg =(SgIng)1((SSE— Sg)I(m—ng)),

where, SSE is the sum of squared residuals from an OLS regression of (14),

Sg = ELQi,

in which g is an integer such that 0 <g <d, and,

ng = ELiri.

The statistic Fg is distributed F(T1g 172 - Tig ) under Ho. To make the test operational, a

value for g has to be chosen. This value of g will have no effect on the size of the test but

will effect the power. LaMotte and McWhorter suggested that g be chosen to minimise

S* = ((ngEci=g+lriqi)/((m — ng)ELiriqi))/a,
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where, qi are the eigenvalues of the covariance matrix of the residuals under the alternative

hypothesis, and /a is the (1 — a)100 percentile of the F(ng, m — ng) distribution.

LaMotte and McWhorter (1979) presented an empirical power comparison between

their Fg test, Garbade's LR test and the Brown, Durbin and Evans CUSUM test. They

found that for all points considered, the Fg test has superior power properties to the LR and

CUSUM tests. LaMotte and McWhorter and Simonds, LaMotte and McWhorter (1986)

compared the power of the Fg test and Sunder's t test. Both studies found that close to

the null hypothesis of constant coefficients, the t test has better power properties than

the Fg test, a finding both studies attributed to the t test being oversized. Further away

from the null hypothesis both studies found the Fg test to have superior power properties

relative to the t test.

Nyblom and Makelainen (1983) proposed the use of an LBI test for the problem of

testing for a single random walk coefficient. As King (1987b) has shown, this test is

equivalent to the LBI test for the Rosenberg model. In the case of normally distributed

errors small sample critical values for this test can be found exactly as the test can be

written as a ratio of quadratic forms in normal variables. The asymptotic distribution of

this test statistic has been derived by Nyblom and Makelainen, Nabeya and Tanaka (1988)

and Leybourne and McCabe (1989a). The usefulness of these results is that asymptotically

. the same critical values hold for almost any parent distribtuion which meets the regularity

conditions.

Nyblom and Makelainen compared the power performance of their LBI test and the

Fg test suggested by LaMotte and McWhorter (1978). They found that close to the null

hypothesis of a constant coefficient model that the LBI test has superior power properties,

but that further away from the null hypothesis, the Fg test has superior power properties.

Nyblom (1989) and Jandhyala and MacNeill (1992) have also suggested the use of the LBI

test as a test for a structural break point. Interpreting the test in this manner, they found it

has good power when a structural break occurs at either end of the sample but not when

the structural break occurs in the middle of the sample. The Nyblom and Makelainen

version of the LBI test is conditional on the starting value for fit being fixed. Leybourne

and McCabe (1989b) have derived the LBI test for the case where the starting value for
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fit is a normally distributed random variable.

Leybourne and McCabe (1992) have also derived score-based tests of constant param-

eters in nonlinear regression models against the alternative that the parameters follow a

random walk vector process. In McCabe and Leybourne (1993), they constructed and eval-

uated score-based tests against Hildreth-Houck parameter processes in nonlinear regression

models.

Shively (1988b) suggested the use of a POI test for a random walk coefficient in the

linear regression model, arguing that an appropriate choice of point would produce a test

which has good power over a wide range of the parameter space. A POI test rejects Ho

for small values of

T(A*) = g'(/ A*A)—igite

in which is the GLS residual vector from the estimation of (1) assuming covariance matrix

(/ A*6.) and E is the OLS residual vector. o-2(/ + AA) is the covariance matrix for the

random walk coefficient model. The AA component has a typical element of

and,

AAst = x?At, t = s,

AAst = AAts = xixiAt, i <s.

To make the test operational, a value for A* must be chosen. Shively recommended that

A* be chosen so that the power of the test against that specific A value is 0.5. He found the

point optimal test to have superior power properties relative to LaMotte and McWhorter's

Fg test and Nyblom and Makelainen's LBI test for the three regressor sets in his empirical

power comparison.

King and Shively (1993) have considered the problem of testing for multiple random

walk coefficients. They tackled this problem in a manner analogous to their solution of

the problem of testing for Rosenberg coefficient variation.

In the context of the ARIMA(1,1,0) coefficient model, Shively (1988a) attempted to

derive an approximate Davies (1977) test, but found the process too computationally
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burdensome, and so no further consideration was given to that test. Shively derived an

LBI test for this model but did not consider its empirical power properties. He also derived

the POI test which in this context involves rejecting the null hypothesis for small values

of,

T(A*, p*) =

in which is the GLS residual vector from the estimation of (1) assuming covariance matrix

(I A*T(p,*)) and is the OLS residual vector. c72(/ AT(,L)) is the covariance matrix

for the ARIMA(1,1,0) coefficient model. The T(it) component has a typical element of

where,

T(p)„ = x3xtcov(EL171Eti=17j),

= lot — /3t-1.

The POI test was then compared to the power envelope and Shively found that, except

for the case of large negative y values, the POI test's power is always close to the power

envelope.

In the context of the ARMA(1,1) coefficient model, both Ohlson and Rosenberg (1982)

and Collins, Ledolter and Rayburn (1987) have advocated the use of the LR test. At

present there exist no alternatives to this classical large sample test for this problem.

Further, the small sample performance of this test remains uninvestigated.

In general, when testing for the constant coefficient model against a particular varying

coefficient alternative, it would appear that point optimal testing is the best strategy. The

key issues in the application of point optimal testing are the methods to be used to select

the points for use in the test, and the robustness of such tests to departures from the ideal

settings for which they have been designed. These are discussed in Section 4.

3.4 Testing for a Structural Break Point

While parametric varying coefficient models frequently have a solid economic rationale,

a large number of applied researchers have tested for coefficient variation by testing for

a structural break point. Therefore, this section considers the main tests for a structural
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break point which have been used in the empirical finance literature that is discussed in

Section 5.

An early test for a structural break point is the LR test suggested by Quandt (1960).

This test is based on
=

in which 5-1 is the estimate of the standard deviation for the model up to and including

period i and -6-2 is the estimate of the standard deviation of the model from period i 1

onwards. Choosing i to minimise L is used to detect the observation at which the break

point occurred. The problem with this test statistic is that —2 log L does not have the

conventional asymptotic x2 distribution under the null hypothesis. Quandt confirmed

this empirically. For details of the actual distribution theory in this case, see Kim and

Siegmund (1989) and Andrews (1993).

Chow (1960) suggested the use of an F test. Assuming the sample can be split into

two sub-periods, one up to the structural break and one after the structural break, the F

test is given by,

F = (ni + n2 — 2(k + 1)) (SSE — (SSEi SSE2))/((k 1)(SSE1 SSE2)),

in which the subscript 1 refers to the period before the structural break, and the subscript

2 refers to the period after the structural break. The key problem with the application

of this test is knowing where a potential structural break occurs to be able to split the

sample.

Farley and Hinich (1970) considered a special case of Quandt's LR test. They assumed

that the possible shift point is uniformly distributed over the sample and derived the

LR test in this context. They found the test to have good power properties where the

structural break occurs near the middle of the sample but to perform poorly when the

structural break occurs at either end of the sample. Farley, Hinich and McGuire (1975)

have investigated the relative power properties of the Quandt LR, Chow and Farley and

Hinich tests. In their comparison they applied the Chow test by assuming the break point

was in the middle of the sample. In terms of the power of the tests when the true break
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point was in the middle of the sample, they found the Chow test to perform best followed

by the Farley and Hinich test and the Quandt test. When the true break point occurred

elsewhere in the sample they found the Farley and Hinich test to perform best followed by

the Chow test and the Quandt test.

Ashley (1984) generalised Chow's test to the case where there are multiple structural

breaks in the sample. In the context of a regression, this requires a series of dummy

variables which become active every time there is a structural break. Ashley called his

test the stabilogram test. The problem with this test is the determination of the number

of structural breaks in the sample. Ashley compared the power of two different versions of

the stabilogram test to Chow's F test, the Brown, Durbin and Evans (1975) CUSUM test

and Garbade's (1977) LR test for the random walk coefficient model. For the case of 13

following a random walk coefficient model or the Rosenberg return to normalcy model, he

found Garbade's LR test to perform best, followed by the stabilogram test, with the other

two tests performing relatively poorly. For the case of a discrete jump in fi, the stabilogram

test and the Chow F test performed best. On the basis of this, Ashley recommended the

use of the stabilogram test.

To detect the timing of a structural break point, Brown, Durbin and Evans (1975)

advocated the use of the CUSUM and CUSUMSQ tests. Both of these tests are based on

recursive residuals which can be defined in the context of (3) as:

= (Yt — rtBt_i )1(1 xit(x
it-1Xt-l) iXt)1/2,

in which, Xt = (zit, xt)', B = (a', and Bt_1 is the OLS estimate of B based on the first

t — 1 observations. The CUSUM is defined as:

wr = (1/6-)E;..k+2et

which can be plotted over time. If a structural break occurs in the sample, then this plot

should be significantly different from the expected theoretical plot under the hypothesis of

no structural break. To determine whether the plot is significantly different, significance

lines can be added to the plot, and when the CUSUM crosses either of these lines that is

evidence of a structural break at or before that point. The exact positioning of the lines

is dependent on the level at which the researcher wishes to conduct the test.
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An alternative test is the CUSUMSQ test which is based on the quantities

Sr =. Etr 2—k+26t /E7 ?=k+2e•

As was the case with the CUSUM, these quantities can be plotted as a function of time, r,

along with associated significance lines. Once the CUSUMSQ crosses either of these lines

it is evidence of a structural break having occurred at or before that point.

The CUSUMSQ procedure was extended to the case of OLS residuals by McCabe and

Harrison (1980). Given that their approach is based on OLS residuals, exact significance

lines cannot be found and therefore bounds for such lines are provided. They found the

CUSUMSQ test based on recursive residuals to have superior power properties to their

test based on OLS residuals. The CUSUM procedure was extended to the case of OLS

residuals by Ploberger and Kramer (1992). They found the power of the CUSUM test

based on recursive residuals and that based on OLS residuals to be similar, except for

late in the sample when the test based on OLS residuals is found to have superior power

properties. McCabe (1988) suggests an exact finite sample procedure which maximises

the probability of finding a change point if it exists. McCabe's procedure is based on

the maximum of weighted CUSUMS of OLS residuals, and shows the incompatibility of

CUSUMS and recursive residuals in this context.

The problem of testing for a structural break point of unknown timing has been in-

tensely researched in the recent econometric literature. For instance the problem has been

considered by Andrews (1993), Andrews and Ploberger (1994), and Hansen (1991a, 1991b,

1991c). Interestingly, the problem of testing for a structural break point is similar to that

of testing for the presence of a Rosenberg coefficient, in that it produces a testing problem

in which there is a nuisance parameter present only under the alternative hypothesis. Ac-

cordingly the reparameterisation approach used by King and Shively (1993) in testing for

the presence of a return to normalcy regression coefficient can be adapted to the problem

of testing for a structural break point. This suggestion has been followed up by Tan and

King (1992) and Tan (1994).

A more conventional solution to this problem of a'nuisance parameter present only

under the alternative is to construct test statistics (such as LR, Wald or LM test statis-
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tics) assuming the troublesome nuisance parameter is known. Then the test statistic is

maximised with respect to this parameter which in our case is the timing of the structural

break. This method of test construction may be justified by Roy's (1953) Type 1 principle

or its generalisation known as the union-intersection principle (see Roy, Gnanadesikan and

Srivastava, (1971), pp. 36-46). The main difficulty with this as a test statistic is in finding

its null distribution. Davies (1977, 1987) provides some help but the main thrust has come

through the work of Andrews (1993) and Hansen (1991a, 1991b, 1991c). In particular

Andrews found that the asymptotic null distribution of the maximised test statistics in

the case of LR, Wald and LM tests are given by the supremum of a standardised tied-down

Bessel process whose order is at least one. Related papers which also look at the small-

sample properties of these tests include Andrews and Ploberger (1994) and Andrews, Lee

and Ploberger (1994).

3.5 Testing for the Form of Coefficient Variation

As Section 2 has shown, there exist in the literature a large number of possible varying

coefficient models. Therefore a researcher having rejected the constant coefficient model in

the direction of a particular departure is faced with the problem of which varying coefficient

model to choose. This problem is non-trivial given that tests aimed at detecting a particular

• varying coefficient departure are likely to have reasonable power at detecting other varying

coefficient departures from the constant coefficient model. Just as the Durbin-Watson test

can have good power against many different autocorrelated error processes (see King and

Evans (1988) and Kariya (1988)), so too do tests for the presence of a particular varying

coefficient model have good power against other varying coefficient models. Furthermore,

King's (1987b) test is known to be LBI against both the Rosenberg coefficient alternative

and the random walk coefficient alternative. In addition, Brooks (1993b) found that POI

tests designed for the Hildreth-Houck model and Rosenberg model respectively have good

power in detecting the other model.

In choosing a varying coefficient model in an economic context, a researcher is likely

to be guided by economic theory, which may restrict attention to a limited subset of

varying coefficient models, say those with mean reversion properties. Despite this, tests
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are still needed to discriminate between the particular alternatives in this restricted subset.

However the econometric literature contains few tests designed for such a problem.

The key exceptions are the market model papers by Bos and Newbold (1984) who

considered testing the Hildreth-Houck against the Rosenberg model, and Collins, Ledolter

and Rayburn (1987) who considered testing the Hildreth-Houck model against the special

case ARMA(1,1) model suggested by Ohlson and Rosenberg (1982). Both these studies

apply classical Wald and LR tests to this problem, but conjectured that they lack power

in finite samples.

Brooks and King (1994) have considered this problem and designed an approximately

POI (APOI) test for the null hypothesis of the Hildreth-Houck model with the alternative

model being the Rosenberg model. Their test rejects the null hypothesis for small values

of the statistic,

sPtt), 01) = E'(In ATC2(01))-1ERV„ 

where E and are the GLS residual vectors from the estimation of (1) assuming covariance

matrices In + ATS2(01) and hi + 4E, respectively.

Brooks and King found that the size properties of the APOI tests are superior to the

size properties of the asymptotically valid Wald and LR tests. For cases where the tests had

similar sizes the APOI tests were found to have better power properties. The APOI tests

are made operational by a choice of Ao*, AT and 01 values. On the basis of an empirical

power comparison they recommended choosing Ao* in an optimal manner to control the

size properties of the test. They recommended that Ai* and 01 be arbitrarily chosen at

mid-range values.

An interesting feature of testing for the form of coefficient variation is that typically such

a test will only be carried out after an initial test gives rise to rejection of the constant

coefficient model. Therefore testing for the form of coefficient variation is likely to be

done in a pre-testing context. This is likely to have consequences for model selection,

estimation, hypothesis testing and forecasting using varying coefficient models. Brooks

(1993c) analysed the performance of a strategy using the Brooks (1993a) POI test and
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the Brooks and King APOI test in selecting between the constant coefficient model, the

Hildreth-Houck random coefficient model and the Rosenberg model. He found that in the

majority of cases the correct model was selected.

4. Point Optimal Testing

As Section 3 has shown, where point optimal tests have been developed for testing

for particular varying coefficient models, they generally have superior power properties

relative to other tests in the literature. This has been demonstrated for the Hildreth-

Houck (1968) random coefficient case by Evans and King (1985a, 1988) and Milan (1984),

for the Rosenberg (1973) return to normalcy coefficient case by Shively (1988a) and for the

random walk coefficient case by Shively (1988b). Further in the related area of testing in

structural time series models, Franzini and Harvey (1983) and Nyblom (1986) have found

POI tests perform well. Given this, it is worthwhile to briefly review the literature on

point optimal testing, noting that a detailed survey is provided by King (1987a).

Applications of point optimal testing have typically focused on testing the disturbance

covariance matrix of a linear regression model. By invariance arguments, most test statis-

tics for these problems reject the relevant null hypothesis for small values of the test

statistic,

S = er—lEgr—lE
0 7

in which E is the GLS residual vector from the estimation of (1) assuming a particular

covariance matrix denoted by r1 and a is the GLS residual vector assuming covariance
matrix 1'0. In many cases the null hypothesis is of well behaved disturbances, so ro is an

identity matrix making e the OLS residual vector. The issue of the calculation of critical

values and significance levels for such test statistics is discussed in the appendix.

In most applications r1 will depend upon some unknown parameters, the exact pa-

rameters and structure of r1 depending on the relevant testing problem. The problem in

making the point optimal test operational is the choice of values for these unknown param-

eters. Given the choice of parameters, the test will be most powerful invariant for testing

the null hypothesis that 0-2ro is the covariance matrix against the alternative hypothesis

that 0-2r1 is the covariance matrix when r1 is determined by the chosen parameter values.
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It is anticipated that with well chosen parameter values the test will have good power over

a wide range of the parameter space.

For the problem of testing for an AR(1) disturbance process, King (1985a) recom-

mended that the unknown parameter of interest be set to a representative middle range

value. King (1984) in testing for a simple AR(4) process, and Evans and King (1985b)

generalising to higher order simple AR disturbance processes, also make a similar recom-

mendation. King (1983) considering an MA(1) disturbance process also recommended a

representative choice of parameter value. As noted earlier, Evans and King (1985a, 1988)

also make this recommendation in testing for additive heteroscedasticity and the special

case of the Hildreth-Houck random coefficient model.

An alternative to the above arbitrary middle range choice of parameter values is to

choose the parameters with respect to some optimality criteria. King (1985b) extended

his work on testing for MA(1) disturbances to a case where the value of the unknown

parameter is chosen to make the power of the test some designated value for that choice of

parameter. Brooks (1993b) advocated a similar procedure when testing for the Hildreth-

Houck random coefficient model. Shively (1988a) used this approach when testing for the

Rosenberg return to normalcy coefficient model and the ARIMA(1,1,0) model and Shively

(1988b) also used this strategy when testing for the random walk coefficient model. Brooks

(1993a) extended Shively's (1988a) work on testing for the Rosenberg model recommending

that both the parameter of interest and nuisance parameters be chosen to give the test

desired power properties. Milan (1984) advocated a choice of parameter value based on

the coefficient of variation of the implied disturbance variances for the case of the Hildreth-

Houck random coefficient model.

All of the testing problems considered above are cases where the null model is a linear

regression model giving an identity matrix for ro. It is worthwhile considering cases where
the pull model has a disturbance process that is not so well behaved. King (1989) consid-

ered the problem of testing for AR(4) disturbances in the presence of AR(1) disturbances.

He found that a point optimal test could not be constructed because of the presence of a

nuisance parameter under the null hypothesis. However he was able to find an approxi-

mately point optimal invariant test for this problem. The resultant test is approximately
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point optimal because a modification of the distribution under the null hypothesis pro-

duces a test which is point optimal. He recommended that all values of test parameters

be chosen by optimality criteria associated with power. Silvapulle and King (1991) found

a similar result when applying an approximately point optimal invariant test to the non-

nested problem of testing MA(1) disturbances against AR(1) disturbances. Brooks and

King (1994) also found a similar result when testing the Hildreth-Houck random coefficient

model against the Rosenberg random coefficient .model.

Accordingly, an important but unresolved issue in the point optimal testing literature is

the choice of values for the parameters required to make the tests operational. Another im-

portant issue is the robustness of point optimal tests to departures from the ideal situations

for which they are designed. In particular, point optimal testing relies upon the normality

of disturbances. There is a literature suggesting that certain economic time series, particu-

larly financial data, are better characterised by non-normal distributions. Evidence for the

stock market is provided by Fama (1965), Teichmoeller (1971), Fielitz and Smith (1972),

Praetz (1972), Officer (1972), Blattberg and Gonedes (1974), Osborn (1974), Praetz and

Wilson (1978) and Harris (1987). Evidence for the foreign exchange market is documented

in Westerfield (1977), Boothe and Glassman (1987), Hsieh (1988), Baillie and Bollerslev

(1989), Engle and Gonzalez-Rivera (1991) and Lye and Martin (1994). Evidence for futures

markets is contained in Clark (1973) and Rainbow and Praetz (1986). The robustness of

point optimal tests to non-normality has not been widely investigated. The key study is

Evans (1992) who examined the robustness properties of the size of point optimal tests

for autocorrelation and heteroscedasticity to. non-normality. She found that the size of

the point optimal tests for both AR(1) disturbances and AR(4) disturbances are robust

to departures from normality. However point optimal tests for heteroscedasticity while ro-

bust to skewness were found to have their size effected by kurtosis. Because most varying

coefficient models are special cases of heteroscedasticity, the robustness properties of point

optimal tests for such varying coefficient models are of interest.

Brooks (1993b) studied the robustness of the POI test for the Rosenberg random co-

efficient model. He found a similar result to Evans, in that, the size and power properties

of the test were not effected by skewness but were effected by kurtosis. The effects of
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increasing kurtosis was to make the test oversized and to reduce the power of the test for

mid-range parameter values. Brooks .and King (1994) analysed the robustness of the APOI

test for testing the Hildreth-Houck model against the Rosenberg model. They found their

APOI test to be remarkably robust to non-normality. This is consistent with the findings

of Evans on tests for autocorrelation, as the APOI test is testing the autocorrelation pa-

rameter in that problem. Rahman (1993) investigated the robustness of two APOI tests

for multiple Hildreth-Houck coefficients in the presence of autocorrelation and compared

their performance with those of the LM test and the asymptotic LMMP (ALMMP) test.

He concluded that in terms of size the APOI and ALMMP tests are rather robust. The

power results confirmed that all tests performed adequately under nonnormality.

5. Applications of Varying Coefficient Models

5.1 Market Model Applications

Consider the market model,

Rit = ai /3iRmt + it (22)

in which Rit is the return on asset i, Rmt is the return on the market portfolio, eit is

assumed to be distributed /N(0, cr2) and ai and Pi are unknown asset specific parameters.

The key parameter to be estimated in (22) is fig, which measures the systematic risk of

holding asset i. In the context of the capital asset pricing model (CAPM), this is the key

risk measure as all other risk can be diversified away through holding the market portfolio.

The traditional approach to estimation of the market model assumes gi is constant over

time thus allowing the application of OLS to (22). Despite this, recent literature has

suggested that fl i may in fact be time varying. This would invalidate the application of

OLS to (22), and help to provide evidence as to the risk profile of assets over time.

While it would be appealing to derive the time variation in systematic risk directly

along with the derivation of the market model, this is typically not the approach taken in

the literature. Such literature has generally attempted to overcome supposed deficiencies

in the derivation of the market model.
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A number of authors have argued that time variation may be due to microeconomic

factors at the level of the firm. Fabozzi and Francis (1978) suggested the reasons of al-

terations to the product mix or changes in leverage or dividend policy as giving rise to

time variation in systematic risk. Bos and Newbold (1984) claimed that changes in the

operational structure of the firm may be the cause of time variation in .systematic risk.

Dielman and Nantell (1982) argued that the key operational change is likely to be merger

activity. Turnbull (1977) identified maturity and growth of the firm as important deter-

minants of systematic risk. Therefore, as the firm matures and its growth rate fluctuates

through time, then so too may its /3 risk change. Time variation in systematic risk due to

microeconomic factors is also consistent with some of the arguments provided by Blume

(1975). For example, he suggested that when firms engage in any project which is risky,

the risk of the project may tend to be less extreme over time.

Alternatively, macroeconomic factors may lead to time variation in the systematic risk.

Both Fabozzi and Francis and Bos and Newbold claim that business cycle factors such as

inflation and unemployment may account for the time variation in systematic risk. Another

possibility is to attribute time variation in systematic risk to the behaviour of portfolio

managers as is done by Alexander, Benson and Eger (1982).

Other authors have suggested that it is the unrealistic nature of some of the assump-

tions underlying the market model which gives rise to time variation in systematic risk.

Fabozzi, Francis and Lee (1982) argued that the assumption underlying the CAPM of

no capital market imperfections is unrealistic, and that the presence of such imperfections

may lead to time variation in systematic risk. -Fabozzi, Francis and Lee also questioned the

CAPM assumption of a distribution of asset returns which is normal. Any non-normality

in this distribution they claimed could also lead to time variation in systematic risk. The

final criticism they made of CAPM is in the difficulties in accurately measuring the mar-

ket portfolio. The impossibility of obtaining data on some components particularly the

Iniman capital component, may also produce time variation in systematic risk according

to Fabozzi, Francis and Lee.

Despite the desirability of actually modelling the factors that lead to time variation of

systematic risk, these factors are typically unobservable and so cannot be directly analysed.
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Accordingly, most .authors have modelled the time variation in systematic risk with simple

parametric models.

A number of authors have suggested that ,8 be modelled by the Hildreth-Houck (1968)

random coefficient model. Fabozzi and Francis (1978) and Fabozzi, Francis and Lee (1982)

have tested for this model using data for the New York Stock Exchange (NYSE), while

Francis and Fabozzi (1980) tested for this alternative using mutual funds data. In all of

these papers, evidence was found in favour of this alternative. The test used in these

papers to detect the random coefficient model is Theil's (1971) t test from a secondary

regression. The use of such a simplistic test procedure may cast doubt on the reliability of

such results. In fact, Alexander and Benson (1982) claimed that the above results overstate

the case for 3 following the Hildreth-Houck random coefficient model due to inefficiencies

in the t test procedure.

Another possibility is to consider a more general alternative. Such an alternative is

Rosenberg's (1973) AR(1) or return to normalcy coefficient model. This alternative has

been suggested by Bos and Newbold (1984) for NYSE data and Faff, Lee and Fry (1992)

for Australian data. Bos and Newbold made use of Watson and Engle's (1985) test and

found evidence of 13 variation. Faff, Lee and Fry made use of a Burr (1942) approximation

to the distribution of King's (1987b) LBI test for this problem. Both of these studies found

evidence in favour of 3 variation. Brooks, Faff and Lee (1992, 1994) have corroborated the

finding of Faff, Lee and Fry using Brooks' (1993a) POI test. Despite the fact that the POI

test is known to have superior power properties relative to the LBI test, the results across

these studies are almost identical.

Other authors have proposed some of the other possible varying coefficient models for

0. Sunder (1980), Garbade and Rentzler (1981), Alexander, Benson and Eger (1982) and

Simonds, La Motte and McWhorter (1986) proposed a random walk coefficient model as

most appropriate. Sunder used a t test from a secondary regression and found evidence

in favour of f3 variation for NYSE data. Garbade and Rentzler used Garbade's (1977) LR

test for the random walk coefficient model and also found evidence of variation for NYSE

data. Alexander, Benson and Eger tested for # variation in mutual funds data using both

LaMotte and McWhorter's (1978) Fg test and Sunder's t test. Simonds, LaMotte and
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McWhorter (1986) used LaMotte and McWhorter's Fg test and found a greater degree of

evidence of /9 non-constancy in NYSE data than Sunder had found.

These results are of interest because if# does follow the random walk coefficient model,

then it has no mean reversion property. This is inconsistent with finance theory notions of

market efficiency and suggestions of the existence of some mean value for systematic risk,

such as Blume's (1975) notion of the existence of a grand mean for fl. However it does

appear that tests for one form of coefficient variation, have power against other forms of

coefficient variation. Therefore, these results are perfectly consistent with another model,

probably with mean reversion tendencies providing the model for # variation.

Ohlson and Rosenberg (1982) attempted to generalise the AR(1) model for by -con-

sidering an AR(2) process for /3. They found no evidence to support extending the AR(1)

model in this manner. A more successful general alternative for i3 variation considered

is the ARMA(1,1) model suggested by Ohlson and Rosenberg and Collins, Ledolter and

Rayburn (1987). These studies tested for this alternative with NYSE data using the LR

test and found evidence of variation.

Given the existence of a number of alternative models for variation the obvious

question is which model is the best. This issue has only received attention for US markets

in the papers by Bos and Newbold (1984) and Collins, Ledolter and Rayburn (1987), and

for Australian markets in Brooks, Faff and Lee (1992, 1994). The findings of these studies

are mixed; Bos and Newbold found in favour of purely random variation in /3 (such as

the Hildreth-Houck model), while Collins, Ledolter and Rayburn found some evidence in

favour of sequential variation models for # (such as the ARMA(1,1) coefficient model). For

Australian data, Brooks, Faff and Lee have corroborated the Bos and Newbold finding.

This is of significance given that the APOI test used in the Australian studies is known to

have superior power properties relative to the asymptotic tests used in the US studies.

5.2 Forward Pricing Applications

Futures markets perform a variety of functions including risk transference, information

processing and forward pricing. The performance of the forward pricing function of futures
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markets is necessary for forward contract negotiations and the hedging decisions of agents.

The historical development of the forward pricing function is due to Working (1942, 1949).

The performance of the forward pricing function gives rise to the property that the futures

price should be an unbiased predictor of the future spot price. For this to be true, futures

prices must fully reflect all relevant information and the following conditions must hold:

(1) Ft—k,t =E(Still)t—k),

(2) St = E(Sticbt—k) + et

and are sufficient to imply

(3) St = Ft—k,t et,

in which Ft—lc,t is the futures price formed at time t — k for delivery at time t, St is the

spot price at time t, E(StR-t—k) is the expectation of the spot price conditional on the set

of publicly available information at time t — k, i.e., Ist—k, and et represents shocks to the

economy which are assumed to be distributed IN(0,a2).

Proposition (1) states that the futures price is an expectation of the future spot price.

Proposition (2) is a statement that the expectations of agents are rational. Together these

two propositions imply (3) which is that the futures price is an unbiased predictor of the

future spot price.

Given this relationship, the testing of the unbiased prediction hypothesis is commonly

carried out by forming the OLS regression equation of the form:

St= c + OFt—k,t + Et, (23)

in which a and 13 are unknown constant parameters and et is assumed to be distributed

IN(0, cr2). The unbiased prediction hypothesis is tested by testing:

1/0 : = 1 against Ha : 1.

An early example of this approach is that of Tomek and Gray (1970), and the literature

on this approach is surveyed in Goss (1986). However there may be valid reasons why a
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constant coefficient model is inappropriate in this context. In the closely related literature

on testing the efficiency of forward foreign exchange markets, Chiang (1988) and Barnhart

and Szakmary (1991) have found evidence in favour of varying coefficient models. Further

notions such as agents engaging in learning processes as they move towards equilibrium

are likely to produce varying coefficient models. Such an idea is that of asymptotically

rational expectations introduced by Stein (1986) in the case of commodity futures markets

and then extended by Stein (1992) to the case of financial futures markets.

Both Chiang and Barnhart and Szakmary tested the efficiency of the forward for-

eign exchange market. Chiang considered the following exchange rates - USA/France,

USA/Canada, USA/W. Germany and USA/UK. Barnhart and Szakmary considered all of

these except for the USA/France case, but added the USA/Japan exchange rate to their

analysis. In both studies the authors make use of one month forward contracts.

Chiang conducted a series of tests on the stability of /3 in (23). He used Quandt's (1960)

LR test to identify the likely break point and then assuming that is the break point used

Chow's (1960) F test. The Brown, Durbin and Evans (1975) CUSUMSQ test was also

used to provide evidence of where a likely break point occurs. The combination of these

tests suggested time variation in the coefficients. To determine whether the form of time

variation is a single break point or better modelled by a stochastic coefficient model, Chiang

ran a series of rolling regressions, and then attempted to identify an ARIMA model for the

estimated rolling regression coefficients. He found a degree of persistence in the coefficients

and an apparent absence of mean reversion properties when fitting ARIMA models to the

estimated coefficients from the rolling regressions. His fitted models typically have a simple

structure depending purely on relatively distant lags of greater than three months. This

absence of mean reversion properties is unusual given the strong theoretical restriction

to be tested on the mean of It may be a reflection of the fact that typically forward

foreign exchange markets do not produce results consistent with the unbiased prediction

hypothesis. This evidence on the failure of forward foreign exchange markets to satisfy the

unbiased prediction hypothesis has been surveyed in Hodrick (1987) and Goodhart (1988).

Recent Australian evidence supporting this proposition is provided by Smith and Gruen

(1989).
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Barnhart and Szakmary also conducted a series of tests for parameter stability. They

made use of both Quandt's LR test and its extension by Farley and Hinich (1970) as well

as Chow's F test and its extension by Ashley (1984). The combination of these tests also

found evidence of parameter variation.

It is of interest to see if these results for forward foreign exchange markets carry across

to futures markets. Brooks (1993d) has considered this problem for Australian financial

futures by restricting the possible set of varying coefficient models to the Hildreth-Houck

or the Rosenberg model in futures markets. Both of these models are parsimonious special

cases of the ARIMA models suggested by Chiang and, further, they also provide evidence

on the learning procedures of agents in such markets. This is clearly of primary interest.

Further to this, Ashley has suggested that the Rosenberg model with its mean reversion

properties is an economically plausible model. Given that the testing of forward efficiency

is a test of the mean value of the key parameter [3 in (23), it is difficult to see why one

would advocate varying coefficient models which exhibit no mean reversion tendencies.

Goss (1986) surveys the evidence in futures markets and found evidence consistent with

the unbiased prediction hypothesis in contrast to the inconsistent evidence provided in the

case of forward foreign exchange markets.

In terms of whether 3 varies over time, the findings of Brooks are mixed. For Australian

interest rate futures, such as ninety day bank accepted bills and ten year government

bonds, no evidence of coefficient variation could be found using Brooks' (1993a) POI

test. For share price index futures the application of the same test found strong evidence

of coefficient variation at all lengths to maturity. The issue of which varying coefficient

model is best for share price index futures was then addressed by the application of Brooks

and King's (1994) APOI test. Close to maturity the evidence favours the Hildreth-Houck

model, while further from maturity the evidence favours the Rosenberg model.

6. Conclusion

This paper has surveyed the literature on varying coefficient regression models exam-

ining both the testing for such models and their application in two areas of finance. In

the context of testing for the presence of a single varying coefficient, a strong theme in the
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literature is that the point optimal approach is the preferred method of test construction,

particularly with respect to power. There still exist cases for which point optimal tests

have not been developed and also point optimal testing has not been compared to other

new approaches such as reparameterisation of the testing problem. A further area which

requires work is in the area of testing multiple varying coefficients. For the Hildreth-Houck

(1968) case, King and Wu (1990) have suggested a multiparameter one-sided test and found

it to have superior power properties relative to other available tests, although not for all

circumstances. For these and other cases further research is still needed. This work is

likely to be of importance as a greater range of potential applications lie in the field of

multiple varying coefficients..
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Appendix

Calculation Of Critical Values And Significance Levels

Of Point Optimal Tests

As stated in Section 4, the general version of the point optimal test rejects Ho for small

values of the statistic,

s =

Here we discuss the calculation of exact critical values and p-values. For further detail,see

King (1987a).

Consider first the case where To = I and

S = Eir—lE/E12.

Critical values and p-values can be derived from knowledge of

or equivalently

Pr(s <s* I e I N (0, o-2)),

Pr[E:711(7.2 - s*)e < = w, (24)

in which, are independent x? random variables and ri are the non-zero eigenvalues of

rT1 —

To solve for critical values one fixes w and solves for s*, while solving for p-values requires

fixing s* and solving for w.

This can be done iteratively using Koerts and Abrahamse's (1969) FQUAD subroutine,

Farebrother's (1980) PAN procedure or Davies' (1980) algorithm to evaluate the left-hand-

side of (24). All of these methods require the calculation of eigenvalues and can therefore

be costly in large samples. Consequently researchers may wish to consider methods that

do not require the calculation of eigenvalues such as Palm and Sneek's (1984) Householder

transformation approach or Shively, Ansley and Kohn's (1990) modified Kalman filter
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approach. Shively, Ansley and Kohn present evidence on the computational cost savings

from their approach, finding that such savings can be substantial in large samples.

Now consider the more complex case where ro I. Here one is no longer dealing with

a simple null hypothesis as the structure of 150 will now depend on nuisance parameters.

Let us assume that the structure of 110 depends on a single nuisance parameter, say -Yo•
This is the structure of the problem considered by King (1989), Silvapulle and King (1991)

and Brooks and King (1994). In all of these cases the authors find that to control the size

of the test, the possible values of -yo must be bounded and a value for -yo must be optimally

chosen as say, -y8`.

Accordingly Ho is now rejected for small values of the statistic,

s(70*)

To determine what constitutes a small value of this statistic critical values must be found,

which requires evaluating

Pr(s('y(;) <S** I v N(0, A0a2r0))

with the significance level of the test being the supremum of these probabilities with respect

to -yo. This can be done by computing,

Pr[Ea.i (pie <0] =

in which, are independent x? random variables and (pi are the non-zero eigenvalues of,

(r01.12),(ri_i _ _ s**(rri _ Frix(x,rrixrix,r,r1))r 2,

using the methods for computing (24) outlined above.
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