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Abstract

With respect to testing linear regression disturbances, two methods of test construction

have recently been found to work well. These are traditional asymptotic tests based on the

marginal likelihood or equivalently the likelihood of the maximal invariant and point optimal

or approximate point optimal (APO) tests. The former approach has been found to work

well for testing for random regression coefficients in the presence of autocorrelated errors.

This paper constructs APO invariant (APOI) tests for this testing problem and extends

the previous Monte Carlo study to include APOI tests. We conclude that for this testing

problem, the extra work required to apply APOI tests hardly seems worthwhile, particularly

for larger sample sizes.

Key Words

Invariance; Lagrange multiplier test; locally most mean powerful tests; Monte Carlo study;

power.
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1. Introduction

When non-experimental data is used in regression analysis, the specification of the

covariance matrix of the disturbance term is typically a matter for concern. This has given

rise to a substantial literature on testing the form of this covariance matrix, particularly

in econometric applications. Godfrey (1988), Judge et al. (1985), King (1987a, 1987b),

Kramer and Sonnberger (1986), Pagan and Hall (1983) and Pagan (1984) provide reviews

of various aspects of this literature which has at least two major strands. One strand

advocates the use of classical asymptotic test procedures such as likelihood ratio (LR),

Wald and Lagrange multiplier (LM) tests. Another suggests the use of tests that optimize

power, either locally to the null hypothesis or, in the case of point optimal tests, at a

predetermined point under the alternative hypothesis.

While classical asymptotic tests are relatively easy to apply, Monte Carlo studies of their

small sample properties have led to doubts about the accuracy of their critical values. For

example King (1987a, p.59), after reviewing the long literature on testing for autocorrela-

tion in linear models concluded that 'the LR test is a particularly unreliable test.' Breusch

and Pagan's (1979) LM test for heteroscedasticity has repeatedly been found to have true

sizes in small samples well below its nominal size; see for example Griffiths and Surekha

(1986), Honda (1988) and Ara and King (1993). A similar but possibly greater problem

has been highlighted by Moulton and Randolph (1989) in the case of testing for error com-

ponents in regression. disturbances. It is also worth noting that all these .testing problems

are typically one-sided in nature. Unfortunately the classical asymptotic tests are nearly

always applied without exploiting this knowledge. In contrast, the locally optimal tests are

one-sided and usually are applied as exact tests although finding the appropriate critical

value or p-value can be a cumbersome process. Most small-sample power comparisons have

revealed that the extra computation is well worthwhile; for a survey of the point-optimal

literature, see King (1987b).

Recently Ara and King (1993) conjectured that one explanation for the relative poor

performance of the asymptotic tests in small samples, is that the presence of nuisance

parameters causes biases in the estimates of key parameters in the test statistics. For tests

of regression disturbances, the regression coefficients and other disturbance parameters not
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under test are nuisance parameters. Ara and King suggested that invariance arguments

be used to overcome this problem. This involves treating a maximal invariant statistic as

the observed data and its density as the likelihood function. They demonstrated that this

is equivalent to constructing tests based on the marginal likelihood function. Estimates

based on the marginal likelihood function are known to be less biased than those based

on the full likelihood functions; see Tunnicliffe Wilson (1989) and the references therein.

Furthermore, Grose and King (1993) report distinctly less biased .probabilities of selection

when familiar model selection procedures are applied to marginal likelihoods rather than

full likelihoods.

Ara and King's study suggests that the maximal invariant/marginal likelihood (MIML)

approach produces more accurate asymptotic critical values for the LM and LR tests when

the null hypothesis is independent identically normally distributed regression disturbances.

The extension of these results to more general null hypotheses is the subject of Rahman and

King (1993). They conducted a Monte Carlo size and power comparison of conventional

and MIML asymptotic tests of Hildreth-Houck (1968) random coefficients in the presence of

first-order autoregressive (AR(1)) errors. They concluded that MIML based LM tests have

more accurate asymptotic critical values and slightly better powers than their conventional

counterparts. The additional power seemed to be a direct consequence of the use of

maximum MIML estimates (ie., maximum likelihood estimates using the density of the

maximum invariant or equivalently the marginal likelihood as the likelihood function) of

the nuisance parameters that cannot be eliminated by invariance.

These new results raise questions about whether locally optimal tests, particularly

point optimal tests, continue to have enough of a power advantage to make the extra

work required for their application worthwhile. Certainly point optimal tests have been

found to have excellent small-sample power properties when testing for random regression

coefficients as documented by King (1987b) and Brooks and King (1994). Unfortunately,

the presence of nuisance parameters that cannot be eliminated through invariance (or

similarity) arguments, considerably complicates the construction of point optimal tests.

In fact, there is no guarantee that the method of construction outlined by King (1987b)

will work. In such circumstances, an approximate point optimal (APO) test procedure is
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suggested. An obvious question is whether the extra work required, results in a clearly
superior test than the more convenient MIML based LM test.

The aim of this paper is to answer this question in the case of testing for Hildreth-Houck
random regression coefficients in the presence of AR(1) disturbances. As we shall see, this is
a testing problem for which we have difficulty constructing a truely point optimal invariant
test and have to resort to the APO invariant (APOI) option. We extend the empirical size
and power comparison reported in Rahman and King (1993) by calculating the sizes and
powers of two APOI tests. Unfortunately our knowledge of the performance of APOI tests
is somewhat limited. Previous empirical size and power calculations presented by King
(1989), Silvapulle and King (1991) and Brooks and King (1994) have only involved tests
of a single autocorrelation parameter. It therefore will be interesting to observe the small-
sample performance of APOI tests when more than one parameter and heteroscedasticity
rather than autocorrelation is under test.

The plan of this paper is as follows. Section 2 outlines the model and the testing
problem. The class of APOI tests for this problem is introduced in Section 3. The Monte
Carlo experiment which compares the small-sample sizes and powers of two APOI with
two MIML based tests is reported in Section 4. Some concluding remarks are made in the
final section.

2. The Model and the Testing Problem

Consider the regression model with Hildreth-Houck (1968) random regression coeffi-
cients and disturbances that follow a stationary AR(1) process:

Yt = -01 + Efitixt; ut,
j=2

t = 1, • • • , n, (1)

where yt is the tth observation on the dependent variable, xti is the tth observation on
the jth non-stochastic explanatory variable and is an unknown constant. The Hildreth-
Houck model assumes the regression coefficients, fl,, j = 2,... , k, at time t, are generated
as

Pt j = 13j Vt j , t = 1 • • • 7 n/ (2)



in which Ai is the mean response of the dependent variable to a unit change in the jth

explanatory variable and vti is an error term such that vti IN(0, j = 2, ... , k. The

disturbance term ut is assumed to be generated as

ut = put—i 4- et, I p l< 1, t =1,...,n,

in which Et ".# IN(0, al) and var(ut) = Gr! = 01/(1 _ p2).

By substituting (2) into (1), the model can be written as

where

k

Yt = Aixt; +
j=2

Wt = Ut Extivti.
j=2

For n observations, this model can be written in matrix notation as

y = Xig w,

where y is n x 1, X is an n x k non-stochastic matrix of rank

is a k x 1 vector of fixed parameters and w = (wi, • , wnY

vector. Assuming mutual independence between et and vti, j

covariance matrix of w may be expressed as au2S2(A, p) where

=

(1+ E )¼ix)
j=2

(1 E AA)
j=2

P
2

pn-1 pn-2

P
2

(1 E Aix)
j=2

••

(3)

is an n x 1 disturbance

2, • • •

• • •

• • •

,k, t= 1,...,n; the

pn-2

• • • (1 E Aj4i)
j=2

in which Ai = ojlati for j = 2, ... , k, and A = (A2, , AO' . Thus

w
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We also assume that for the A and p values of interest, fi(A,p) is of full rank.

The testing problem we will consider is one of testing

Ho : A = 0

against

Ha :A >0

in the context of (3), (4) and (5). Observe that because A is a (k —1) x 1 vector of ratios

of variances, its elements can never be negative. The notation A > 0 signifies Ai > 0 for

i = 2, ... , lc, with at least one strict inequality. Note that this testing problem is invariant

to linear transformations of the form

Y* --÷ ?my + X77 (6)

where 770 is a positive scalar and 77 is a k x 1 vector. This allows us to restrict attention

only to tests which are invariant to transformations of the form (6). The latter can be

achieved by finding a maximal invariant with respect to these transformations and then

treating this maximal invariant as the observed data.

When one assumes AR(1) disturbances in an econometric application of (1), one is

frequently also willing to state the sign of the correlation coefficient. If such information

is available it should be incorporated into the test. In recognition of this we will assume

0 < p < 1 which for practical reasons we will approximate with 0 < p < 0.99999. The

following analysis can easily be amended to allow other assumptions about the range of p

values.

3. An Approximate Point Optimal Invariant Test

It is well-known (see for example King (1987b)) that the m x 1 vector

v = pz/(zipipz)'/2

is a maximal invariant under the group of transformations (6) where m = n — k, z = My

is the ordinary least squares residual vector from (3), M = — X(X1X)-1X1 and P is an
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where if S2o = S2(0, po) and S21 = (A*, pi) then

= QT1x(xiclilx)-1xlfcl,

7

m x n matrix such that P'P = M and PP' = Im. From King (1980), the density function

of v under (3), (4) and (5) is

1
g(v, A, p) =-r(771/2)7r-m/2 pf2(A, p)pi 1-112

EVI(Pc2(A, p)P)_ivrm/2dv
2

where dv is the uniform measure on the m-dimensional unit sphere. Through invariance,

therefore, our testing problem is one of testing

against

Ho : v has density g(v, 0, p), 0 < p < 0.99999;

Ha : v has density g(v, A, p), 0 < p < 0.99999.

Following King (1987b), it is possible that a point optimal invariant (POI) test with optimal

power at A = A* > 0, p= pi will have critical regions of the form

r(Po, A*, pi) = tiA2-1(A*,p1)11)/11/S2-1(0,p0)1b < c (7)

where ü andtb are the generalized least squares residual vectors from (3) assuming covari-

ance matrices S2(A*, p1) and S2(0, po), respectively, and c is an appropriate critical value.

The existence of a POI test in the form of (7) requires c and the fixed parameter po to be

chosen such that

Pr [r(Po, A*, pi) < c 1 w N(0, f2(0, PO)] = a

Pr [r(Po, A*, pi) <c f w N(0, S2(0, p)), 0 < p < 0.99999] < a

where a is the desired level of significance.

Probabilities of the form

Pr [r(Po, A*, pi) < ci tv NO, EA

where E is an n x n covariance matrix, can be written as

(8)

(9)

Pr [u1(Ai — cAo)u <0 I w N(0, E)1 = Pr [E < (10)

= 0,1;



Si are the eigenvalues of (Ai — cAo)E and are independent chi-squared random variables

with one degree of freedom. Probabilities of the form of (10) can be evaluated using

standard algorithms based on Imhof's (1961) algorithm, see King (1987b). For example,

the SHAZAM computer package (White (1978)) enables the user to calculate (10) using

Davies' (1980) algorithm.

At least for the models and choices of pi and A* values reported in the next section, we

found it was never possible to find c and po values that solve (8) and (9) simultaneously.

This is because for fixed c and po, the left-hand-side of (9) first decreases and then increases

as p goes from zero to 0.99999. Therefore local maxima occur at p = 0 and p = 0.99999 with

one being the global maximum in this range. If po is moved towards the global maximum,

the height of this maximum decreases relative to that of the other local maximum until

the global maximum switches from one endpoint to the other.

Thus for our testing problem, we need to turn our attention to the class of APOI tests

introduced by King (1987b) and explored for various testing problems by King (1989), Sil-

vapulle and King (1991) and Brooks and King (1994). An APOI test based on r(po, A4, p1)

has po and its critical value c* chosen so that

— Pr [r(Po)*, pi) <c' 1w

is as close to zero as possible. Clearly when (11) is zero the test is a true POI test.

Numerical experiments by King (1989), Silvapulle and King (1991) and Brooks and King

(1994) reveal that the recommended choice of po value is that value which results in a

global maxima at the end-points of the p space. We found this indeed to be the case for

our problem. The value of po that minimizes (11) is that value which results in a global

maxima at both p = 0 and p = 0.99999.

An important issue is what values should A* and pi take in the test statistic. There

are basically two approaches to this problem. Either they can be set arbitrarily to rep-

resentative or middle values such as pi = 0.5 or a more systematic but computationally

demanding approach can be adopted by taking into account the power of the resultant

test. Examples of the latter approach are discussed by King (1989) and Brooks and King

(1994). In the light of the Brooks and King finding that the extra computation delivers

8



very little improvement in overall power for a related random coefficient testing problem,

we chose the representative value approach in our evaluation reported in the next section.

Given choices for A* and pi., our APOI test procedure can be applied as follows:

(i) Guess a possible value for po which is in the range 0 < pc) < 0.99999. (A middle value

is typically a good starting point.)

(ii) Solve

Pr [r(Po, )*, p1)<Ciw— N(0, S(O, 0))] = a (12)

for c. (Note S2(0, 0) =

(iii) Using these values of po and c, evaluate the left-hand-side of (9) at p = 0.99999. If the

resultant probability is below (above) a make po smaller (larger) and repeat steps (ii) and

(iii). Stop when the resultant probability is equal to a.

There are a range of numerical algorithms that can be helpful in solving (12) and deter-

mining appropriate step sizes for po in this iterative process. We used the secant method,

(see for example Conte (1965)).

4. Monte Carlo Experiment

In order to compare the small-sample properties of APOI tests with those of the MIML

based tests explored by Rahman and King (1993), we extended the latter's Monte Carlo •

study to include two APOI tests. Two APOI tests were chosen to allow a minimal assess-

ment of the sensitivity of the tests to the choice of A* and pl values.

4.1 Experimental Design

For completeness we will outline the experimental design employed by Rahman and

King (1993). They used the Monte Carlo method to estimate the sizes and powers of

the LM and King and Wu's (1993) asymptotic locally most mean powerful (ALMMP)

tests using both the conventional likelihood and the MIML based approaches. Following

Rahman and King, we will use LM and ALMMP to denote the conventional likelihood
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based tests and MLM and MALMMP their MIML based counterparts. The study used

the following n x 3 X matrices with n = 20 and n = 60.

X1: A constant dummy plus two independent trending regressors generated as

xti = zti 0.25t

where zti, t = 1, ,n; j = 2,3 are independent AR(1) time series generated from

zti = 0.5zt—ij

and

qt.; — IN(0, 1), t = 1, , n, j = 2,3.

X2: A constant plus quarterly Australian total private capital movements and Australian

total Government capital movements.

X3 : The first n observations of Durbin and Watson's (1951) consumption of spirits

-example.

X4: A constant dummy plus quarterly seasonally adjusted Australian household dispos-

able income and private final consumption expenditure commencing 1959(4).

Because k = 3, all tests were of Ho : A2 = A3 = 0 against Ha : (A2, A3)' > 0. A

five percent nominal significance level and 2000 iterations were used throughout. Both

asymptotic and simulated critical values were used by Rahman and King. The latter were

obtained for each test and regressor matrix by taking the largest critical value from the

set of estimated true critical values at p = 0, 0.1, 0.2, ... , 0.9 obtained via the Monte Carlo

method.

As Rahman and King observed from

var(wt) = (72

3

(1 t3 7

j=2

what makes a large value of Ai depends on the magnitude of 4. As it seems unlikely that

pt.; would contribute more than 10 times the variance of ut to wt, they set

Ai = kiAti

10



where

= 10/ mp.x(4), j = 2,3

provides an upper bound. They calculated powers at all combinations of p = 0,0.3,0.6,0.9

and A = 0,0.01,0.1,0.5; j = 2,3.

The first APOI test used in the current study involved choosing A* such that A =

0.01, j = 2,3 and pi.• --,--- 0.5. We denote this test by r1. .The -second APOI. test, denoted

r2, involved the choice of = 0.1, j = 2,3 with pl = 0.5. For these tests, exact critical

values were calculated as outlined in Section 3 using a modified version of Koerts and

Abrahamse's (1969) FQUAD subroutine with maximum integration and truncation errors

of 10-6.

4.2 Results

Selected estimated sizes of the r1 and r2 testh are presented in Table 1. We see that both

tests' sizes first decrease and then increase as p increases from zero. Note that the critical

values are such that the true size (as opposed to the estimated size) is 0.05 at p = 0.0

and p = 0.99999. Sizes away from the endpoints are significantly below 0.05 and show a

clear tendency to decrease as n increases. Table 1 also tabulates the value of pi) used in

the r1 and r2 test statistics. For these values it is clear that (11) is typically significantly

different from zero, suggesting there is a question mark over whether these APOI tests are

nearly optimizing power at the p1 and A* values used in the test statistics. In contrast to

these size results, Rahman and King (1993) report that almost all estimated sizes of the

MLM test based on asymptotic critical values were not significantly different from 0.05.

The asymptotic critical values of the MALMMP test also produce sizes reasonably close

to the nominal size. We are left to conclude that MIML based asymptotic tests typically

have actual sizes closer to 0.05 than do APOI tests.

Tables 2, 3 and 4 present estimated sizes and powers based on exact critical values for

the r1 and r2 tests and simulated critical values for the MLM and MALMMP tests. The

size and power values for these latter tests come from the Rahman and King (1993) study

and are included here for ease of comparison. Following Rahman and King, the X3 results

11



are not included because these powers are very low, almost always less than 0.1. This

appears to be caused by the relative smooth nature of the regressors in this case. The

latter results in a pattern of heteroscedasticity in the disturbances, tot, that is difficult to

detect. Powers for = 0.01 are also omitted because they are typically similar to those

for = 0 except when p = 0.9 and n = 60. The discussion that follows covers the results

for A, = 0.01 omitted from the tables but not those for X3.

Powers of almost all tests increase as n increases, ceieris paribus. For the X1 and X4

design matrices, the increases are relatively higher and more uniform across all tests. For

the X2 design matrix, the increases are not as great for the MALMMP test as for the other

tests. Away from the null hypothesis, there is a clear tendency for powers to increase as

p increases, ceteris paribus. Not surprisingly, powers typically increase as either ;\ 2 or

increases although there are a number of exceptions, particularly for X2 and X4.

Of the APOI tests, the r2 test is almost always more powerful than the r1 test with

power differences in favour of the r2 test ranging up to 0.125. The performance of the r2

test relative to the MLM and MALMMP tests depends very much on the sample size and

the design matrix. With the exception of a few points near Ho, when n = 20 the r2 test

dominates the MIML based tests for X1 and to a lesser extent for X4. In the remaining

cases, no one test dominates in terms of power. For X1 and n = 60, the r2 test clearly

has better overall power than the MLM test while the MALMMP test has a significant

power advantage over the r2 test for points closer to Ho with the reverse being the case for

points some distance from Ho. A similar crossing of powers occurs for X2 and the r2 and

MLM tests with the MLM test being on average 0.056 more powerful when n = 60. X2 is

a data set for which the MALMMP test performs poorly, particularly on the boundary of

the alternative hypothesis parameter space. The powers of the MIML based tests and r2

also cross for X4 and n = 60 with points nearer Ho favouring the former tests. In this case

the MALMMP test has the highest average power followed by the r2 test and then the

MLM test so one could argue that the MALMMP test has the best overall power because

its average power is highest.
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5. Concluding Remarks

From the results reported above, it appears that MIML based tests are very competitive

in terms of power with APOI tests when testing for random regression coefficients in the

presence of AR(1) disturbances. These tests also appear to have more desirable sizes than

APOI tests. The extra computation required to apply APOI tests does not seem to result

in clear-cut improvements in either size or power, particularly for larger sample sizes. It

appears that the lower than nominal sizes for middle values of the nuisance parameter,

p, may be a cause of the APOI tests not outperforming the other tests. Unfortunately,

neither of the two MIML based tests considered by Rahman and King (1993) dominates

the other. Generally the MALMMP test is best but for certain data sets in which the

component scores used in the test statistic are negatively correlated, the test can perform

particularly poorly. For large samples, the MLM test is reasonably reliable but obviously

can be improved upon because it does not exploit the one-sided nature of the testing

problem. Exactly how this might be best achieved remains a topic for further research.
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Table 1: Estimated sizes of the r1 and r2 tests for random coefficients in the presence of
AR(1) disturbances at the 5% level

Test Po T 0.0 0.2 0.4 0.6 0.8 0.9

X1
r1 0.4463 20 0.051 0.040 0.032 0.032 0.036 0.042
r2 0.2957 0.050 0.037 0.032 0.034 0.038 0.041
r1 0.4648 60 0.051 0.025 0.017 0.010 0.010 0.022
r2 0.3547 0.046 0.029 0.014 0.012 0.017 0.034

X2
r1 0.4668 20 0.052 0.036 0.022 0.018 0.018 0.028
r2 0.3123 0.049 0.030 0.024 0.021 0.028 0.040
r1 0.4929 60 0.052 0.037 0.024 0.016 0.011 0.014
T2 0.4612 0.052 0.036 0.022 0.016 0.012 0.015

X3
r1 0.4131 20 0.042 0.019 0.012 0.012 0.018 0.034
T2 0.1768 0.044 0.021 0.013 0.012 0.022 0.033
r1 0.4349 60 0.048 0.008 0.000 0.000 0.001 0.014
T2 0.2242 0.046 0.006 0.001 0.000 0.003 0.018

X4
r1 0.4263 20 0.044 0.020 0.013 0.010 0.022 0.034
T2 0.2053 0.048 0.028 0.020 0.016 0.027 0.037
r1 0.4735 60 0.050 0.036 0.020 0.012 0.014 0.025
r2 0.3679 0.048 0.026 0.014 0.012 0.014 0.018
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Table 2: Estimated sizes and powers for X1 of the r1, r2, MLM and MALMMP tests for
random coefficients in the presence of AR(1) disturbances using exact or simulated critical
values at the 5% level.

n = 20 n = 60

Ai X2 r r2 MLM MALMMP r2 MLM MALMMP
p = 0.0

0 0 .051 .050 .050 .050 .051 .046 .049 .047
.1 .125 .135 .100 .110 .230 .260 .190 .284
.5 .324 .376 .252 .308 .712 .832 :731 .820

.1 0 .113 .124 .098 .112 .199 .218 .170 .246
.1 .178 .206 .142 .172 .388 .456 .352 .484
.5 .339 .405 .262 .320 .750 .873 .776 .859

.5 0 .288 .340 .230 .281 .670 .771 .669 .788
.1 .316 .384 .248 .312 .734 .834 .745 .844
.5 .390 .488 .294 .376 .853 .948 .872 .934

p = 0.3
0 0 .036 .036 .048 .050 .021 .022 .048 .044

.1 .132 .144 .113 .130 .248 .306 .232 .334

.5 .352 .406 .268 .334 .786 .906 .767 .854
.1 0 .120 .124 .106 .130 .212 .240 .213 .296

.1 .196 .223 .158 .198 .462 .542 .419 .556

.5 .379 .438 .284 .354 .818 .932 .804 .890
.5 0 .322 .380 .250 .305 .752 .854 .728 .835

.1 .354 .420 .271 .332 .806 .904 .786 .879

.5 .430 .516 .318 .409 .896 .974 .892 .944
p = 0.6

0 0 .032 .034 .046 .042 .010 .012 .043 .045
.1 .182 .190 .178 .202 .410 .478 .441 .568
.5 .434 .494 .334 .394 .884 .966 .858 .920

.1 0 .162 :168 .152 .186 .350 .386 .404 .526
.1 .277 .295 .211 .278 .644 .744 .633 .768
.5 .454 .518 .338 .408 .899 .975 .880 .934

.5 0 .384 .448 .308 .362 .871 .946 .842 .918
.1 .412 .492 .316 .388 .896 .968 .866 .936
.5 .482 .583 .360 .446 .938 .991 .924 .963

p = 0.9
0 0 .042 .041 .038 .038 .022 .034 .050 .045

.1 .412 .432 .328 .390 .855 .919 .889 .928

.5 .552 .645 .411 .498 .963 .998 .954 .974
.1 0 .364 .396 .308 .364 .833 .867 .871 .934

.1 .468 .530 .346 .420 .927 .980 .925 .961

.5 .554 .658 .404 .494 .968 .998 .954 .979
.5 0 .494 .619 .390 .466 .970 .994 .950 .983

.1 .516 .632 .386 .480 .972 .997 .954 .982

.5 .552 .676 .404 .512 .974 .999 .962 .988
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Table 3: Estimated sizes and powers for X2 of the r1, r2, MLM and MALMMP tests for
random coefficients in the presence of AR(1) disturbances using exact or simulated critical
values at the 5% level.

n = 20 n = 60

A1 A Ti T2 MLM MALMMP T2 MLM MALMMP
p = 0.0

0 0 .052 .049 .046 .046 .052 .052 .046 .047
.1 .052 .058 .097 .045 .202 .196 .181 .054
.5 .094 .104 .210 .046 £55 ..683-- .650 .098

.1 0 .089 .095 .068 .111 .058 .060 .098 .110
.1 .091 .104 .089 .097 .218 .220 .222 .118
.5 .114 .137 .181 .078 .664 .698 .663 .153

.5 0 .178 .208 .106 .242 .120 .153 .302 .336
.1 .177 .211 .116 .226 .284 .317 .391 .329
.5 .174 .211 .150 .175 .694 .740 .714 .316

p = 0.3
0 .026 .028 .045 .044 .029 .027 .050 .043
.1 .034 .041 .100 .042 .218 .222 .220 .060
.5 .084 .100 .237 .044 .742 .778 .728 .110

.1 0 .078 .085 .071 .125 .042 .044 .110 .122
.1 .086 .098 .094 .106 .247 .258 .270 .134
.5 .111 .130 .192 .078 .756 .788 .740 .156

.5 0 .184 .218 .118 .251 .124 .156 .334 .376
.1 .182 .216 .123 .230 .332 .383 .446 .367
.5 .178 .215 .148 .184 .788 .830 .785 .336

p = 0.6
0 0 .018 .021 .040 .041 .016 .016 .046 .046

.1 .030 .042 .130 .041 .336 .328 .385 .071

.5 .087 .116 .276 .040 .862 .890 .864 .138
.1 0 .091 .100 .078 .168 .030 .038 .148 .181

.1 .098 .114 .108 .133 .373 .386 .441 .181

.5 .130 .158 .222 .088 .870 .898 .866 .210
.5 0 .202 .239 .132 .295 .166 .220 .466 .518

.1 .198 .240 .133 .268 .490 .544 .624 .482

.5 .192 '.242 .164 .198 .888 .922 .896 .414
p = 0.9

0 0 .028 .040 .039 .050 .014 .015 .050 .048
.1 .082 .106 .282 .059 .736 .742 .844 .140
.5 .150 .192 .383 .062 .979 .988 .983 .226

.1 0 .194 .215 .145 .306 .106 .128 .396 .456
.1 .184 .216 .166 .198 .778 .800 .888 .402
.5 .182 .228 .284 .112 .982 .988 .982 .324

.5 0 .257 .302 .163 .356 .432 .528 .813 .848
.1 .249 .296 .164 .320 .844 .883 .930 .754
.5 .231 .290 .182 .224 .982 .992 .985 .560
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Table 4: Estimated sizes and powers for X4 of the r1, r2, MLM and MALMMP tests for
random coefficients in the presence of AR(1) disturbances using exact or simulated critical
values at the 5% level.

n = 20 n = 60

Ai r1 r2 MLM MALMMP r1 r2 MLM MALMMP
p = 0.0

0 0 .044 .048 .046 .044 .050 .048 .041 .050
.1 .066 .072 .044 .054 .158 .166 .128 .180
.5 .082 .086 .060 .070 .483 .561 .462 .566

.1 0 .068 .074 .048 .056 .158 .163 .127 .180
.1 .078 .082 .052 .062 .278 .302 .240 .313
.5 .084 .088 .064 .073 .518 .622 .516 .622

.5 0 .086 .094 .064 .076 .496 .573 .475 .586
.1 .086 .092 .067 .078 .532 .629 .522 .638
.5 .080 .096 .066 .079 .630 .734 .646 .728

p = 0.3
0 0 .016 .024 .043 .040 .028 .019 .042 .047

.1 .047 .050 .048 .060 .152 .159 .158 .219

.5 .067 .081 .058 .074 .529 .616 .503 .602
.1 0 .048 .052 .054 .062 .152 .156 .157 .222

.1 .062 .071 .054 .070 .304 .314 .286 .368

.5 .068 .082 .061 .075 .569 .660 .546 .644
.5 0 .070 .086 .063 .079 .552 .629 .524 .633

.1 .074 .090 .064 .080 .585 .674 .564 .664

.5 .078 .092 .064 .079 .664 .773 .680 .742
p = 0.6

0 0 .010 .016 .037 .032 .012 .012 .046 .050
.1 .044 .050 .064 .080 .237 .227 .295 .370
.5 .072 .086 .061 .082 .616 .704 .621 .688

.1 0 .047 .053 .069 .084 .240 .220 .304 .378
.1 .058 .070 .064 .087 .420 .438 .450 .540
.5 .074 .090 .062 .080 .647 .744 .656 .712

.5 0 .076 .092 .066 .090 .644 .724 .651 .726
.1 .076 .093 .066 .088 .671 .761 .678 .740
.5 .077 .098 .068 .084 .734 .834 .732 .783

p = 0.9
0 0 .034 .037 .038 .020 .025 .018 .047 .045

.1 .074 .080 .064 .102 .583 .594 .707 .744

.5 .078 .097 .067 .081 .770 .856 .778 .810
.1 0 .077 .087 .070 .110 .614 .610 .726 .770

.1 .080 .098 .068 .096 .710 .768 .770 .810

.5 .078 .098 .067 .085 .782 .867 .788 .822
.5 0 .084 .108 .071 .091 .803 .882 .819 .856

.1 .084 .106 .071 .090 .806 .888 .816 .852

.5 .084 .100 .071 .088 .810 .902 .814 .850
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