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1. Introduction

The use of panel data has become increasingly popular in econometrics over the
last decade. Several models and approaches are able to deal with the key features
of these data sets (see Mdtyds and Sevestre [1992]), however, the error components
model (especially its one-way version, with individual effects only) remains the most
frequently used framework. In the one-way error components model it is crucial to
test for the presence of individual effects, because without these effects the usual

econometric methods can be applied for estimation and inference, but when present
special procedures are needed.

Most of the tests for the presence of individual effects in an error components
model assume normally distributed disturbances. One must, however, be concerned
with the effects of nonnormalty on the behaviour of these procedures, particularly
in small samples, which are characteristic of econometric studies. In a substantial
number of empirical applications the normafity assumption can be unrealistic. For
example, Baltagi and Levin [1992] analysed cigarette consumption through a log-
linear consumption function. It would be hard to find any evidence to support the
underlying assumption on the log-normality of the error terms in the original nonlinear
model. It is, therefore, quite likely that the error terms in the estimated model were

not normally distributed, and as a result the reported (diagnostic) test results were
misleading.

This analysis attempts to evaluate the robustness of the F, one and two sided LM,
and the LR tests for individual effects in a panel data context against nonnormality.

Using Monte Carlo simulation the power, actual and nominal sizes of the tests are
compared.




2. Framework of the analysis

The one-way error components model with individual effects is

y=XBf+u=XB+pu®lr+v

Yie = X8 + uit,
/ Y11 \
yir

YN1

\yl\:fT}

u;¢ can be decomposed as u;; = p;+vi¢, ;i is the random variable of individual effects,

p is the random vector of individual effects (N x 1), v;; is the usual error term, v is
the vector of the error terms, [ is the vector of ones, N is the number of individuals
and T is the length of times series.

We assume that
H,. The random variables y; and v;; are independent for all : and ¢.
H,. E(pi) =0, E(vit)=0.
H;.

i=it=1

2
E(v;tv,-:,/) = {U"

0 otherwise.

2 R |
Euips) = o, t=1
(pipsir) {O otherwise.

We are interested in testing the null hypothesis Hy : oﬁ = 0 against the
alternative hypothesis Hy, : 0'3 # 0.

The variance decomposition test (Mdtyds [1992]) is based on the test statistic

@'(Iy ® ) (N - K)™1
@'(Int — (In ® F))E[N(T - 1) - K)]~1
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which is distributed as an F'(N — K, N(T — 1) — (K — 1)) random variable under H,,

where ¥ is the OLS residual, I is the identity matrix of given size and J is the matrix
of ones of given size.

The two sided LM test (Breusch and Pagan [1980]) is based on the

(2(15 - 1)) (ai(INaiJT)a - 1>2

test statistic which under Hy is distributed as a X2 random variable with 1 degree of
freedom.

The one sided LM test (Baltagi et al. [1992], Moulton and Randolph [1989], and
Honda [1985]) is based on the

() (7" )

test statistic which under the null hypothesis Hy :

0% = 0 (against the alternative
hypothesis H4 : af, > 0) has standard normal asymptotic distribution if N & T — oo

The LR test (Baltagi et al. [1992)]) is based on the test statistic

1o likelihood(restricted)
likelihood(unrestricted)

which has an asymptotic (N & T — co) X? distribution with 1 degree of freedom.

To compute this test the iterative method proposed by Oberhofer and Kmenta [1974]
and Breush [1987] was used.

The basic model used for the Monte Carlo data generation is

Yie = aqy $$t)

+ a2$(2) + uge

ujt = pi +v;e for the analysis of the power, and

uit = vj¢ for the analysis of the size of the given test,
o) =), +eff) j=1,2
el = Uniform[-0.5,0.5] and/or N(0,1), €& ~ N(0,1) j =1,2

=1,...N,t=1,...T, T =10,15,25, N = 25,100 and a; = a, = 0.5.




Departures from normality are generally considered in terms of kurtosis and
skewness. Skewness is measured by \/B; = vs / 1/; /% Where v; is the i-th moment about
the mean, and for symmetric distributions its value is zero. Kurtosis is measured by
P2 = v4/v2. For the normal distribution its value is 3, with longer tailed distributions
having larger values (and vice versa).

The following scenarios ‘are- considered:
A) pi is nonnormal, v; is N(0,1);
B) wiis N(0,1), v;¢ is nonnormal;
C) both y; and v;; are nonnormal.

The nonnormal distributions used are (more about these distributions can be
found in Evans et al. [1993)):

1. Exponential distribution (with parameter = 1), with skewness 2, and kurtosis 9.

2. Lognormal distribution (1,1) (that is generated from N (—0.347,0.833)) with
skewness 4 and kurtosis 41.

. #(5) distribution, with skewness 0 and kurtosis 9.
. Cauchy distribution (0,2), with no finite moments.

We also attempt to isolate the effects of skewness and kurtosis on the behaviour
of these tests. In a similar way to Evans [1992] we use the generalisation of Tukey’s
lambda distribution introduced by Ramberg et al. [1979] (RTDM distribution).
The mean is set to zero and the variance to unity, then we generated the RTDM
distribution for all the combinations of skewness 0.5 (light right), 0.6 (medium right)

and 0.8 (heavy right) and kurtosis 2.4 and 3 (light tail), 5 (medium tail) and 9 (heavy
tail).!

The most important problem in our analysis is that the distribution of the
composite disturbance term in formula (1) is the result of the sum of two independent
random variables. It is well known that the sum of two independent normal random
- variables is also normal. But unfortunately, for the other distributions and the Linear
combination of these, the analytical derivation of the distribution of the composite
disturbance term is quite complex:

h(uie) = / f(uit — vie)g(vie)dvi (2)

! Except the case skewness=0.8 and kurtosis=2.4 which is not feasible.

4




where &, f, and g are the densities of u, y; and v;; respectively. So instead of deriving
the skewness and kurtosis for the distribution of u;; using (2), we characterize it by
its empirical skewness and kurtosis.

3. Simulation results

We focus the evaluation of the simulation results on the power and the size of the
tests.

From our point of view there are two important questions to answer:

e as the power of a consistent test converges to one as the sample size increases,
what is the speed of this convergence, and

¢ simultaneously what is the behaviour of the size of the test(s)?

At 5% significance level for most of the distribution combinations of Li and v;; the
power of all tests was 1 even at the smallest sample size analysed (N = 25, T = 10).
The exception was the case when the Cauchy distribution was assumed for v;. In these
cases the convergence rate was much slower than for the other pairs of distributions.
This is related to the power function, that is how far the null and the alternative
hypotheses are from each other. Defining by p = 0%/(0% + o2) the variance ratio,
‘when p is close to zero the null is close to the alternative and when it is close to unity
the null is well away from the alternative. The ratio p is around 0.4-0.5 when v;; is

not Cauchy or v;; and y; are both Cauchy, but is near zero if v;; is Cauchy but y; is
not.? )

Using the RTDM distribution it seems that the skewness and the kurtosis have
little effect on the power, given that all the different combinations of skewness and
kurtosis lead to power one very quickly. With the RTDM distribution it was also easy
to confirm that for a given p (p=0.01, 0.05, 0.1, 0.2, and 0.5) all the analysed tests
have quite similar power behaviour. (See Tables 1-4.) When the null is close to the
alternative (p = 0.01) the F test seems to outperform the other tests, while the two
sided LM test seems to be less powerful for all types of distributions, regardless of the
sample size. In small samples (see Graphs 1-4) the ranking is systematically F, LM1,

? Using the empirical variance for the Cauchy distribution.




LR, and LM2 tests which reinforces our findings about the good power behaviour of
the F' test and the poor performance of LM2 test.

All this suggests that there is more interesting action for us in the size of the
tests.

We analysed the size of the tests at 5% significance level. The results suggest
(see Tables 5-6) that the empirical size of the F test is consistently close to the true
5% size both in small and large samples. While in large samples there is not too much
difference between the LM1, LM2, and LR tests, in small samples the LM1 test is
performing quite well. The relative fragility of these runner up tests is well illustrated
by the fact that we observed for some distributions sizes of 0.29 and 0.71 for the LR
test, 0.32 and 0.58 for the LM1 test and 0.30 and 0.62 for the LM2 test. The good
news is the robust performance of the F' test.

We carried out our experiment using two different types of distributions in the
generation of the exogenous variables (&i; normal and uniform). It seems that the
choice of this does not affect our main findings. However, the use of the normal

distribution led to less stable results: extreme size and power was recorded more
' frequently for all tests.

It is legitimate to ask why these results. The F test is based on the ration of
the Between and Within variances (see Mdtyds [1992]), whereas the LM tests are
based on the ratio between the Between and Total variaces. While they use the
.same information, the F' test takes much more into account the panel feature (or
heterogeneity) of the data by using both the Between and Within variances which
could be the reason for its robust behaviour. We believe that the poor performance
of the LR test is more related to the way this test is carried out than to its theoretical
characteristics. The numerical methods available to maximize the (constrained)
likelihood in most of the computer packages® are slow and not very efficient, which may
affect the final outcome of a Monte Carlo simulation where thousands of replications
are necessary.

The above results have an additional consequence. In an error components model
the ‘usual procedure is to assume that the random (individual) specific effects are
independent of the white noise components of the model (in (1) p; and v;; are assumed
to be independent). This (not always realistic) assumption is not really needed
anymore. This was necessary to maintain the normality of the overall disturbance
term for easy inference. But, in light of our results and those of Evans [1992], perhaps

there is no more need for this assumption given that there are (nearly) always robust

3 Gauss has been used for this evaluation.




Graph 1: Power of Test for Normal Dist.
(s=0, k=3.0, N=25 and T=10)
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Graph 2: Power, Medium Tail & Skewness
(s=0.6, k=5.0, N=25 and T=10)
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Graph 3: Power, Heavy Tail
(s=0, k=9.0, N=25 and T=10)
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Graph 4: Power, Heavy Skewness
(s=0.8, k=3, N=25 and T=10)
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PWRTAB (LMD1)
TABLE 1

Power of tests for the standard normal distribution

(skewness = 0; kurtosis = 3)

(eit has a uniform distribution)




TABLE 2
Power of tests for medium tail and medium skewness

(skewness = 0.6; kurtosis = 5.0)

(cit has a uniform distribution)




TABLE 3
Power of tests for heavy tail

(skewness = 0; kurtosis = 9.0)

(t:.lt has a uniform distribution)




TABLE 4

Power of tests for heavy skewness

(skewness = 0.8; kurtosis = 3)

33
150
814
987

1000
1000

(t:.lt has a uniform distribution)




TABLE 5
Size of tests for different skewness and kurtosis

(at 5% level, N = 25, in %.)

test

Distributio LM2 IR | F LR

45 37 45 38 327 48 31 37 41
57 40 S0 48 | 43 S0 41 43 | 51 40 44 41
55 43 45 36 43 34 32 29 | 53 54 47 34
45 39 38 37|40 38 35 36| 43 34 36 40
58 37 51 41 49 38 48 48 | 67 S5 52 47
51 39 36 41 51 44 46 34 | 57 46 54 60
44 42 36 36 | 48 32 43 43 | 47 44 47 43
56 34 49 47 | 58 40 58 54 | 57 33 45 49
55 33 42 39|49 33 39 37|63 44 54 42
44 36 34 39|46 23 39 38| 42 41 36 49
53 42 47 47 | 47 32 36 34| 43 36 39 33
65 49 54 47 | 51 33 42 41 44 30 37 36
59 56 56 53|44 34 36 35|37 33 32 29
47 41 40 53 | 37 47 46 71 54 62 55 55
52 48 42 41 48 39 40 32| 37 32 33 40

S=0, =3.
S=0, K=2.
S=0, =S.
=0, K=9.
S=0. =2.
S=0. =3.
S=0. =S.
S5=0. =9.
S5=0. K=2.
S=0. =3.
S=0. =3.
S=0. K=5.
S=0. =3.
S=0. =5.
S=0. A=9.

- - - -

- - -

-

O O O O O O b O O O »&» O O » O

00 00 00 O O OO0 OO L Lt L

52.4 41.0 44.0 42.8 |46.6 37.0 41.1 40.4{49.5 41.0 43.2 42.6
6.34 6.11 6.90 5.82 [5.04 6.70 6.51 10.7(8.97 9.83 8.06 8.33

: Skewness (eit has a uniform distribution)

K : Kurtosis (normal distribution: S = 0, K = 3.0)




TABLE 6
Size of tests for different skewness and kurtosis
(at 5% level, N = 100, in %.)

test T =10 T =15

Distribution F IM2 IM1 LR | F ILM2 LM1 IR | F LR

S=0,  K=3.
S=0, K=2.
S=0, K=5.
S=0,  K=9.
S=0.5, K=2.
S=0.5, K=3.
S=0.5, K=5.
$=0.5, K=9.
S=0.6, K=2.
S=0.6, K=3.
K=5.
K=9.
K=3.
K=5.
K=9.

53 42 51 52 | 40 45 39 47 | 55 42 50 45
46 48 43 63 45 46 | 43 54 | 40 44 38 49
48 S50 42 55|44 44 42 50 | 48 57 44 56
42 33 41 47 | 48 46 47 60 | 42 42 41 38
S2 44 48 75 | 47 S0 44 58 | 48 52 45 41
49 49 46 52 | 54 52 54 58| 46 40 47 49
41 48 37 49 | 48 53 48 52 | 60 54 58 56
47 47 45 50 | 51 41 48 58 | 44 51 42 . 50
44 42 42 45 | 42 38 40 46 | 51 55 S0 60
55 55 51 S6 | 47 42 44 AT | 44 37 41 60
43 43 38 45| 52 42 49 60 | 53 48 51 60
44 41 41 49 | 47 47 44 58 | 45 40 41 58
46 37 42 S0 |53 49 52 59 | 43 31 42 S0
56 . 58 53 60 |59 51 55 60|55 57 52 61
48 52 46 54 | 40 39 37 53| 43 44 41 61

-

-

-

-

S=0.
S=0.
S=0.
S=0.

- -

O O O O O O +» O O O B O O b o

00 00 0 O O O O L 1 LN W

-

Mean 47.6 45.9 44.4 53.4 (47.8 45.6 45.7 54.6|47.8 46.2 45.5 52.9
Std. Dev. 4.65 6.62 4.76 7.83 [5.33 4.70 5.35 5.16|5.79 7:87 5.57 7.56

S : Skewness (eit has a uniform distribution)

K : Kurtosis (normal distribution: S = 0, K = 3.0)




procedures available to carry out basic hypothesis testing in an error components
model.

3. Conclusion

It has been shown in this paper that amongst the testing procedures available to
test for individual effects in an error components framework the F' test is robust
against nonnormality while the one and two sided LM and the LR tests may be quite
fragile. So Baltagi and Levin [1992] may have been right with their inference, after
all. It has also been suggested that the usual assumption of independence of the

random components of the composed disturbance term may not be needed for correct
inference.




References

Baltagi, B. H., Chang, Y. J. and Q. Li [1992]: Monte Carlo Results on
Several New and Existing Tests for the Error Component Model; Journal of
Econometrics, 54, pp. 95-120.

Baltagi, B. H. and D. Levin [1992]: Cigarette Taxation: Raising Revenues
and Reducing Consumption; Structural Change ans Economic Dynamics, 3, pp.
321-340.

Breusch, T. S. [1987]: Maximum Likelihood Estimation of Random Effects
Models; Journal of Econometrics, 36, pp. 383-389.

Breusch, T. S. and A. R. Pagan [1980]: The Lagrange Multiplier Test and
its Applications to Model Specification in Econometrics; Review of Economic
Studies, XLVII, pp. 239-253.

Evans, M. [1992]: Robustness of Size of Tests of Autocorrelation and Het-
eroscedasticity to Nonnormality; Journal of Econometrics, 51, pp. 7-24.

Evans, M., Hastings, N. and B. Peacock [1993): Statistical Distributions;
John Wiley and Sons, Inc., New York.

Honda, Y. [1985]: Testing the Error Components Model with Non-Normal
Disturbances; Review of Economic Studies, 52, pp. 681-690.

Matyds, L. and P. Sevestre (eds.) [1992]): The Econometrics of Panel Data;
Kluwer Academic Publishers, Dordrecht, Boston, London.

Matyas, L. [1992]: Error Components Models; in Matyés and Sevestre (eds.):
The Econometrics of Panel Data, Kluwer Academic Publishers, Dordrecht,
Boston, London.

Moulton, B. R. and W. C. Randolph [1989]: Alternative Tests of the Error
Components Model; Econometrica, 57, pp. 685-693.

Oberhofer, W. and J. Kmenta [1974]: A General Procedure for Obtaining
Maximum Likelihood Estimates in Generalized Regression Models; Economet-
- 1ica, 49, pp. 579-590.

Ramberg, J. S., Dudewicz, E. J., Tadikamalla, P. R. and E. F. Mykytka
[1979]: A Probability. Distribution and Its Uses in Fitting Data; Technometrics,
21, pp. 201-214.







