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1. Introduction

The use of panel data has become increasingly popular in econometrics over the
last decade. Several models and approaches are able to deal with the key features
of these data sets (see MAtyas and Sevestre [1992]), however, the error components
model (especially its one—way version, with individual effects only) remains the most
frequently used framework. In the one—way error components model it is crucial to
test for the presence of individual effects, because without these effects the usual
econometric methods can be applied for estimation and inference, but when present
special procedures are needed.

Most of the tests for the presence of individual effects in an error components
model assume normally distributed disturbances. One must, however, be concerned
with the effects of nonnormalty on the behaviour of these procedures, particularly
in small samples, which are characteristic of econometric studies. In a substantial
number of empirical applications the normality assumption can be unrealistic. For
example, Baltagi and Levin [1992] analysed cigarette consumption through a log-
linear consumption function. It would be hard to find any evidence to support the
underlying assumption on the log-normality of the error terms in the original nonlinear
model. It is, therefore, quite likely that the error terms in the estimated model were
not normally distributed, and as a result the reported (diagnostic) test results were
misleading.

This analysis attempts to evaluate the robustness of the F, one and two sided LM,
and the LR tests for individual effects in a panel data context against nonnormality.
Using Monte Carlo simulation the power, actual and nominal sizes of the tests are
compared.
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2. Framework of the analysis

The one—way error components model with individual effects is

Or

where

=

YlT

YN1

•

y = Xfl u = Xfl IL 0 1T v (1)

Yit = uit ,

and X=

1

1

•••

• • •

\YNT)

uit can be decomposed as uit = pi -I- vit, pi is the random variable of individual effects,
y is the random vector of individual effects (N x 1), vit is the usual error term, v is
the vector of the error terms, 1 is the vector of ones, N is the number of individuals
and T is the length of times series.

We assume that

H1. The random variables pi and vit are independent for all i and t.

H2. E(pi) = 0, E(v) = 0.

H3.

H4

=

cr2 i = t = t'

0 otherwise.

0.2 i=i'

o otherwise.

We are interested in testing the null hypothesis Ho
alternative hypothesis HA: 0•1,2 0.

The variance decomposition test (Matyas [1.992]) is based on the test statistic

4)1I(N — Kr1

g'(INT — (IN 0 z-171,-))ri [N(T —1) _KA-1

2
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which is distributed as an F (N — K, N(T —1)— (K — 1)) random variable under Ho,
where /I is the OLS residual, I is the identity matrix of given size and J is the matrix
of ones of given size.

The two sided LM test (Breusch and Pagan [1.980]) is based on the

(  NT  _
u u

test statistic which under Ho is distributed as a X2 random variable with 1 degree of
freedom.

The one sided LM test (Baltagi et al. [1992], Moulton and Randolph [1989], and
Honda [1985]) is based on the

(  NT 

2(N — 1) )
® .17,1a 1)

test statistic which under the null hypothesis Ho : 0.1,2 = 0 (against the alternative
hypothesis HA : > 0) has standard normal asymptotic distribution if N & T oo.

The LR test (Baltagi et al. [1992]) is based on the test statistic

likelihood(restricted)
—21og 

likelihood(unrestricted)

which has an asymptotic (N & T co) X2 distribution with 1 degree of freedom.
To compute this test the iterative method proposed by Oberhofer and Kmenta [1974]
and Breush [1987] was used.

The basic model used for the Monte Carlo data generation is

where

(1) , (2) ,yit = aixit --t- a2xit uit

uit = vit for the analysis of the power, and

uit = vit for the analysis of the size of the given test,

= 4)1 + 61P J = 1,2

= Uniform[-0.5, 0.5] and/or N(0,1), e2) N(0,1) j = 1,2,

i = 1, ... N, t = 1,. . . T, T = 10,15,25, N = 25,100 and al = a2 = 0.5.
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Departures from normality are generally considered in terms of kurtosis and
skewness. Skewness is measured by .V737 = 1/3/v23/2 where vi is the i-th moment about
the mean, and for symmetric distributions its value is zero. Kurtosis is measured by
/32 = v4/4. For the normal distribution its value is 3, with longer tailed distributions
having larger values (and vice versa).

• The following .scenarios are considered:

A) pi is nonnormal, vit is N(0,1);

B) iti is N(0, 1), vit is nonnormal,

C) both pi and vit are nonnormal.

The nonnormal distributions used are (more about these distributions can be
found in Evans et al. [1993]):

1. Exponential distribution (with parameter = 1), with skewness 2, and kurtosis 9.

2. Lognormal distribution (1, 1) (that is generated from N(-0.347, 0.833)) with
skewness 4 and kurtosis 41.

3. 45) distribution, with skewness 0 and kurtosis 9.

4. Cauchy distribution (0,2), with no finite moments.

We also attempt to isolate the effects of skewness and kurtosis on the behaviour
of these tests. In a similar way to Evans [1992] we use the generalisation of Tukey's
lambda distribution introduced by Ramberg et al. [1979] (RTDM distribution).
The mean is set to zero and the variance to unity, then we generated the RTDM
distribution for all the combinations of skewness 0.5 (light right), 0.6 (medium right)
and 0.8 (heavy right) and kurtosis 2.4 and 3 (light tail), 5 (medium tail) and 9 (heavy
tail).1

The most important problem in our analysis is that the distribution of the
composite disturbance term in formula (1) is the result of the sum of two independent
random variables. It is well known that the sum of two independent normal random
variables is also normal. But unfortunately, for the other distributions and the linear
combination of these, the analytical derivation of the distribution of the composite
disturbance term is quite complex:

00

h(u) = I Auit — vit)g(vit)dvit

1 Except the case skewness=0.8 and kurtosis=2.4 which is not feasible.
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where h, f, and g are the densities of uit, pi and vit respectively. So instead of deriving
the skewness and kurtosis for the distribution of uit using (2), we characterize it by
its empirical skewness and kurtosis.

3. Simulation results

We focus the evaluation of the simulation results on the power and the size of the
tests.

From our point of view there are two important questions to answer:

• as the power of a consistent test converges to one as the sample size increases,
what is the speed of this convergence, and

• simultaneously what is the behaviour of the size of the test(s)?

At 5% significance level for most of the distribution combinations of pi and vit the
power of all tests was 1 even at the smallest sample size analysed (N = 25, T = 10).
The exception was the case when the Cauchy distribution was assumed for vit. In these
cases the convergence rate was much slower than for the other pairs of distributions.
This is related to the power function, that is how far the null and the alternative
hypotheses are from each other. Defining by p =  tr/(cr21, 4_ 2v \) the variance ratio,
when p is close to zero the null is close to the alternative and when it is close to unity
the null is well away from the alternative. The ratio p is around 0.4-0.5 when vit is
not Cauchy or vit and pi are both Cauchy, but is near zero if vit is Cauchy but is
not.2

Using the RTDM distribution it seems that the skewness and the kurtosis have
little effect on the power, given that all the different combinations of skewness and
kurtosis lead to power one very quickly. With the RTDM distribution it was also easy
to confirm that for a given p (p=0.01, 0.05, 0.1, 0.2, and 0.5) all the analysed tests
have quite similar power behaviour. (See Tables 1-4.) When the null is close to the
alternative (p = 0.01) the F test seems to outperform the other tests, while the two
sided LM test seems to be less powerful for all types of distributions, regardless of the
sample size. In small samples (see Graphs 1-4) the ranking is systematically F, LM1,

2 Using the empirical variance for the Cauchy distribution.
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LR, and LM2 tests which reinforces our findings about the good power behaviour of
the F test and the poor performance of LM2 test.

All this suggests that there is more interesting action for us in the size of the
tests.

We analysed the size of the tests at 5% significance level. The results suggest
(see Tables 5-6) that the empirical size of the F test is consistently close to the true
5% size both in small and large samples. While in large samples there is not too much
difference between the LM1, LM2, and LR tests, in small samples the LM1 test is
performing quite well. The relative fragility of these runner up tests is well illustrated
by the fact that we observed for some distributions sizes of 0.29 and 0.71 for the LR
test, 0.32 and 0.58 for the LM1 test and 0.30 and 0.62 for the LM2 'test. The good
news is the robust performance of the F test.

We carried out our experiment using two different types of distributions in the
generation of the exogenous variables (eit normal and uniform). It seems that the
choice of this does not affect our main findings. However, the use of the normal
distribution led to less stable results: extreme size and power was recorded more
frequently for all tests.

It is legitimate to ask why these results. The F test is based on the ration of
the Between and Within variances (see Matyas [1992]), whereas the LM tests are
based on the ratio between the Between and Total vatiaces. While they use the
same information, the F test takes much more into account the panel feature (or
heterogeneity) of the data by using both the Between and Within variances which
could be the reason for its robust behaviour. We believe that the poor performance
of the LR test is more related to the way this test is carried out than to its theoretical
characteristics. The numerical methods available to maximize the (constrained)
likelihood in most of the computer packages3 are slow and not very efficient, which may
affect the final outcome of a Monte Carlo simulation where thousands of replications
are necessary.

The above results have an additional consequence. In an error components model
the • usual procedure is to assume that the random (individual) specific effects are
independent of the white noise components of the model (in (1) pi and vit are assumed
to be independent). This (not always realistic) assumption is not really needed
anymore. This was necessary to maintain the normality of the overall disturbance
term for easy inference. But, in light of our results and those of Evans [1992], perhaps
there is no more need for this assumption given that there are (nearly) always robust

3 Gauss has been used for this evaluation.
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Graph 1: Power of Test for Normal Dist.
(s=0, k=3.0, N=25 and T=10)
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TABLE 1

Power of tests for the standard normal distribution

(skewness = 0; kurtosis = 3)

T Test

N=25
,

N=100

F LM2 LM1 LR F LM2 LM1 LR

p = 0 45 42 39 35 55 45 53 65

p = 0.01 86 49 72 73 170 114 163 153

10 p = 0.05 395 274 370 310 882 802 871 825

p = 0.1 772 703 759 707 999 995 995 995

p = 0.2 994 983 991 985 1000 1000 1000 1000

p = 0.5 1000 1000 1000 1000 1000 1000 1000 1000

p = 0 57 35 45 38 47 50 41 42

p = 0.01 127 81 108 106 261 165 249 . 236

15 p = 0.05 633 532 614 562 986 972 985 981

p = 0.1 940 918 935 910 1000 1000 1000 1000

p = 0.2 996 998 997 1000 1000 1000 1000 1000

p = 0.5 1000 1000 1(000 1000 1000 1000 1000 1000

p = 0 46 45 43 43 53 51 49 64

p = 0.01 203 116 189 141 463 344 455 425

25 p = 0.05 882 823 870 828 1000 1000 1000 1000

p = 0.01 993 992 994 991 1000 1000 1000 1000

p = 0.2 1000 1000 1000 logo moo l000 l000 l000
p = 0.5 1000 1000 1000 1000 1000 1000 1000 1000

(cit 
has a uniform distribution)
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TABLE 2

Power of tests for medium tail and medium skewness

(skewness = 0.6; kurtosis = 5.0)

T Test

N=25 N=100

F LM2 LM1 LR F LM2 LM1 LR

p = 0 65 49 54 47 43 43 38 45

p = 0.01 88 54 71 65 172 119 162 156

10 p = 0.05 408 297 377 344 879 805 874 819

p = 0.1 762 679 745 700 999 997 999 999

p = 0.2 973 962 971 866 1000 1000

.

1000 1000

p = 0.5 1000 1000 1000 1000 1000 1000 1000 1000

p = 0 51 33 42 41 52 42 49 60

p = 0.01 135 73 122 101 247 173 238 .215

15 p = 0.05 629 543 609 548 978 963 979 969

p = 0.1 904 854 890 856 1000 1000 1000 1000

p = 0.2 997 995 997 1000 1000 1000 1000 1000

p = 0.5 1000 1000 1000 1000 1000 1000 1000 1000

p = 0 44 30 37 36 53 48 51 60

p = 0.01 193 118 179 144 449 368 445 426

25 p = 0.05 851 791 834 796 1000 1000 1000 1000

p = 0.01 982 772 980 970 1000 1000 1000 1000

p = 0.2 1000 1000 1000 1000 1000 1000 1000 1000

p = 0.5 1000 1000 1000 1000 1000 1000 1000 1000

(cit 
has a uniform distribution)
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TABLE 3

Power of tests for heavy tail

(skewness = 0; kurtosis = 9.0)

T Test

N=25

_
N=100

F LM2 LM1 LR -- -F .LM2 -•LM1 LR

,

p = 0 45 39 38 37 42 33 41 47

p =.0.01 81 41 68 66 179 121 174 159

10 p = 0.05 415 321 388 350 850 786 846 804

p = 0.1 759 672 737 689 998 995 997 996

p = 0.2 973 959 971 962 1000 1000 1000 1000

p = 0.5 1000 1000 1000 1000 1000 1000 1000 1000

p = 0 40 38 35 36 48 46 47 60

p = 0.01 127 74 110 95 247 157 237 209

15 p = 0.05 604 520 578 540 985 968 982 976

p = 0.1 897 836 879 841 1000 1000 1000 1000

p = 0.2 996 989 991 989 1000 1000 1000 1000

p = 0.5 1000 1000 1000 1000 1000 1000 1000 1000

. p = 0 43 34 36 . 40 42 42 41 38

p = 0.01 212 143 194 158 489 373 481 426

25 p = 0.05 838 777 826 781 1000 997 999 996

p = 0.01 979 963 976 969 1000 1000 1000 1000

p = 0.2 1000 1000 1000 1000 1000 1000 1000 1000

p = 0.5 1000 1000 1000 1000 1000 1000 1000 1000

(c has a uniform distribution)
it
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TABLE 4

Power of tests for heavy skewness

(skewness = 0.8; kurtosis = 3)

T Test

N=25 N=100

F LM2 LM1 LR F LM2 LM1 LR

p = 0 59 56 56

,

53 46 37 42 50

p = 0.01 94 64 84 181 168 110 159 170

10 p = 0.05 376 280 350 321 887 828 881 848

p =.0.1 813 729 791 748 1000 999 1000 1000

p = 0.2 985 976 984 971 1000 1000 1000 1000

p = 0.5 1000 1000 1000 1000 1000 1000 1000 ‘ 1000

p = 0 44 34 36 35 53 49 52 59

p = 0.01 139 69 118 102 273 182 258 239

15 p = 0.05 637 526 617 549 990 979 989 978

p = 0.1 936 907 930 904 1000 1000 1000 1000

p = 0.2 1000 1000 1000 999 1000 1000 1000 1000

p = 0.5 1000 1000 1000 1000 1000 1000 1000 1000

p = 0 37 33 32 29 43 31 42

,

50

p = 0.01 203 150 207 176 492 393 480 456

25 p = 0.05 870 814 860 813 1000 1000 1000 1000

p = 0.01 994 987 993 988 1000 1000 1000 1000

p = 0.2 1000 1000 1000 1000 1000 1000 1000 1000

p = 0.5 1000 1000 1000 1000 1000 1000 1000 1000
_

(cit 
has a uniform distribution)
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TABLE 5

Size of tests for different skewness and kurtosis

(at 5% level, N = 25, in %.)

test

DistribuN

T = 10 T = 15 T = 25

F LM2 LM1 LR F LM2 LM1 LR F LM2 LM1 LR

S=0; K=3.0 45 37 40 38 45 38 36 32 48 31 37 41

S=0, K=2.4 57 40 50 48 43 50 41 43 51 40 44 41

S=0, K=5.0 55 43 45 36 43 34 32 29 53 54 47 34

S=0, K=9.0 45 39 38 37 40 38 35 36 43 34 36 40

S=0.5, K=2.4 58 37 51 41 49 38 48 48 67 55 52 47

S=0.5, K=3.0 51 39 36 41 51 44 46 34 57 46 g4 60

S=0.5, K=5.0 44 42 36 36 48 32 43 43 47 44 47 43

S=0.5, K=9.0 56 34 49 47 58 40 58 54 57 33 45 49

S=0.6, K=2.4 55 33 42 39 49 33 39 37 63 44 54 42

S=0.6, K=3.0 44 36 34 39 46 23 39 38 42 41 36 49

S=0.6, K=3.0 53 42 47 47 47 32 36 34 43 36 39 33

S=0.6, K=5.0 65 49 54 47 51 33 42 41 44 30 37 36

S=0.8, K=3.0 59 56 56 53 44 34 36 35 37 33 32 29

S=0.8, K=5.0 47 41 40 53 37 47 46 71 54 62 55 55

S=0.8, K=9.0 52 48 42 41 48 39 40 32 37 32 33 40

Mean 52.4 41.0 44.0 42.8 46.6 37.0 41.1 40.4 49.5 41.0 43.2 42.6

Std. Dev. 6.34 6.11 6.90 5.82 5.04 6.70 6.51 10.7 8.97 9.83 8.06 8.33
,

S : Skewness (c has a uniform distribution)
it

K : Kurtosis (normal distributj.on: S = 0, K = 3.0)
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TABLE 6

Size of tests for different skewness and kurtosis

(at 5% level, N = 100, in 7.)

test

DistribuiN

T = 10 T = 15 T = 25

F LM2 LM1 LR F LM2 LM1 LR F LM2 LM1 LR

S=0, K=3.0 53 42 51 52 40 45 39 47 55 42 50 45

S=0, K=2.4 46 48 43 63 45 46 43 54 40 44 38 49

S=0, K=5.0 48 50 42 55 44 44 42 50 48 57 44 56

S=0, K=9.0 42 33 41 47 48 46 47 60 42 42 41 38

S=0.5, K=2.4 52 44 48 75 47 50 44 58 48 52 45 41

S=0.5, K=3.0 49 49 46 52 54 52 54 58 46 40 47 49

S=0.5, K=5.0 41 48 37 49 48 53 48 52 60 54 - 8 56

S=0.5, K=9.0 47 47 45 50 51 41 48 58 44 51 42 50

5=0.6, K=2.4 44 42 42 45 42 38 40 46 51 55 50 60

S=0.6, K=3.0 55 55 51 56 47 42 44 47 44 37 41 60

S=0.6, K=5.0 43 43 38 45 52 42 49 60 53 48 51 60

S=0.6, K=9.0 44 41 41 49 47 47 44 58 45 40 41 58

S=0.8, K=3.0 46 37 42 50 53 49 52 59 43 31 42 50

S=0.8, K=5.0 56 - 58 53 60 59 51 55 60 55 57 52 61

S=0.8, K=9.0 48 52 46 54 40 39 37 53 43 44 41 61

Mean 47.6 45.9 44.4 53.4 47.8 45.6 45.7 54.6 47.8 46.2 45.5 52.9

Std. Dev. 4.65 6.62 4.76 7.83 5.33 4.70 5.35 5.16 5.79 7.87 5.57 7.56

S : Skewness (c has a uniform distribution)it

K : Kurtosis (normal distribution: S = 0, K = 3.0)
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procedures available to carry out basic hypothesis testing in an error components
model.

3.. Conclusion

It has been shown in this paper that amongst the testing procedures available to
test for individual effects in an error components framework the F test is robust
against nonnormality while the one and two sided LM and the LR tests may be quite
fragile. So Baltagi and Levin [1992] may have been right with their inference, after
all. It has also been suggested that the usual assumption of independence of the
random components of the composed disturbance term may not be needed for correct
inference.
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