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Bayesian Statistical Variable Selection
A Review

Catherine M. Scipione
Monash University

Abstract

From a Bayesian viewpoint, the answer (in theory, at least) to the general model
selection problem is known. However, the formalization of the selection problem
does not realistically match the iterative process that occurs when selecting a model
in practice. In addition, computational restrictions limit the applicability of the
solution in general.

In the multiple linear regression variable selection setting, however, the Bayesian
approach offers some practical procedures that can be used to at least reduce the pos-
sible number of models under consideration. 'Semi-automatic' methods for Bayesian
variable selection have recently been developed by Mitchell and Beauchamp (1988)
and George and McCulloch (1993) using relatively uniformative prior distributions
for the unknown regression coefficients and variance parameter. In particular, their
choices enable the computation of the general solution to be feasible.
Keywords: Model selection, multiple regression, Occam's razor, model validation,
iterative learning, Markov chain Monte Carlo methods.

1 Introduction

The selection of the subset of predictor variables is central to the building of a multiple
regression model. Typically the investigator is interested in a somewhat objective or
automatic procedure to choose the set of predictor variables from amongst a set of p
potential variables. Bayesian statistical methods, while commonly regarded as subjective,
can be used to establish 'semi-automatic' procedures that may be quite useful for variable
selection.

The main discussion of the paper is focused on Bayesian methods for statistical variable
selection. Before investigating this question, however, it is of interest to review some
general Bayesian concepts and their particular implementation in the multiple regression
problem. Determining the subset of predictor variables to be used in a multiple regression
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analysis is, of course, just one example of selecting one model from among a set of k models.
Thus the parent problem of Bayesian model selection is discussed, so that the pros and
cons of the general theory, which will carry through to the variable selection setting, can
be highlighted. Finally, the variable selection problem is considered by looking at two
particular approaches, put forward by Mitchell and Beauchamp (1988) and George and
McCulloch (1993), as they appear to be the current most accessible approaches to so-
called 'semi-automatic' Bayesian variable selection. The paper concludes with comments
and some suggestions for future work.

2 Bayesian Multiple Regression

Consider the usual canonical multiple regression set up. Given an observed dependent
variable Y and a set of known predictor variables X = [X1,. , Xp], the linear relationship

Y=X10+6

is assumed, where Y is (n x 1), X is an (n x p) known matrix of full rank, the vector
of unknown regression coefficients, #, is (p x 1), and the vector of disturbances, c, has
an n—dimensional multivariate normal distribution with mean vector 0 and variance-
covariance matrix cr2/„, with o2 also unknown and where In denotes the n—dimensional
identity matrix. A joint prior distribution is specified for the unknown parameters (P, 0-2),
denoted 40, o.2), and inference regarding these parameters is made using the joint poste-
rior distribution, 7* 3 , o-2 I y). For notational convenience, no distinction is made between
a distribution and its density function with respect to Lebesgue measure. The posterior
distribution can be found using Bayes' theorem

f(y I fl,7.63,0.2 y) .72)7(3, 0.2)

- f(y)

where f(y I f3, a-2) is the likelihood function given the observed data Y = y and f(y) is
the marginal likelihood function of the observed data

AY) = I f f(y I 13, (72)70, 0.2)0d0-2;

f(y) is also often called the integrated likelihood function. In practice, any prior distribu-
tion may be used and Bayes' theorem employed to calculate the joint posterior distribution
r(f3,a2 I y). As this paper is concerned with 'semi-automatic' variable selection methods,
two particular forms of prior distributions are considered here; one an improper prior and
the other a hierarchical conjugate prior. These choices will be relevant to the variable
selection discussion in Section 4.
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The usual improper prior is specified according to

1
7r(fl, cr

2
) CC a.

with the resulting posterior density function

70, 0.2 y) oc 0.—(n+2) exp[_ ;712 (s2 (13 _ -(3)/x/x(13 _

where ij = (X' _K) 1 X' y , the least squares estimate of fl, and S2 = (y — Xh(y —
By integrating r(,8, (3-2 I y) with respect to 0-2, the resulting posterior distribution for

can be shown to be Aa p —dimensional Student t distribution with n — p degrees of
freedom, mean vector fl and scale matrix S2 (X' X)-1 (n — p). Similarly, the marginal
posterior distribution for cr2 can be shown to be an inverse gamma distribution with
mean S2/(n — p — 2) and variance 2S4/[(n — p — 2)2(n — p — 4)]. See Zellner (1971) for
explicit derivations and further details.

Notice that since 7-(13, a-2) is an improper prior and 70, o2 y) is proper, it follows that
f(j) must also be improper. This may cause difficulties in assessing the fit of the model;
see Gelfand, Dey and Chang (1992) and Section 3 for further comments. Of course, f(j)
can be made proper by restricting the joint prior distribution to be proper, for example,
by restricting 13 to lie in (—P0,1%) for some fib > 0 large and a-2 to lie in (a-0-2, ag) for
some ln(a-g) large. Mitchell and Beauchamp (1988) do this for their variable selection
procedure; see Section 4 for further details.

The hierarchical conjugate prior considered here is specified by

(fi 0.2) =

=
Np(it , r2R)

I GO / 12, v\/2),

where Np(go, r2R) denotes the p —dimensional normal density with mean vector It and
variance covariance matrix r2R, where R is the known prior correlation matrix, and
IG(v 12, vA/2) denotes the inverse gamma density with shape parameter v/2 and scale
parameter vA/2, resulting in vA/cr2 x2v. Here fia, 72, v, and A are considered known,
typically with pp = 0 and r2 taken very large (but finite). Choices of v and A can be
selected by considering v the number of observations from a (possibly imagined) prior
experiment with vA/(v — 2) the prior estimate of cr2. Given this prior specification, the
posterior distribution can be written

70,0.2 y) 1
OC cfn expf—T?(S2 (f3 — S)' X' X -

1 v A
exP TriV3 PY R-1 (13 — Pa)) • (7-2(42+1)exP{--20.2},
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although the marginal posterior distributions for 3 and cr2 cannot be solved analytically.
However, note that both full conditional distributions

r(i3 0.2, y) = Np ((0.2XIX (a...2X1y + R...1110), yl)

+ (y — X f3Y(y — X (3) vA 
r(a2 I 13,Y) = IG( n -2

are available, and thus Markov chain Monte Carlo methods could be employed to obtain
estimates of the marginal posterior distributions. In this case, since the prior distribution
r(f3, a2) is proper, 70, o-2 I y) and f(y) will both also be proper. Standard validation
techniques are available; see Box (1980) and Geisser (1985).

Thus, given a particular model, ie likelihood function and joint prior distribution for
the parameters of the likelihood function, a posterior distribution can be at least approx-
imated and inferences regarding the process; ie, parameters, forecasts, etc; are available.
However, how does a Bayesian choose the particular model upon which inferences are
made? The answer in part lies in the solution to the Bayesian model selection problem.

3 Bayesian Model Selection

From a Bayesian viewpoint, the answer (in theory, at least) to the general model selection
problem is known: Given a set of models, M1, M2, . . , Mk, and prior probabilities r(111;) =
Pr(model j is the 'true' model), all relevant Bayesian model choices, or inferences, are
based on the posterior probabilities

r(Mi Y) = kf
(Y I mi)7(mi) 

Ei.1 f CY I mAr(mi)'
for i = 1, , k. Here y denotes the collection of observed data values and f(y I Mi)
the evaluation of the joint density function of the data, conditional on model Mi holding
true. Typically, the model with the largest posterior probability is selected. Note that no
requirement is made for the models under consideration to be nested. However, as other
authors have noted, in particular Box (1980) and Gelfand et al. (1992), the simplicity of
this solution can be misleading for several reasons.

Firstly, proceeding under the assumption that all uncertainty regarding the set of
possible models is quantified in the prior distribution {r(Mi), j = 1, . . . ,k}, actually
computing the desired posterior probabilities r(Mj Iy) in many interesting problems can
be a formidable task. Typically, model Mi will consist of a likelihood, fi(y Oa, Mi),
and a prior density with respect to, say, Lebesgue measure for, 7ri(0i, MA. To obtain the
desired posterior probabilities 71-(M Iy), the quantities

r(y = I fAy I 0 j, Mi)ri(Oi I Mi)d0i,

4



for j = 1,. , k, are required. As the parameter Oi can be high dimensional the evaluation
of the above integral may require cumbersome numerical integration techniques. Although
some recent advances in the area of Bayesian computational methods have begun to reduce
the computational difficulties for some particular model selection problems, in general
these integrals can be quite difficult to evaluate. In addition, the number of models that
are under consideration may be quite high, in which case the evaluation of many of these
integrals can become prohibitive.

Secondly, it is assumed that each of the models under consideration are all 'valid' in
some sense. That is, it is assumed that any one of the models could describe the behavior
of the observed data without large and/or systematic departures from the modelling
assumptions. This means that a considerable amount of checking of model assumptions
must take place before the set of k possible models is determined. This can be done,
as Box (1980) clearly points out, by using the marginal distributions f(Y I Mi) and
comparing them to the observed data. However, while checking models assumptions
is (hopefully) standard practice, the formal selection procedure only considers model
validity through the numerical value of f(y I M;), and relative to the prior probabilities,
r(Mj), for j = 1,2,... , k. While this may be precisely what is desired for consideration
of a collection of models all of which are judged in some sense to be 'valid', hidden in
the presentation is the potentially iterative process of discerning which models will be
included for consideration.

Along these lines, Gelfand et al. (1992) discuss some of the problems of validating
a given model, and point out the fact that f(Y I Mi) need not be proper in the sense
that it need not integrate to unity. As this makes f(Y I Mi) difficult to use for model
validation, and they suggest some alternative cross validatory techniques for checking
model assumptions based on univariate predictive distributions AY, I Yfr) y(r),

where Y(r) denotes the vector of observables, exluding the rth component. They develop
procedures using the univariate predictive distributions based on cross validatory ideas.
However, this process is data analytic in nature; and again occurs before the final collection
of models is assembled. See Geisser (1985) and Geisser and Eddy (1979) for related work
on predictive approaches to model selection, and Stone (1974) for an early reference to
work on cross validation techniques.

Finally, there nearly always exists some amount of uncertainty in the specification of
the models under consideration. This may be in part due to the fact that the models are
intended to be merely approximations to complex relationships. The Bayesian approach
has an advantage over classical methods in that modelling the uncertainty in the param-
eters through prior distributions should account for at least some of the uncertainty in
the likelihood.

The selection of a single model, though not specifically required from the Bayesian
set up, is what is commonly done in practice. However, as Madigan and Raftery (1993)
point out, conditioning inference on the 'truth' of a single selected model ignores model
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uncertainty. They suggest averaging quantities of interest over the set of potential models,
weighted by their respective posterior distributions. Specifically, suppose A is a partic-
ular quantity of interest. Then, given the set of posterior model probabilities, and the
posterior density functions 7r(6. y, M.i) with respect to some dominating measure, then
the so-called predictive density of A with respect to the same dominating measure can be
calculated using

7r(A Y) = r(AI Y,Mi)r(Mi I
j=1

Madigan Madigan and Raftery (1993) suggest basing inference for A on 7r(Z Iy), and not on
AL\I y, Me), where M* is a single model chosen, for example, to have the highest
posterior model probability. While this approach is certainly in concert with the Bayesian
view of quantifying uncertainty through the laws of probability, it may not appear as
desirable from the point of view of model description. Notice also that this approach,
while accounting for some uncertainty, does not deal with the validation problem.

Thus, it appears that the problem of model selection is, in some sense, not well formu-
lated. The author's general opinion is in line with Box (1980) and Gelfand et al. (1992),
who suggest that the model selection problem is really a fusion of two distinct ideas,
namely model criticism and model estimation. Model estimation, that is the usual proce-
dure of calculating posterior model probabilities and related predictive distributions for
a given collection of valid models, is well understood within the Bayesian context. Con-
ditional on the validity of the set of models under consideration, the standard Bayesian
approach has little difficulty. However, the notion of model criticism, or checking model
validity, which must go together with model estimation in any practical setting, is typi-
cally not well posed. This is due to the problem of uncertainty in specifying the models
under consideration, and the necessity to utilize observed data to validate the models.

In the multiple regression variables selection setting, typically the investigator is simply
searching for linear relationships between dependent and predictor variables. In this
setting, while the problems of model validation are still present, models outside the k = 2'
possible models, where p is the number of predictor variables, are generally not of interest.
The problem of validation still exists, however it is simply noted that the same criticisms
will apply to any classical procedure that does not address the issue. In contrast, the
Bayesian approach can deal with model uncertainty, in the sense of Madigan and Raftery
(1993), whereas classical approaches generally do not. In addition, as will be shown,
Bayesian methods can provide useful tools for at least reducing the number of possible
models under consideration.

6



4 Variable Selection in Multiple Regression

The Bayesian model selection procedure described in Section 3 will now be applied to
the multiple regression variable selection problem. Two recent papers, Mitchell and
Beauchamp (1988), and George and McCulloch (1993), discuss Bayesian model selec-
tion in this important special case. In particular, both sets of authors are interested in
developing a 'semiautomatic' approach to the Bayesian variable selection problem. Both
begin with the canonical multiple regression set up described in Section 2, where now
the collection of p known predictor variables, X1, , Xp, are viewed only as potential
predictors. The object of the selection procedure is to select a subset of the p predictors
for the regression relation

Y = X*13* e

where the columns of X* are the vectors of predictor variables selected and the 13* cor-
responds to the vector of nonzero regression coefficients corresponding to the columns of
X*

The difference between the two approaches lies in the particular forms of the prior
distribution placed on the components of the 16 vector and o-2. Mitchell and Beauchamp
explore a 'spike and slab' prior on each of the components of f3, along with the stan-
dard noninformative prior on .72, while George and McCulloch place a mixture of normal
distributions on the components of 16, and an inverse gamma distribution on a2. Both for-
mulations have the desired property that the priors involved can be defined to be relatively
diffuse, while still having the ability to incorporate prior information regarding practically
important variables where relevant. Both formulations rely on 'tuning parameters' that
are used successfully to explore potential sets of predictor variables.

To fix notation, let M.; denote the set of assumptions associated with the Ph of the
potential k = 2P possible regression models, including the subset of predictor variables
and the form of the joint prior distribution placed on the regression coefficients, /3, and
the scale parameter, .72. (Note: Only first order terms are explicitly included, however
higher ordered 'interaction' terms could be included into the set of p regressors if desired.)
Let Ti denote the set of subscripts corresponding to the predictor variables included in
the jth model, and let ki be the number of predictor variables included in Mi.

The 'spike and slab' prior used by Mitchell and Beauchamp on each of the nonzero
i = 1,2,... ,p, coefficients of the predictor variables included in any particular model

is given by

Pr(/31 = 0) = hoi

Pr(lAl < 0) = (b -f- fl0i)h11 for —f3oi < b < floi

Pr(I/9il > floi) = 0

where hoi > 0, hli > 0, and hoi 2h1iP0i = 1. The 'spike' naturally refers to the prior



probability mass at Pi = 0, and the 'slab' to a uniform density on (—Poi, 1%1). The height
of the 'spike,' hoi, can be prespecified by the user prior as a prior belief (or perhaps
the concensus of expert opinion) that is 0 and hence the prior probability that the
corresponding predictor variable, Xi, should not be included in the model. Hence, if a
predictor variable is considered to have high practical significance, then hi should be set
relatively low. The prior distribution for o-2 is the standard noninformative prior

( 2) oc 12 ,

restricted to (cro-2, cro2), resulting in

7(0.2)
4 1n(a2).72

for some ag > 0 large. Notice both r(/3 I cr2) and r(o2) are proper density functions,
unlike the similar prior discussed in Section 2.

A useful parameterization is to define 7i = h0/h1, the ratio of the height of the spike
to the height of the slab, so that hoi = 0 if and only if 7i = 0. Using this parameterization
the marginal probability can be shown to be

1

2P
Pr(M) = -yi fl 2,30i + 2,300-1,

JET; JET; i.1

where t is the complement of the set Ti, and the posterior distribution

pr(mi y) = 7orki/2r(n —2 ki 
) X;Xj I-1/2 

(S)-Rn-kj)/21,

iETj 

where g is a normalizing constant that does not dependent on j. Here Sj = (y — Xi 134 i)' (y —

M ), is the residual sum of squares for the least squares fit to the regression model with
the predictor variables in the columns of X; corresponding to the nonzero coefficients
in model Mj.

To obtain the posterior probabilities above, Poi and ag are taken to be 'sufficiently
large' so that all integrals from —floi to 130i and o-V to al, are well approximated by the
same integrals from —oo to oo and 0 to oo, respectively. From this point, the models can
be ranked according to the magnitude of their posterior probabilities. For this, however,
all of the -yi values need to be specified a priori. An alternative approach is to restrict the
)3i parameters to be given identical priors, that is 7. In this case 7 can be treated as
a tuning parameter, and used to consider the range of possible rankings of models as a
function of 7. Notice also that the probabilities

Pr(/3 j = 0 Iy) = Pr(M Iy)
IiIi€Til

8

cr-



are directly available. It is useful to plot Pr(fli = 0 I y) versus 7 as a tool for exploring
the variables that are important as well as those variables whose importance is difficult
to separate from other variables, as is the case when collinearity is present.

Other graphical displays that may be useful include plotting the posterior entropy of
the submodels

2P
H = — Pr(Mi Iy)ln(Pr(.111; I y)),

and the posterior expected number of terms in a submodel

2P
E(k Iy) = E icipr(m; I y),

j.1

both against 7. Finally, a cross validatory approach can also be used to calculate vari-
ous types of 'checking functions' using univariate predictive distributions. Again, these
'checking functions' can be plotted against and can be useful in comparing the predictive
properties of the submodels.

In contrast to the 'spike and slab' prior, George and McCulloch use a hierarchical prior
for the regression coefficients. In this setup, a latent variable, Si, is introduced for each
regression coefficient, f3i, for i = 1,. . . , p. A normal mixture prior distribution is specified
by

r(fliI SO (1 — 6i)/V(0, rr) SiN(0,47-i2)

and
Pr(Si =1) =1 — Pr(6i =0) =p,

where r? is small so that if Si = 0, then A will near 0 with high prior probability. rj2 is
chosen to specify a practical significance level, so that if 8 = 0, fli can probably 'safely'
be estimated by 0. The c > 1 are set large so that if Si = 1, f3 will have a high prior
probability of being nonzero, or equivalently, the predictor variable associated with Pi
will have a high prior probability of being included in the set of selected variables. Some
suggestions for how to choose r12 and c? are given in their paper.

In addition to these marginal priors for the parameters, a prior correlation structure
can be introduced among the regression coefficients, if desired. While this may be difficult
to specify in practice, George and McCulloch suggest using the prior correlation matrix
of the regression coefficients, R, as a tuning parameter, with the range of possible values
containing R cc (X1X)' to R = I. The prior covariance for fl, given the vector 8, is
D6RD6 where D6 ra. diag[dfri, , dprp], with di = 1 if Si = 0 and di = ci if Si = 1.

A prior distribution is also required for o-2, the scale parameter on the noise component
e. George and McCulloch use an inverse gamma conjugate prior with shape parameter
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vs/2 and scale parameter v6A5/2, which corresponds to

vsAs ,v
r's A. v6 •

0'2

The dependence of vs. and A5 on 8 can be--used to induce dependence between 13 and cr 2•

In particular, if more predictor variables are included in a model, the prior distribution

7((72 J 8) could be concentrated on smaller values of 0-2.
Finally, the prior distribution for 8,7(8), must be chosen in order to calculate the

posterior distribution of 6, r(8 Iy). Here r(8) corresponds directly to Pr(M3) for j =
1,2,... , 2P, as particular values of 8 yield various combinations of predictor variables. For
example, if p = 3, then there are 23 = 8 various possible submodels. One of the eight
possible models includes predictor variables 1 and 3 only. This corresponds, with high
probability, to Si = 1,82 = 0, and 83 = 1. Thus, interest would focus on the posterior
probabilities of the various submodels, which for this example is 71-(451 = 1,62 = 0,83 = 1 I
y). While any prior distribution for 6 can easily be used, George and McCulloch suggest
that r(8) =fJ p'(1 —pi)(1-6i), which although it implies that the inclusion of predictor
i is independent of the inclusion of predictor j, for all i j, seems to perform well in their
examples. A special case of this prior is r(6) = 2-P, where each predictor has an equal
prior probability of being included in the final model, with each pi = 1/2. Parsimonious
models can be favored if 70) is chosen to place higher probabilities on models with few
number of parameters.

The real advantage to George and McCulloch's prior distributional structure is that
the calculation of 7(8 I y) can be well approximated using the Gibbs sampler algorithm.
Recall the normal-inverse gamma prior distribution introduced in the multiple regression
setting in Section 2. Noting the dependence on 8, the full conditional distributions from
Section 2, now modified in accordance with the assumptions listed above, become -

7(13 0.2, y) = Np (tr2X/X y 1 (0.-2X' X + R-1 Dii)-1)

71.(0. 2 I fl, 8, y) = I G( n 
+2 vs (y — X 13)1(y — X9) + v6A6 

2 

).

The full conditional distributions for each 8i are Bernoulli distributions with

r(Si = 1 I 8(0, 13, cr2, y) =
a

a -

where 45(i) are the given values of all the components of 8 except the ith component and

a = r(13 I 6(i), = 1) • 7r(cr2 I 8(i), = 1) • r(6(0, = 1)

r(i3 I 5(i), 45i = 0) • 7r(o-2 I 8(i), = 0) • 748(),8i = 0).

10



Iterative sampling between these three well known distributions via the Gibbs sampler
is straightforward. See Gelfand and Smith (1990) for a general description of the Gibbs
sampler algorithm.

Due to their use of this Markov chain Monte Carlo technique, they call their procedure
SSVS, Stochastic Search Variable Selection. The Gibbs sampler induces a Markov chain
whose unique equilibrium distribution is r(8 I y). As a result, realizations of the Markov
chain 'visit' those models with the largest r(8 I y) .probabilities most frequently, and
thus pick out those submodels of interest. In cases where a large number of possible
predictor variables are being considered, the number of submodels can be huge. Hence
this algorithm can be quite useful in reducing the number of models under consideration.

5 Comments and Directions

Bayesian statistical methods combine relevant sample and prior information in a coherent
fashion, using the laws of probability. It has been argued here and by other authors,
that the model selection problem as currently formulated, does not match the iterative
learning process that actually occurs in practical settings. Until a better formulation of
the problem is determined, the model selection problem will continue to be a very difficult
one in practical settings.

Despite this criticism, Bayesian approaches to model selection, and in particular to
the variable selection problem in multiple regression, can lead to useful tools for the prac-
ticioner. The 'semi-automatic' procedures of Mitchell Sz Beauchamp (1988) and George
& McCulloch (1993) offer graphical diagnostic tools and a computationally feasible means
for at least reducing the number of models under consideration. These tools have been
made possible primarily due to recent developments in Bayesian computing and the in-
creasing availability of high speed computers. As these resources and methods improve,
it is expected that Bayesian and non-Bayesian statistical methods will improve as well,
particularly for more realistic, complex models.
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