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Abstract

Information criteria (IC) are used widely to choose between competing

alternative models. When these models have the same number of parameters,

the choice simplifies to the model with the largest maximized log-

likelihood. By studying the problem of selecting either first-order auto-

regressive or first-order moving average disturbances in the linear regres-

sion model, we present clear evidence that a particular model can be unfair-

ly favoured because of the shape or functional form of its log-likelihood.

We also find that the presence of nuisance parameters can adversely affect

the probabilities of correct selection. The use of Monte Carlo methods to

find more appropriate penalties and the application of IC procedures to

marginal likelihoods rather than conventional likelihoods is found to result

in improved selection probabilities in small samples.

This research was supported in part by an Australian Research Council
grant. We are grateful to Tim Fry, David Harris and Catherine Scipione
for helpful suggestions and to Alan Morgan for research assistance.
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1. Introduction

Often in statistics and particularly in non-experimental disciplines

such as econometrics we are forced to use the available data to make a

choice between a number of competing alternative models. One approach is to

use a series of pairwise hypothesis tests. As Granger et al. (1993) note,

this has a number of limitations. They argue as others do that such model

building decisions should be based on well-thought-out model selection

procedures. The consensus in the literature seems to be for the use of an

information criterion (IC) based on minus the maximized log-likelihood

function plus a penalty function for the number of parameters in the model.

There is little agreement about what this penalty function should be. For

example, for the Akaike IC (AIC) it is q and for Schwarz's Bayesian IC (BIC)

it is qlog(n)/2 where q is the number of parameters in the model and n is

the sample size. BIC does have an asymptotic justification but little has

been written about small-sample based penalty functions. The small-sample

based correction to AIC proposed by Hurvich and Tsai (1989) involves a

modification to the penalty function which is still a function only of q and

n.

When the choice is between models with the same number of parameters,

it appears that all IC are in agreement - the model with the largest max-

imized log-likelihood is chosen. While this may be justified by asymptotic

arguments, in small samples it is not clear it is entirely appropriate. It

is possible for certain models to be favoured purely because of the shape or

functional form of their log-likelihood function. The main aim of this

paper is to investigate this question.

We have chosen to conduct our investigation on the problem of selecting

between first-order autoregressive (AR(1)) and first-order moving average

(MA(1)) disturbances in the linear regression model. There is a vast
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literature on the former model that dates back to the work by Cochrane and

Orcutt (1949) and Durbin and Watson (1950, 1951). Subsequently, the MA(1)

disturbance model has been recognised by econometricians as a possible

alternative for both economic reasons (see for example Nicholls, Pagan and

Terrell 1975; Rowley and Wilton 1973 and Sims 1974) and statistical reasons

such as the Durbin-Watson test having good power against MA(1) disturbances.

This has led to the development of a number of tests of AR(1) disturbances

against MA(1) disturbances and vice versa (see for example King 1983, 1987;

King and McAleer 1987; Burke, Godfrey and Tremayne 1990 and Silvapulle and

King 1991).

Our chosen problem of selecting between AR(1) and MA(1) disturbances in

the linear regression model is invariant to transformations involving a

change of scale of the dependent variable and the addition of a known linear

combination of the regressors. We can find a maximal invariant statistic

whose distribution depends only on the autocorrelation parameter of the

AR(1) or MA(1) process. A secondary aim of this paper is to consider

whether using the likelihood of the maximal invariant improves inferences

for this model selection problem by providing a better treatment of nuisance

parameters. Ara and King (1993) have shown this likelihood is equivalent to

the marginal likelihood for the parameter in question. There is consider-

able evidence (see Tunnicliffe Wilson 1989 and Ara and King) that maximum

likelihood estimates based on the marginal likelihood are less biased than

their conventional counterparts.

The plan of this paper is as follows. In section 2, we present the two

competing models and discuss two properties that an ideal model selection

procedure should have. The section concludes by reporting a Monte Carlo

experiment conducted to investigate whether there are problems with a

particular model being favoured and also with the treatment of nuisance

2
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parameters. Strong evidence of both problems is found. Section 3 discusses

ways of dealing with each of these problems. The results of a Monte Carlo

experiment conducted to evaluate these suggestions are reported in section

4. Some concluding remarks are made in the final section.

2. Are selection probabilities affected by the shape of the likelihood 

function?

2.1 Introduction 

Consider the linear regression model

y = Xg + u ,
( 1 )

where y is an nxl vector, X is an nxk nonstochastic matrix of rank k < n and

g is a kxl parameter vector. We will answer- the above question in the con-

text of the selection problem in which the elements of the nxi disturbance

vector u are either generated by the stationary AR(1) process

ut = put_i + et , ipl < 1 t = 1,...,n (2)

where u
0 

N(0,T/(1-p
2
)) and e = (e N(0,c2In), or by the MA(1)

process

u
t 

= e
t 
+ 7e

t-1 ' t = 1,...,n (3)

where e* = (e0,e')' N(0,T
2
I
n+1

). Under (2), u N(0,T
2
Z(p)), where E(p)

is the nxn matrix whose (i,j)
th 

element is pi/(1 - p2). Under (3),

u 2
0(7)) where 0(7) is the nxn tridiagonal matrix with 1 + 7

2N(0,T  
as the

main diagonal elements and 7 as the nonzero off-diagonal elements. For this

selection problem, g and T2 are nuisance parameters.
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Our focus is on all model selection procedures which can be applied in

the form: choose the model which minimizes

- LAO) f(n.,c1.)1 1 1 (4)

where l...(5) is the maximized log-likelihood function of the i
th 

model and

f(n.,q.) is a penalty function which depends purely on the number of observ-
ationsth .n.andthenumberofparametersq.in the model. The two compet-

ing models in our selection problem have the same number of unknown para-

meters in which case (4) reduces to choosing the model with the largest

maximized likelihood. Under (1) and (2), the concentrated log-likelihood is

1 -- - log(2n) - - loglE(p)1 logf(y - xgYE 1 
(p)(y - - (5)2 2 2

where

13
- - -= (X'E
1 
(p)X) 1XIE

1 
(p)y . ( 6 )

The maximized log-likelihood is (5) with p taking that value, p, which

maximizes (5). In the case of (1) and (3), 0(7) replaces E(p) in (5) and

(6) and now (5) is maximized with respect to 7.

Observe that when p = 0 and 7 = 0, (2) and (3) become the same model,

namely u
t 
= e

t. 
In other words, the parameter spaces of the two models

intersect when p = 0 and 7 = O. If the choice is restricted to only (2) and

(3), then a good model selection procedure would be indifferent between the

two models; i.e., the probability of choosing (2) when u
t 
= e

t 
would be one

half. We will call this property 1. Another highly desirable property

would be that this probability increases as Ipl increases from zero when (2)

is the true model. Similarly for the MA(1) disturbance model. This will be

called property 2.
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2.2 Monte Carlo Experiment 

In order to check whether procedures of the form (4) have these

properties in our case, we conducted a computer simulation experiment. The

Monte Carlo method was used to estimate probabilities of correct selection

when regression disturbances are generated from the AR(1) model (2) for p =

-0.9, -0.8, ..., -0.1, 0, 0.1, ..., 0.9, and from the MA(1) model (3) for

the same range of 7 values. The following X matrices with n = 20 and 50

were used:

X1 : (nxl). The constant dummy as the only regressor.

X2 : (nx2). The constant dummy and time trend.

X3 : (nx3). The eigenvectors corresponding to the three smallest eigen-

values of the Durbin-Watson (DW) nxn A
1 

matrix and hence to the upper

bound of the DW statistic. A
1 

is a tridiagonal matrix with 2's down

the main diagonal, -1's on the off-diagonal and l's in the top left and

bottom right elements.

X4 : (nx3). The eigenvectors corresponding to the zero and two largest

eigenvalues of the nxn DW Al matrix and hence to the lower bound of the

DW statistic.

X5 : (nx3). The first n observations of Durbin and Watson's (1951, p.159)

consumption of spirits example.

X6 : (nx3). A constant dummy, the quarterly Australian Consumer Price Index

commencing 1959(1) and the same index lagged one quarter.

X7 : (nx3). A constant dummy, quarterly Australian private capital

movements and quarterly Australian Government capital movements.

X8 : (nx6). A full set of quarterly seasonal dummy variables plus quarterly

seasonally adjusted Australian household disposable income and private

final consumption expenditure commencing 1959(4).
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X9 : (nx5). A constant dummy plus four independent trending regressors

generated as

xti = z
ti 

+ 0.25t

where z • t = 1,...,n; i = 2,...,5; are mutually independent AR(1)

time series generated from

zti = 0.5tli +

and 
ti 

IN(0,1); t = 1,...,n; i = 2,...,5.

These design matrices cover a range of behaviour. X1 is the special

case of the Gaussian time-series model with unknown mean. A rough estimate

of the disturbance autocorrelation is given by (2-d)/2 where d is the

DW statistic. We therefore expect X3 and X4 to show some extreme behaviour.

X5 is based on annual data while X6, X7 and - X8 use quarterly data. The

regressors of X7 are strongly seasonal with two seasonal peaks per year plus

some large fluctuations. We also estimated probabilities of correct selec-

tion in the pure time-series model with no regressors; i.e. y
t 
= u

t
. This

case was included in order to assess the influence of the xg term on the

probabilities of making a correct selection.

Maximum likelihood estimates under (1) and (2) were computed using

Beach and MacKinnon's (1978) algorithm, while Pesaran's (1973) transform-

ation, together with the IMSL non-linear maximization subroutine, DUVMIF,

were used to obtain maximum likelihood estimates under (1) and (2). The

error variance, T
2
, was set to unity and the components of g were set to

zero because one can show, using the results of Breusch (1980), that each of

the estimated probabilities is invariant to the values taken by g and c
2
.

Five thousand replications were used and pseudo-random N(0,1) variates were

generated as described by King and Giles (1984).
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2.3 Results 

Selected estimated probabilities of correctly choosing the AR(1) error

model for each of the design matrices for the regression model and also for

the pure time-series model are given in Table 1. The corresponding probab-

ilities of correctly choosing MA(1) errors are presented in Table 2. Plots

of these probabilities for the X9 regressor matrix are given in Figure 1.

Note that the probabilities for p = 0 in Table 1 and the corresponding prob-

abilities for 7 = 0 in Table 2.sum to one.

The most striking feature of the results for the regression model is

that the probabilities of selecting the AR(1) error model when p = 0 are all

significantly below 0.5. They range from 0.105 to 0.333 when n = 20 and

from 0.293 to 0.415 when n = 50, with the largest probabilities occurring

when there are no nonconstant regressors (X1). These probabilities increase

significantly as n increases ceteris paribus. As expected, X3 and X4 show

the most extreme behaviour particularly when n = 50. Another feature is

that for n = 20 and a given design matrix with nonconstant regressors, the

lowest probability of correctly choosing the AR(1) model does not occur at

p = 0 but typically at p = -0.2 or p = -0.4 while for X4 it is at p = 0.2.

For n = 50, the lowest probability always occurs at p = 0, even when the

results for p = 0.1, -0.1 that have been omitted from Table 1, are included

in the analysis. A similar but less pronounced pattern may be seen in Table

2. There the lowest probabilities of correctly choosing the MA(1) model

typically occur at T = 0.2 when n = 20 and always at T = 0 when n = 50.

Furthermore, all probabilities in Table 2 are greater than 0.5. Because

probabilities at 7 = 0 decrease significantly towards 0.5 as n increases, we

find that for a wide range of values, the probability of correctly choos-

ing the MA(1) model decreases as n increases.

With respect to the results for the pure time-series model yt = ut, we



again see that the probabilities of selecting the AR(1) model when p = 0 are

below 0.5. However they are much closer to 0.5 than for the regression

model and show signs of rapid convergence to 0.5 as n increases. Further-

more we find that property 2 holds in this case.

These results are somewhat disturbing. They suggest that in the very

simple case of choosing between two different models with the same number of

parameters, choosing that model with the largest maximized likelihood can

result in the correct choice with a probability as low as 0.076 when n = 20.

When both models are true (p = 0 and 7 = 0), the probabilities of selection

do not split evenly but clearly favour the MA(1) model particularly when n

is small. Thus property 1 obviously does not hold. It does appear that the

functional form of the likelihood of the MA(1) model gives it „a much better

than even chance of having a larger maximized likelihood than that of the

AR(1) model. This suggests that as well as correcting for the number of

parameters we should also consider correcting for the functional form of the

likelihood particularly in small samples. Of less concern is the fact that

property 2 does not hold when n = 20 in the regression. It appears to hold

for n = 50 and also for the pure time-series models.

We also see clear evidence of nuisance parameters adversely affecting

the probabilities of correct selection. The best results occur for the

time-series models in which there are no g parameters. The next best

results occur when the only regressor is the constant dummy. We therefore

conjecture that better handling of nuisance parameters may be the key to

improving the small-sample properties of IC based selection procedures.

3. An alternative approach

Procedures of the form of (4) can be easily modified to have property 1
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in our case of selecting between the two disturbance models. Let L and L

denote the maximized log-likelihood functions of the two models and let p

and p
7 

denote respective penalty functions. Our problem is to find p and

p such that
7

PriLT - p7 > L - p
p 

1 u
t 

IN(0,4T
2
)
I

= 0.5

or equivalently

Pr[(L7 - LP) > (p -.p ) I ut IN(0,c2)] = 0.5 . (7)

Observe that (7) is in the familiar form that defines a critical value

for a test statistic. The test statistic is 11
7 
- L which is the log of a

likelihood ratio, (p p) is the unknown critical value and is chosen to7

set the probability of "rejection" equal to 0.5. From (7) it is clear that

we can only determine p
7 
- p, in which case it is sensible to set one of

the penalty functions equal to zero, say p. Equation (7) also suggests

that the value for p can be estimated using the Monte Carlo method. This7

would involve generating yt as IN(0,1) random variables, computing LT - Lp

and repeating this many times to build. up the empirical distribution of

- L. The required p value is the median of this empirical distrib-

ution. Note that in the simulations, we are able to set c
2 
= 1 and g = o

because of invariance.

While this new penalty function will result in property 1 holding (at

least approximately) it does nothing to guarantee probabilities of making

the correct selection increase as Ipl or 171 increases (property 2). In the

previous section, we conjectured that better handling of nuisance parameters

might result in selection procedures with better small-sample properties. A

standard and very successful method of dealing with nuisance parameters in

the linear regression when making inference concerning the disturbance

9



vector is through the principle of invariance.

In our case, choosing between (2) and (3) in the context of (1) is

invariant to transformations of the form

y ---> n y + Xn
0 (8)

where no is a positive scalar and n is a kxl vector. Let m = n-k, M =

I
n 
- X(X'X)

-1
X', z = My be the ordinary least squares residual vector from

(1) and P be an mxn matrix such that PP' = I
m 

and P1P = M. The mxl

normalized vector

= Pz (z'P'Pz)
1/2

is a maximal invariant under the group of transformations of the form of

(8). The joint density function of v under (2) and (3) can be shown to be,

respectively (see King (1980)),

and

1 -
f
1 
(v;p)dv r(m/2)n m/2 

IPZ(p)P1 1 
-1/2

fv1(PE(p)P') 
-1

v 
dv

2 (9)

f
2
(1/;7)dv = 1r(m/2)n 1P0(7)P1

-1/2
fvi(Pg2(7)P1)-1v -m/2

 
dv (10)2

where dv denotes the uniform measure on the surface of the unit m-sphere.

Also note that for any nxn positive definite matrix A

- -1-
vi(PAP')

-1
v = u'A u z'z ,

where ii is the generalized least squares (GLS) residual vector from (1)

2
assuming covariance matrix c A.

Because our selection problem is invariant to transformations of the

form of (8), we need only consider selection procedures that are invariant

10



to such transformations. The principle of invariance implies that invariant

selection procedures can be constructed by treating v as the observed data

and (9) and (10) as its likelihood function for AR(1) and MA(1) errors

respectively. This suggests the IC procedures should be applied to v rather

than the original y. In our case the AR(1) model is chosen if the log of

(9) maximized with respect top achieves a higher value than the log of (10)

maximized with respect to 7. Otherwise the MA(1) model is chosen.

Both AR(1) and MA(1) disturbances are special cases of regression

disturbances distributed as u N(003
-2
A(X)) where A(-) is an nxn positive

definite matrix function and A is a pxl vector of unknown parameters. The

problem of choosing a particular form of A(A) from a given range of possible

A(A) matrix functions in the context of (1) is invariant to transformations

of the form of (8). The above arguments for treating v as the observed data

therefore apply for this more general problem. Ara and King (1993) have

shown that for u 11(0,c
2
A(X)), the likelihood of A constructed as the joint

density of v is equivalent to the marginal likelihood for A which from

Tunnicliffe Wilson (1989) is given by

- - - -f
m
(X1y) = IA(X)I-1/2IVA- M1 X'

1/2 m/2
(u'A 

1 - 
 (A)u)

where CI is the GLS residual vector from (1) assuming covariance matrix

T2A(A).

In the case of choosing different A(A) specifications for the

distribution of u in (1), this implies that our suggestion of applying IC

procedures to v is equivalent to applying them to the marginal likelihoods

(11). We therefore call these marginal likelihood based IC (MIC) proc-

edures. In our case of choosing between AR(1) and MA(1) disturbances, all

IC procedures of the form of (4) -result in the same MIC procedure, namely

choose that model which results in the largest maximized value of (11). Of

• 11



course we can use the MIC procedure in conjunction with the Monte Carlo

method for determining a penalty function that ensures property 1 holds (at

least approximately).

4. Monte Carlo Experiment

The Monte Carlo experiment in the context of the regression model (1),

outlined in Section 2, was repeated for each of the new procedures discussed

in the previous section. These procedures are:

(i) IC with empirically calculated penalty functions (ICE),

(ii) MIC,

(iii) MIC with empirically calculated penalty functions (MICE).

Where required, logged marginal likelihoods were maximized using the IMSL

routine DUVMIF. Selected estimated probabilities of correctly selecting the

AR(1) disturbance model and the MA(1) disturbance model for n = 20 and

n = 50 are presented in Tables 3 - 6. Plots of these probabilities,

together with those for traditional IC procedures, are given in Figures 2

and 3 for X9 with n = 20 and n = 50, respectively.

It is clear from these results that the faults with standard IC

procedures identified in section 2 cannot be rectified purely by finding

penalty functions that make property 1 hold. For both sample sizes, the ICE

procedure has probabilities of correctly selecting the AR(1) model that

decline from 0.5 at p = 0 as p decreases (increases in the case of X4) from

zero. These probabilities of correct selection 'reach as low as 0.257 when

n = 20 and 0.391 when n = 50. For some X matrices such as X4 and X8, the

probability of the ICE procedure correctly selecting the AR(1) model falls

below 0.5 for p values on both sides of p = 0. This stIggests that the ICE

procedure tends to be biased against the AR(1) model. It has probabilities
••
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of correctly selecting the MA(1) model significantly below 0.5 only when

n = 20 and for X2, X5, X6, X7 and X9 - the lowest probability being 0.374 at

p = 0.4 for X9.

In contrast, property 2 always holds for the MIC procedures, at least

for probabilities calculated at intervals of 0.1 with respect to p and T.

Again we see that the calculated probabilities at p = 7 = 0 favour the MA(1)

model confirming that property 1 does not hold. Probabilities at p = 0 of

MIC procedures selecting the AR(1) model range from 0.429 to 0.441 when

n = 20 and from 0.464 to 0.473 when n = 50. These probabilities are

promising in the sense that they seem to be rapidly approaching 0.5 as n

increases. It is interesting to note their lack of variability and their

similarity to the probabilities of 0.445 (n = 20) and 0.472 (n = 50) we

calculated for the IC procedures in the case of the pure time-series model

with no regressors.

Finally we observe that the MICE procedures appear to obey both prop-

erties 1 and 2. In the case of n = 20, there are some calculated MICE prob-

abilities at 'pi = 0.1 in Table 3 which are below 0.5 but they are far from

being significantly different than 0.5.

5. Concluding Remarks

When choosing between models with the same number of parameters, all IC

model selection procedures of the form of (4) agree - the model with the

largest maximized log-likelihood should be chosen. By studying this selec-

tion rule in the context of choosing between AR(1) and MA(1) errors in the

linear regression model, we identified two problems with it in small

samples. We found clear evidence that shows a particular model can be un-

fairly favoured purely because of the shape or functional form of its log-

13



likelihood function. We also found evidence of nuisance parameters adverse-

ly affecting the probabilities of correct selection.

There is clearly a case for using penalty functions that take into

account the shape or functional forms of the log-likelihood functions of the

models under consideration. This can be done empirically using Monte Carlo

methods. When selecting from two models which effectively overlap at one

point in the parameter space, finding appropriate penalties is analogous to

finding a critical value for a test statistic. This approach can be

generalized to cases of selecting from more than two models - a topic we

hope to report on in a future paper.

In the context of choosing between different forms of the covariance

matrix in the linear regression model, we conclude that IC procedures should

be applied to marginal likelihoods rather than conventional likelihoods.

This is because the former approach results in better small-sample

properties. The best results in our study were obtained when marginal

likelihoods are used with penalty functions that take account of the

functional form of the log-likelihood. Of the two issues identified in this

paper, the more serious would seem to be. the better treatment of nuisance

parameters. In our view, it is a subject worthy of further research.

14



REFERENCES

Ara, I., and King, M.L. (1993), "Marginal Likelihood Based Tests of Regres-

sion Disturbances," Mimeo, Monash University, Department of Econo-

metrics.

Beach, C.M., and MacKinnon, J.G. (1978), "A Maximum Likelihood Procedure for

Regression with Autocorrelated Errors," Econometrica, 46, 51-58.

Breusch, T.S. (1980), "Useful .Invariance Results for Generalized Regression

Models," Journal of Econometrics, 13, 327-340.

Burke, S. P., Godfrey, L. G., and Tremayne, A.R. (1990), "Testing AR(1) Against

MA(1) Disturbances in the Linear Regression Model: An Alternative

Approach," Review of Economic Studies, 57, 135-145.

Cochrane, D., and Orcutt, G. H. (1949), "Application of Least Squares Regres-

sion to Relationships Containing Auto-Correlated Error Terms," Journal

of the American Statistical Association, 44, 32-61.

Durbin, J., and Watson, G.S. (1950), "Testing for Serial Correlation in Least

Squares Regression I," Biometrika, 37, 409-428.

Durbin, J., and Watson, G.S. (1951), "Testing for Serial Correlation in Least

Squares Regression II," Biometrika, 38, 159-178.

Granger, C.W.J., King, M.L., and White, H. (1993), "Testing Economic Theories

and the Use of Model Selection Criteria," Journal of Econometrics,

forthcoming.

Hurvich, C. H., and Tsai, C.-L. (1989), "Regression and Time Series Model

Selection in Small Samples," Biometrika, 76, 297-307.

King, M.L. (1980), "Robust Tests for Spherical Symmetry and Their Application

to Least Squares Regression," The Annals of Statistics, 8, 1265-1271.

15



King, M.L. (1983), "Testing for Autoregressive Against Moving Average Errors

in the Linear Regression Model," Journal of Econometrics, 21, 35-51.

King, M.L. (1987), "Towards a Theory of Point-Optimal Testing," Econometric

Reviews, 6, 169-218.

King, M.L., and Giles, D.E.A. (1984), "Autocorrelation Pre-Testing in the
^

Linear Model: Estimation, Testing and Prediction," Journal of

Econometrics, 25, 35-48.

King, M.L., and McAleer, M. (1987), "Further Results on Testing AR(1) Against

MA(1) Disturbances in the Linear Regression Model," Review of Economic

Studies, 54, 649-663.

Nicholls, D.F., Pagan, A. R., and Terrell, R. D. (1975), "The Estimation and

Use of Models with Moving Average Disturbance Terms: A Survey," Inter-

national Economic Review, 16, 113-134.

Pesaran, M.H. (1973), "Exact Maximum Likelihood Estimation of a Regression

Equation with a First-Order Moving Average Error," Review of Economic

Studies, 40, 529-535.

Rowley, J.C.R., and Wilton, P. A. (1973), "Quarterly Models of Wage

Determination: Some New Efficient Estimates," American Economic Review,

63, 380-389.

Silvapulle, P., and King, M.L. (1991), "Testing Moving Average Against

Autoregressive Disturbances in the Linear Regression Model," Journal of

Business and Economic Statistics, 9, 329-335.

Sims, C.A. (1974), "Distributed Lags," in eds. M.D. Intriligator and

D.A. Kendrick, Frontiers of Quantitative Economics 2, Amsterdam: North-

Holland, pp.289-338.

Tunnicliffe Wilson, G. (1989), "On the Use of Marginal Likelihood in Time

Series Model Estimation," Journal of the Royal Statistical Society B,

51, i5-27.

16



Table 1: Estimated probabilities of correctly choosing AR(1) disturbances
based on choosing the model with the largest maximized likelihood.

P = -.8 -.6 -.4 -.2 0 .2 .4 .6 .8

The regression model y = + u

. X1 20 .788 .546 :409 .351 .333 .363 .436 .575 .745

50 .974 .819 .617 .461 .415 .463 .616 .820 .965

X2 20 .670 .346 .232 .215 .227 .258 .317 .417 .541

50 .954 .752 .541 .398 .359 .399 .538 .752 .933

X3 20 .573 .192 .076 .078 .105 .140 .180 .221 .281

50 .878 .611 .489 .325 .294 .334 .455 .658 .864

X4 20 .405 .267 .204 .166 .149 .142 .143 .191 .385

50 .889 .685 .463 .332 .293 .326 .450 .665 .886

X5 20 .640 .302 .185 .179 .205 .245 .309 .407 .535

50 .919 .705 .505 .379 .338 .381 .519 .731 .918

X6 20 .641 .290 .175 .151 .165 .193 .253 .347 .482

50 .922 .694 .497 .365 .328 .375 .509 .729 .916

X? 20 .607 .240 .126 .142 .182 .235 .295 .390 .567

50 .929 .737 .557 .418 .381 .437 .582 .784 .949

X8 20 .534 .330 .274 .282 .305 .331 .357 .399 .477

• 50 .895 .700 .535 .421 .393 .435 .557 .751 .914

X9 20 .624 .237 .099 .092 .122 .172 .223 .302 .403

50 .909 .671 .509 .375 ..341 • .380 .511 .713 .907

The pure time-series model y = u

20 .884 .712 .560 .470 .445 .469 .557 .717 .890

50 .987 .870 .682 .523 .472 .524 .683 .873 .987
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Table 2: Estimated probabilities of correctly choosing MA(1) disturbances
based on choosing the model with the largest maximized likelihood.

7 = -.8 -.6 -.4 -.2 0 .2 .4 .6 .8

The regression model y = xg + u

X1 20 .942 .877 .780 .700 .667 .687 .762 .861 .938

50 .986 .917 .769 .640 .585 .637 .771 .924 .989

X2 20 .969 .944 .890 _818 .773 .783 .837 .913 .968

50 .988 .915 .796 .692 .641 .685 .815 .945 .993

X3 20 .987 .983 .968 .936 .895 .882 .917 .963 .989

50 .994 .940 .844 .747 .706 .743 .858 .960 .996

X4 20 .979 .951 .903 .859 .851 .882 .933 .970 .985

50 .993 .955 .859 .753 .707 .755 .868 .957 .994

X5 20 .969 .952 .910 .845 .795 .792 .842 '.907 .963

50 .991 .926 .817 .712 .662 .707 .824 .942 .993

X6 20 .975 .960 .917 .873 .835 .831 .865 .921 .965

50 .991 .933 .822 .722 .672 .708 .824 .947 .992

20 .976 .964 .936 .877 .818 .796 .836 .903 .946

50 .987 .890 .774 .672 .619 .659 .780 .922 .986

X8 20 .938 .899 .831 .749 .695 .709 .778 .868 .931

50 .988 .918 .778 .659 .607 .650 .777 .921 .986

X9 20 .971 .971 .958 .922 .878 .854 .876 .916 .957

50 .989 .910 .802 .707 .659 .705 .821 .938 .990

The pure time-series model y = u

20 .909 .803 .679 .590 .555 .588 .678 .807 .903

50 .982 .903 .725 .585 .528 .584 .728 .897 .985
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Table 3: Estimated probabilities of correctly choosing AR(1) disturbances
based on ICE, MIC and MICE when n = 20.

P = -.8 -.6 -.4 -.2 -.1 0 .1 .2 .4 .6 .8

X1 ICE .792 .558 .453 .454 .475 .500 .511 .504 .518 .607 .755

MIC .892 .720 .558 .471 .448 .441 .445 .463 .545 .672 .822

MICE .893 .724 .572 .512 .497 .500 .492 .501 .562 .677 .823

X2 ICE .680 .372 .303 .374 .442 .500 .539 .559 .532 .544 .618

MIC .900 .721 .547 4 .463 .445 .438 .443 .463 .527 .628 .740

MICE .902 .726 .564 .504 .501 .500 .499 .509 .547 .637 .744

X3 ICE .737 .396 .269 .333 .405 .500 .589 .675 .782 .821 .834

MIC .916 .745 .554 .460 .445 .435 .439 .449 .500 .577 .651

MICE .917 .752 .580 .506 .505 .500 .499 .503 .534 .592 .661

X4 ICE .495 .426 .453 .507 .515 .500 .452 .383 .264 .247 .417

MIC .753 .617 .513 .453 .434 .429 .433 .452 .534 .678 .837

• MICE .760 .630 .547 .506 .497 .500 .499 .511 .561 .687 .840

X5 ICE .661 .337 .257 .344 .429 .500 .559 .594 .600 .603 .661

MIC .903 .723 .553 .463 .445 .440 .441 .458 .518 .619 .727

MICE .904 .729 .575 .508 .506 .500 .503 .506 .543 .632 .731

X6 ICE .688 .361 .281 .355 .428 .500 .576 .632 .677 .679 .707

MIC .907 .724 .539 .457 .439 .430 .437 .452 .506 .594 .719

MICE .907 .732 .565 .507 .507 .500 .499 .505 .537 .609 .726

X7 ICE .698 .359 .259 .349 .428 .500 .569 .616 .639 .652 .734

MIC .911 .724 .549 .459 .439 -.429 .434 .451 .515 .642 .800

MICE .912 .731 .576 .506 .503 .500 .504 .508 .542 .654 .802

X8 ICE .546 .363 .349 .427 .471 .500 .516 .519 .483 .473 .518

MIC .810 .656 .521 .460 .444 .441 .449 .463 .511 .607 .716

MICE .812 .664 .545 .506 .495 .500 .503 .502 .533 .619 .722

X9 ICE .818 .546 .373 .383 .434 .500 .563 .622 .708 .753 .794

MIC .906 .725 .547 .463 .441 .433 .437 .418 .501 .595 .722

MICE .908 .734 .574 .514 .498 .500 .500 .502 .529 .611 .730

•

•••
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Table 4: Estimated probabilities of correctly choosing MA(1) disturbances
based on ICE, MIC and MICE when n = 20.

7 = -.8 -.6 -.4 -.2 -.1 0 .1 .2 .4 .6 .8

X1 ICE .938 .864 .739 .596 .534 .500 .501 .542 .683 .838 .929

MIC .842 .768 .675 .593 .565 .559 .570 .596 .686 .803 .907

MICE .838 .763 .653 .549 .516 .500 .521 .558 .668 .797 .906

X2 ICE .957. .922 .821 .654 .564 ..500 .466 .484 .639 .826 .937

MIC .787 .738 .661 , .591 .571 .562 .572 .595 .690 .805 .908

MICE .780 .728 .632 .549 .512 .500 .515 .544 .671 .798 .905

X3 ICE .931 .904 .832 .686 .598 .500 .412 .334 .277 .415 .677

MIC .719 .686 .634 .585 .568 .565 .576 .596 .681 .806 .910

MICE .707 .666 .599 .532 .505 .500 .513 .541 .651 .799 .908

X4 ICE .936 .852 .687 .526 .492 .500 .554 .642 ‘ .818 .928 .966

MIC .852 .774 .675 .600 .576 .571 .579 .599 .661 .729 .780

MICE .847 .763 .648 .541 .514 .500 .512 .537 .626 .711 .770

X5 ICE .955 .925 .836 6.81 .577 .500 .448 .436 .555 .760 .898

MIC .764 .722 .656 .588 .568 .560 .571 .592 .685 .803 .902

MICE .756 .702 .621 .537 .504 .500 .508 .542 .659 .795 .899

X6 ICE .954 .915 .810 .659 .575 .500 .428 .391 .450 .658 .852

MIC .759 .711 .649 .586 .571 .570 .575 .595 .686 .797 .896

MICE .748 .689 .613 .530 .502 .500 .510 .539 .657 .789 .893

X7 ICE .938 .908 .817 .665 .576. .500 .437 .399 .471 .665 .818

MIC .724 .690 .638 .590 .574 .571 .578 .597 .669 .760 .827

MICE .710 .672 .600 .536 .507 .500 .508 .539 .639 .750 .822

X8 ICE .917 .862 .752 .602 .537 .500 .491 .516 .646 .798 .896

MIC .754 .708 .643 .584 .568 .559 .564 .583 .655 .740 .810

MICE .745 .694 .614 .538 .515 .500 .512 .544 .628 .726 .804

X9 ICE .850 .816 .747 .640 .570 .500 .442 .397 .374 .470 .643

MIC .697 .667 .622 .579 .570 .567. .573 .594 .662 .751 .820

MICE .678 .643 .587 .523 .511 .500 .510 .539 .631 .731 .812

20



Table 5: Estimated probabilities of correctly choosing AR(1) disturbances• based on ICE, MIC and MICE when n = 50.

-.8 -.6 -.4 -.2 -.1 0 .1 .2 .4 .6 .8

X1 ICE .974 .820 .620 .488 .484 .500 .494 .502 .621 .821 .965
MIC .988 .868 .677 .521 .485 .472 .484 .521 .672 .854 .976
MICE .988 .868 .678 .532 .504- .500 .504 .532 .674 .854 .976

X2 ICE .954 .754 .544 .444 .461 .500 .499 .484 .553 .754 .934
MIC .986 .867 .668 . .517 .483 .470 .481 .513 .656 .834 .963
MICE .986 .867 .669 .527 .506 .500 .503 .524 .658 .835 .963

X3 ICE .878 .613 .458 .391 .436 .500 .517 .490 .498 .669 .867
MIC .987 .864 .658 .518 .479 .464 .475 .514 .639 .815 .938
MICE .987 .864 .660 .532 .506 .500 .505 .531 .641 .815 .938

X4 ICE .890 .688 .487 .446 .490 .500 .439 .407 .463 .668 .886
MIC .961 .831 .653 .517 .483 .466 .480 .514 .662 .849 .974
MICE .961 .831 .653 .530 .508 .500 .506 .529 .664 .849 .974

X5 ICE .929 .706 .511 .425 .453 .500 .506 .491 .546 .733 .919
MIC .986 .862 .662 .514 .480 .465 .479 .513 .649 .822 .959
MICE .986 .862 .663 .526 .512 .500 .509 .530 .652 .822 .959

X6 ICE .922 .695 .503 .419 .443 .500 .507 .488 .538 .732 .917
MIC .985 .862 .663 .518 .479 .470 .483 .513 .650 .824 .959
MICE .998 .862 .664 .530 .508 .500 .506 .527 .652 .824 .959

X7 ICE .929 .737 .561 .458 .466 .500 .513 .510 .593 .784 .949
MIC .986 .865 .666 .521 .485- .473 .488 .524 .653 .844 .969
MICE .986 .865 .667 .530 .503 .500 .508 .534 .654 .844 .969

X8 ICE .895 .700 .540 .459 .477 .500. .506 .505 .572 .753 .915
MIC .974 .842 .653 .517 .480 .468 .482 .515 .640 .822 .953
MICE .974 .842 .655 .526 .508 .500 .510 .531 .642 .822 .953

X9 ICE .909 .674 .517 .424 .453 .500 .525 .510 .540 .717 .908
MIC .985 .858 .658 .514 .480 .468 .478 .509 .640 .823 .959
MICE .985 .858 .660 .528 .507 .500 .507 .524 .6442 .823 .959
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Table 6: Estimated probabilities of correctly choosing MA(1) disturbances
based on ICE, MIC and MICE when n = 50.

7 = .-.8 -.6 -.4 -.2

X1 ICE

MIC

MICE

X2 ICE

MIC

MICE

X3 ICE

MIC

MICE

X4 ICE

MIC

MICE

X5 ICE

MIC

MICE

X6 ICE

MIC

MICE

X7. ICE

MIC

MICE

X8 ICE

MIC

MICE

X9 ICE

MIC

MICE

-.1 0 .1 .2 .4 .6 .8

.986 .916 .766 .611 .

.973 .884 .719 .580 .

.973 .884 .718 .567 .

.987 .915 .791 .642 .

.963 .873 .709 .580 .

.963 .873 .708' .569 .

.994 .939 .837 .685 .

.944 .855 .701 .579 .

.944 .855 .699 .564 .

.992 .954 .839 .636 .

.977 .890 .728 .585 .

.977 .890 .727 .569 .

.991 .924 .811 ;662 .

.956 .864 .707 .580 .

.956 .864 .705 .562 .

.991 .933 .817 .668 .

.955 .858 .707 .579 .

.955 .858 .705 .566 .

.987 .890 .768 .628 .

.953 .862 .705 .580 .

.953 .862 .704 .570 .

.988 .917 .774 .619 .

.956 .860 .702 .575 .

.956 .860 .698 .562 .

.989 .908 .796 .655 .

.945 .853 .704 .581 .

.945 .853 .702 .564 .

537 .500

543 .528

521 .500

557 .500

542 .530

518 .500

580 .500

547 .536

517 .500

533 .500

546 .534

520 .500

569 .500

545 .535

511 .500

581 .500

543 .530

514 .500

554 .500

541 .527

523 .500

542 .500

542 .532

514 .500

565 .500

542 .532

516 .500

.532 .593 .766 .924 .989

.541 .582 .725 .898 .985

.521 .572 .724 .898 .985

.523 .599 .801 .943 .993

.543 .583 .723 .897 .983

.521 .570 .722 .897 .983

.500 .578 .826 .958 .995

.547 .584 .721 .896 .984

.515 .569 .721 .896 .984

.578 .667 .857 .955 .994

.548 .585 .719 .871 .964

.521 .569 .716 .871 .964

.510 .585 .800 .940 .993

.546 .586 .727 .896 .983

.517 .569 .726 .896 .983

.511 .595 .802 .945 .992

.543 .584 .723 .888 .979

.520 .569 .722 .888 .979

.511 .580 .768 .921 .986

.541 .586 .723 .887 .9976

. .522 .574 .721 .886 .976

.515 .582 .765 .920 .986

.542 .581 .710 .878 .973

.516 .563 .709 .878 .972

.496 .577 .792 .935 .989

.545 .584 .724 .886 .972

.516 .567 .721 .885 .972
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Figure 1: estimated probabilities of correctly selecting
(i) AR(1) disturbances and (ii) MA(1) disturbances,

using IC, for the regression model with design matrix X9
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(i) AR(1) disturbances
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Figure 2: estimated probabilities of correctly selecting
(i) AR(1) disturbances and (ii) MA(1) disturbances,

for the regression model with design matrix X9, 20 observations.
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Figure 3: estimated probabilities of correctly selecting
(i) AR(1) disturbances and (ii) MA(1) disturbances,

for the regression model with design matrix X9, 50 observations.
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