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ABSTRACT

In the context of the linear regression model, this paper considers testing for a single

Hildreth-Houck random coefficient against the alternative that the coefficient follows the

return to normalcy model. We attempt to construct a point-optimal invariant test but find

that we have to resort to the class of approximate point-optimal invariant (APOI) tests

introduced by King (1987). Empirical power calculations show that these tests have good

small-sample properties compared to the likelihood ratio and Wald tests. A particular

APOI test is recommended and is found to be remarkably robust to nonnormality.

1. This work forms part of the first author's Ph.D. thesis supervised by the Department

of Econometrics, Monash University and was partly funded by an ARC grant. The authors

wish to thank Alan Morgan for his helpful research assistance. Earlier versions of this

paper were presented at a Monash University Financial Econometrics Symposium and at

the 1991 Australasian Meeting of the Econometric Society held at the University of New

South Wales. We wish to thank Nilerran Evans. John Lee, two referees and the participants

at earlier presentations for their constructive comments.
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1. INTRODUCTION

The standard assumption that regression coefficients are fixed constants has been seen

by many as being restrictive and, in some cases, unrealistic. There is now a rich literature

on this topic with a variety of varying coefficient models being proposed. Published surveys

include the book by Raj and Ullah (1931) and the more recent work by Swamy, Conway

and Le Blanc (1988a, 1988b, 1989). There is also an associated literature on testing

the constant coefficient model against particular varying coefficient alternatives, see for

example Breusch and Pagan (1979), Watson and Engle (1985) and Shively (1988a, 1988b).

A key area of empirical work using varying coefficient models is in the context of the

market model, which hypothesises that the return on a company's shares is a linear function

of the return on the market as a whole. The theory that the systematic risk, which is the

slope coefficient in the linear model, is constant over time has been challenged for a variety

of microeconomic and macroeconomic reasons. Some investigators have suggested that

these factors can be proxied by treating the systematic risk as following a Hildreth-Houck

(1968) formulation. Examples of the use of this model may be found in Fabozzi and Francis

(1978), Francis and Fabozzi (1930) and Fabozzi, Francis and Lee (1982). This has been

criticised by others who claim systematic risk is autocorrelated and therefore should be

modelled using Rosenberg's (1973) formulation. Examples of this approach may be found

in Sunder (1980), Bos and Newbold (1934) and Fa.ff, Lee and Fry (1992). A possible

explanation for this diversity of results is that tests for the presence of particular varying

coefficient models have been found to have !pod power against a range of alternative

models (see Watson and Engle (1935) and Brooks (1993b)). In addition the Hildreth-

Houck (1968) random coefficient model is a special case of the Rosenberg (1973) return to

normalcy random coefficient model. An obvious question is which model best fits the data?

In their empirical investigation of systematic risk in the market model, Bos and Newbold

(1984), tested the Hildreth-Houck model against the return to normalcy alternative. They

used the Wald and likelihood ratio tests which have an asymptotic justification and argued

that, despite having 120 observations. their tests lacked power.

In this paper, we consider the problem of testing a single Hildreth-Houck random co-
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efficient against the alternative that the coefficient follows the return to normalcy model.

In order to construct a test with good small-sample power properties, we adopt a point-

optimal testing approach. Point-optimal tests have been found to have excellent small-

sample power properties when testing for the presence of varying coefficients (see for ex-

ample, King (1987), Shively (1988a, 1988b) and Brooks (1993a)). That they also provide

exact tests in small samples is a further advantage. Unfortunately, the point-optimal ap-

proach relies on the assumption of normally distributed errors. A feature of econometric

modelling based on financial data is the possibility of nonnormal disturbances (see for

example Fama (1965) and Harris (1987)). Given the market model based motivation for

this testing problem, nonnormal disturbances are a strong possibility. This means that

robustness of point-optimal tests to nonnormality is an important issue. In this paper we

compare the small-sample size and power properties of the point-optimal tests with the

Wald and likelihood ratio tests. Comparisons are made for both normal and nonnormal

disturbances.

The plan of the paper is as follows. Section 2 sets out the testing problem. Section

3 then discusses the point-optimal and approximate point-optimal solutions. Attention is

given to the choice of parameter values for use in the approximate point-optimal invariant

(APOI) test. Sections 4 and 5 report the empirical power comparison of the APOI tests

with the likelihood ratio and Wald tests under normality and nonnormality respectively.

Section 6 concludes with a discussion of the use of the recommended test in the context of

the market model.

2. THE TESTING PROBLEM

Consider the linear regression model with a single varying coefficient, at, namely

yi = + Et. t = 1, n, (1) -

where xt is a known scalar regressor. is a kxl vector of observations on k nonstochastic

regressors, is a kx1 vector of unknown constant coefficients and et is a disturbance term

such that

Et /N(0,a2), t = 1,...,n. (2)
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If at follows the Hildreth-Houck random coefficient model then

where

at e- I N(0, )a2 

and at is independent of et. Alternatively, if. at follows Rosenberg's return to normalcy

process then

at - = th(at-i - + at (5)

where at is generated as (4) and is independent of Et. For (5) to be a stationary process,

must be such that I < 1. However, the rationale for this model is that the varying

coefficient changes slowly over time implying that ck is non-negative. Collins, Ledolter and

Rayburn (1987), for example, argued that applied researchers should expect the smooth

changes in a associated with a positive 0, and not the oscillations in a that would be

produced by a negative value. Also a negative value for th causes considerable difficulties

in interpretation particularly if the period between observations is changed. For these

reasons we assume 0 < o < 1.

Under either- (3) or (5), the model (1), (2) and (4) can be written as

• t = 1,...,n, (6)

in which vt is normally distributed with mean zero and variance-covariances that are

determined by the at and E processes.

When at is generated by (3) and (4) then

and

var(vt) =
2
(1 Ax

.
; ), t = 1,...,n,

covevi v, = 0. for t s.

On the other hand, when at is determined by (4) and (5) then

var(vt) = 0-2(1 + A.1*
,;
/(1. - 

(32))
, t = 1,...,n,



and

cov(vtvs) = 0-2 AxtxsOlt-311(1 — 02), for t s.

In other words, under (4) and (5)

v N[0, o-2(in AC2(0))]

where C2(0) is an n x n matrix whose typical element is

= x3xt0-31/(1— 02).

Note that Q(0), which we will denote by Q0, is given by

and under 3 and (4)

Q0 = diag(x2 
9 \

•••, )

-v ,i\r[o,0-2(in )'c20)].

Our problem of interest is therefore one of testing

against

Ho th = 0

Ha : Q > 0

(7)

with respect to (6) and (7). This involves testing whether the disturbance covariance matrix

of a standard linear regression model can he parameterised (up to a scalar constant) as

In + AS20 or as In + AC2(0). Observe that A is zi nuisance parameter. Furthermore, if = 0

then 0 is not identified. However, this is not an issue as A = 0 implies at is constant under

either (3) or (5). We assume that at is not constant which implies A must be non-negative.

3. AN APPROXIMATE POINT-OPTIMAL TEST

The problem of testing Ho against H„ is invariant with respect to transformations of

the form

aYt +01 t =1,:..,n,
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where S is a positive scalar, -yo is a scalar and 7 is a k xl vector. Following King (1987),

it may be possible to construct the critical region for a point-optimal invariant (POI) test

with optimal power at (A, 0) = (A1, (Pi ), in which A1 > 0 and 01 > 0, based on rejecting

H0 for

s(Ao, A1,01) = 111(1.72 + AoS20)-111, < c (8)

where IL and Ci are the generalised least squares residual vectors from (6) assuming co-

variance matrices In + A1 C2(c4.1) and In + AoCio, respectively. Critical regions of the form

of (8) are most powerful invariant for the simpler problem of testing .1-1L: (A,O) = (A0,0)

against Ha' : (A, 0) = (A1, 01 ). They are also POI for the wider problem of testing Ho

against Ha provided the critical value appropriate under Ig remains unchanged when the

null hypothesis is widened to Ho. Of course, Ao is a parameter we are free to choose. Thus

the existence of a POI test of this form requires Ao and the critical value c to be chosen

such that

and

Pr[s(A0, ) < c I

Pr[s(Ao,A1,01) <C

Q0)] = 77

.a N(0, I,1 A 0),0 <A] < ii

where 77 is the desired level of significance. When Ao and c cannot be chosen to solve (9)

and (10) simultaneously, King (1987) recommends the use of an APOI test. Such tests

have critical regions of the form of (8) with c chosen so that (10) holds and Ao is chosen

. to make the LHS of (9) as close to 77 as possible.

APOI tests have been found to have good 5mall-samp1e power properties when testing

for a simple AR(4) disturbance process in the presence of an AR(1) process (see King

(1989)). Notice the similarity of this testing problem to that currently under consideration.

Both involve one parameter tests of the disturbance covariance matrix in the presence of

a second nuisance parameter that cannot he eliminated by invariance arguments.

Our experience with the X matrices and 77 values of the experiment reported below is

that it is not possible to find c and Ao values to solve (9) and (10) simultaneously. This is

because local maxima of the LHS of (10) always occur at the two extremes of the range of

A values under consideration. When Ao is chosen to he one such extreme value, the global



maximum of the LHS of (10) always occurs at the other boundary value. This makes it

impossible to jump from I-4 to Ho without changing the critical value. We therefore shall

turn our attention to the class of APOI tests which involves choosing c and Ao such that

(10) holds and

— Pr[s(Ao, (bi) <c N(0, In + A020)] (11)

is minimised. Ensuring that (10) holds requires a search over the A parameter space.

.We can simplify this task by restricting the range of A values. Unfortunately, this is

not as straightforward as it may seem. Although A is the ratio of the random coefficient

disturbance variance to the regression disturbance variance, its contribution to the variance

of the composite disturbance vi, depends on the scale of x? . In the case of the Hildreth-

Houck model, this can be seen from

= (72 (1 + Ax2t ).

In other words, A increases the variance of v1 by cr2Ax or, relative to a2, by

9
q = Axi

We therefore feel it is appropriate to consider bounds on q and following Evans and

King (1985, 1988), we suggest 10 as a reasonable upper bound. This gives an implied

upper bound on A as:

A' = 10/ma:v(4).

Zero is an obvious lower bound although =.0 must give a test whose power must equal

its size given that is not identified in this case. Therefore the range of possible A values

is given by 0 < < Au.

Through numerical experimentation, we found that for any choice of Ao, A1 and 01

values, the LHS of (10), as a function of A, first decreases, then increases and finally

flattens out well before A = Au. For different Ao. A 1 and 01 values, the maximum of the

LHS of (10), within the range 0 < A < A", occurs at either endpoint. Hence, the particular

A value from this range that gives equality in (10) and therefore determines c is either

= 0 or A = A'. Just as King (19S9) found when testing for seasonal autocorrelation in



the presence of an AR(1) error process. we found that choosing Ao to be that value which

results in equality in (10) at both endpoints, minimises (11) as required.

Thus for any given values of A1, 01 and 77, an APOI test can be constructed by the

following iterative process:

(i) Guess a possible value for Ao denoted ,V('):.

(ii) Solve

Pr s(4, A1,01) < c* I u N(0,1-72)] = (12)

for c* and evaluate

< c* u N(0, A920)]. (13)

(iii) If (13) equals 77 then the desired Ao and c values have been found. If (13) is less

(greater) than 77, make Ao* smaller (larger) and repeat (ii) and (iii).

Note that numerical methods analogous to those outlined in King (1989) can be used

to calculate the LHS of (12) and (13). The modifications of these methods required for

the calculation of sizes and powers are outlined in the appendix. We will denote the test

statistic based on this choice of Ao value by s( Ao* , A1, cbi).

Finally, applications of the test require choices to be made for A1 and 01. A simple but

instructive way to view these choices is that a particular power surface is being chosen in

preference to other power surfaces. Hence in making our choices, we should address the

issue of power. Because th is the parameter of interest, the point-optimal test literature (see

for example King (1987)) suggests that oi should be chosen so that the power of the test

at = (4.1 has some desired level. A difficulty in our application is that power at = .1 is

a function of A. An obvious solution is to choose 01 such that the level of power at =

and A = A1 has a desired level. We denote the resultant test statistic by s(A0*, A1, 07).

01

This then leaves the choice of A1 value. Our choice of A1 must be related to the scale

of Xt. At present we only consider two possible choices for A1, namely

= Au/2

••••



and

Abi = Au/

These correspond to Evans and King's (1985) choices of values for A1 when testing

constant coefficients against Hildreth-Houck random coefficients. It should be noted that

their preferred choice is that of A. Finally for the purposes of comparison we include a

test with a purely arbitrary choice of Ao, A1 and 01. This test chooses Ag = A. For this
test the critical value is chosen to control the size at the bound at which size is a maximum.

4. EMPIRICAL POWER CALCULATIONS

In order to assess the small-sample properties of APOI tests, the sizes and powers of the

s(Ag, sck i ), s(A0*, A7, 01 ), 3(4*. A7, 0T) and s( Abi , OT) tests were calculated using the

methodology outlined in the appendix. The model is the regression (1) with nonstochastic

regressors in which the coefficient of one regressor is generated as (3) and (4) under Ho and

(5) and (4) under Ha. The Monte Carlo method was used to calculate sizes and powers

of the likelihood ratio and Wald tests. Details of these tests may be found in Collins,

Ledolter and Rayburn (1987). In the following discussion and tables the sPtg, A7, 01),

s(A46,A7,461), s(Ar),A7,6T)' , likelihood ratio and Wald tests are respectively

denoted as si , £2, £3, s.1 , bi and t For each APOI test, exact critical values that ensure

that the probability of a type I error is less than or equal to five per cent over the range

0 < A < Au, were calculated. These critical values and their associated Ao, A1 and 01

values are given in table 1. Powers of the six tests were calculated at q = 1.0, 2.0, 5.0, 10.0

and 25.0 and th = 0.0. 0.2, 0.5. 0.7 and 0.9 for the following regressor sets:

Xl: n=31. A constant and a linear time trend. The time trend is the regressor with

the varying coefficient.

X2: n=41. The first 41 observations of Durbin and Watson's (1951, p.159) consumption

of spirits example. Log of annual UK income is the regressor with the varying coefficient.



X3: n=41. A constant, quarterly Australian household disposable income and private

consumption expenditure series commencing 1959(4). The consumption series is lagged

one quarter and is the regressor with the varying coefficient.

X4: n=60. A constant, quarterly Australian household disposable income and private

consumption expenditure series commencing 1959(4) and a full complement of quarterly

seasonal dummies. The consumption series is lagged one quarter and is the regressor with

the varying coefficient.

X5: n=30. A constant, quarterly Australian private capital movements and quarterly

Australian government capital movements commencing 1968(1). The latter is the regressor

with the varying coefficient.

X6: n=60. A constant and the monthly continuously compounded return on the equally

weighted market index commencing 1978(1) from Faff, Lee and Fry (1992). The market

returns data is the regressor with the varying coefficient.

Calculated powers and sizes of the tests are given in tables 2, 3 and 4. These tables

include a column of q values equal to 25.0, in order to assess the sizes for each APOI test

outside the range of allowed values. For the tests which choose A'(1, the size is never

greater than 0.054, suggesting the insensitivity of the tests to this range. On the other

hand for the test with the arbitrarily chosen Ao the size in he case of X5 is 0.072 and

in the case of X6 is 0.078. This may be viewed with concern. Of much greater concern

is the unreliability of the critical values of the asymptotic tests. The lr test is typically

undersized with maximum sizes of 0.016, 0.009, 0.007, 0.020, 0.018 and 0.154 for the X1

to X6 matrices respectively. On the other hand the Wald test is typically oversized with

maximum respective sizes of 0.232, 0.055, 0.067, 0.153, 0.400 and 0.448 respectively. It

is interesting to note that the largest size occurs for the largest sample size (n=60) and

only a single non-constant regressor suggesting that asymptotic critical values for this test

should be used with extreme caution.

The powers of all tests increase as either 0 increases or A (or equivalently q) increases,
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ceteris paribus. Calculated powers below the nominal size of 0.05 occurred occasionally

for the s1 test (X5 and X6 only) and frequently for the in test when and A are small.

Clearly it is difficult to compare the asymptotic tests with the APOI tests because the

former tests have sizes significantly different from 0.05. The best we can do is look for

situations in which one test has lower size and higher power than the other tests. We see

this for X6 and the in test which has higher size and lower power than the 32, S3 and

£4 tests. We conclude from this that the latter tests have superior power relative to the

in test. For X2 and X3 the Wald test has higher size and slightly lower power than the

32, £3 and s4 tests particularly for high A values. We are left to conclude that when the

asymptotic critical values are accurate, the Wald test has power nearly comparable with

that of the 52, 33 and s4 tests.

Our results indicate that the s, and 33 tests have extremely similar powers. The only

noticeable differences occur for X5 and favour the former test when < 0.5 and the latter

test when > 0.7. This leads us to conclude that there is little to be gained from choosing

01 in an optimal manner. When comparing the 33 and 54 tests, one observes that the latter

test performs better for low A values and the former test has higher power for high values

of A. There also appears to be a slight tendency for relative powers to shift in favour of

the 54 test as increases. As a result, it is extremely difficult to choose between these two

tests. We marginally prefer the s3 test because of its better overall power when = 0.2

and 0.5, although the results show a general insensitivity of the testing problem to the

choir-1 of A I value.

The s1 test is typically inferior to the other three APOI tests. It often has a power

advantage when q = 25.0 (possibly because of its higher size for q = 25.0) but is distinctly

less powerful when q = 1.0,2.0,5.0. Only for X2 is the s1 test identical in power to

the 32 test. We therefore feel there is a case for choosing Ao optimally despite the extra

computation involved. Accordingly we recommend the use of the s2 test on the basis of

its small-sample properties.
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5. ROBUSTNESS TO NONNORMALITY

In this section, we investigate the effects of nonnormality on the six tests. The Monte

Carlo method was used to simulate sizes and powers of the tests under selected nonnormal

disturbance distributions. This was achieved by generating independent pseudo-random

values from the same nonnormal distribution for Et in (1) and at//X in (3) or (5) as

required. Because the resultant disturbance term, vt, is made up of two independent

components, central limit theorem considerations suggest that the distribution of vt will

be closer to normality than the original distribution of et and a//X.

The nonnormal pseudo-random variates were generated by the algorithm proposed by

Ramberg and Schmeiser (1972, 1974) and used in the robustness studies of Evans (1992),

Lee (1992) and Brooks (19931)). The algorithm is:

r(P) = 191 + (pe" —(1 — p)64)/99, 0 <p <1

where r(p) is the generated pseudo-random variate, p is a uniform pseudo-random variate,

01 is a location parameter, 02 is a scale parameter and 03 and 04 are shape parameters.

Tables of 0 values which allow for a wide variety of distributions are provided in Ramberg,

Tadikamalla, Dudewicz and Mykytka (1979).

Following Lee (1992) and Brooks (19931)) the nonnormal distributions considered are:

(i) the distribution with no skewness and kurtosis of six, 9=0, -0.1686, -0.0802, -0.0802Y;

(ii) the distribution with no skewness and kurtosis of nine, 0.(0, -0.3203, -0.1359, -0.1359)';

and (iii) the distribution with skewness of one and kurtosis of six, 0.(-0.379, -0.0562, -

0.0187, -0.0388)'. As the tests sizes and powers are invariant to the values of fi, d and o-2,

these were set equal to 0, 0 and 1. respectively. One thousand replications were used.

Selected results of the Monte Carlo experiment are presented in table 5 for sizes and

table 6 for powers. The following discussion is based on all the results. The results indicate

that the APOI tests and our recommended test in particular are remarkably robust to

nonnormality under the null hypothesis. This is similar to Evans' (1992) finding with

respect to point-optimal tests for autocorrelation and in mild contrast to the conclusions

12



of Evans (1992) and Brooks (19931)) regarding point-optimal tests for heteroscedasticity.

This may be a reflection of the fact that our testing problem involves an autocorrelated

error component. We also find that the power advantage of the s2, 53 and s4 tests over

the lr and Wald tests becomes greater as one moves from normality to nonnormality.

The effects of nonnormality on the power of our recommended test are also slight over

all cases considered, with absolute differences in power rarely being greater than 0.02 and

never greater than 0.05. In fact for the 144 cases where powers have been calculated

there are only nine instances where the power under nonnormality differs from the power

under normality by greater than 0.02. Overall the s2 test appears to be very robust to

nonnormality.

6. CONCLUSIONS

Our recommended test has been applied by Brooks, Faff and Lee (1992) to address the

issue of the form of time variation of systematic risk in the Australian equity market. They

find that for those cases where systematic risk is found to be time varying, application of the

recommended test is unable to reject the Hildrcth-Houck (1968) model as the appropriate

model of time variation. This result is consistent with that of Bos and Newbold (1984)

who attributed their finding to the use of an asymptotic test believed to lack power in

finite samples. We find the 1i test does lack power mostly because it is undersized. It is

not clear however that the Wald test lacks power and indeed we found it was typically

oversized. The use of our recommended test by Brooks, Faff and Lee (1992) does not have

these deficiencies and is therefore a strong corroboration of the Bos and Newbold (1984)

result. Such evidence is likely to be of assistance in portfolio selection.
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Table 1 - Parameter values and critical values for the four APOI tests.

"0 "1
X1

s(Ag, Aciz, ) 0.52029 0.52029 0.50000 0.90510 .

s(4, Acii, 01) 0.56076 0.52029 0.50000 0.94315

0.54937 0.52029 0.54898 0.92998

0.30085 0.26015 0.66131 0.93764

X2

1.22488 1.22488 0.50000 0.98225

1.41531 1.22488 0.50000 1.10692

1.53346 1.22488 0.35111 1.15869

0.785S1 0.61757 0.40761 1.12701

X3

s(Ag, 01) 0.25340 0.25340 0.50000 0.93752

0.18259 0.25340 0.50000 0.76177

0.20321 0.25340 0.40258 0.81345

0.11520 0.12670 0.49217 0.87868

X4

s(Ag, 01) 0.07754 0.07754 0.50000 0.92009

0.06799 0.07754 0.50000 0.86760

0.07236 0.07734 0.42002 0.90170

0.039S2 0.03S77 0.53879 0.92465

0.00032 0.00052 0.50000 0.87493

0.00073 0.00052 0.50000 1.00251

0.00084 0.00032 0.70909 0.99937

0.00052 0.00026 0.81406 0.99980

X6

0.02243 0.02243 0.50000 0.90541

0.02913 0.02243 0.50000 0.99778

s( ), Ac1. 61` ) 0.02093 0.02243 0.55057 0.99619

0.01793 0.01122 0.66580 0.99632
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Table 2 - Sizes and powers of the six tests for X1 and X2 under normality

1.0 2.0 5.0

X1 X2 X1 X9 X1 X2

0 = 0.0

10.0

XI X2

25.0

Xi X9

si .036 .050 .038 .050 .044 .050 .050 .050 .056 .050
S2 .046 .050 .045 .050 .047 .050 .050 .050 .053 .050
53 .046 .050 .045 .050 .047 .050 .050 .050 .054 .050
S4 .046 .050 .046 .050 .048 .050 .050 .050 .052 .050
lr .007 .003 .009 .001 .010 .006 .013 .007 .016 .009
t .232 .055 .169 .053 .128 .054 .095 .051 .070 .055

= 0.2

s .061 .136 .083 .182 .129 .238 .167 .268 .204 .289

S2 .074 .136 .095 .182 .135 .238 .166 .268 .196 .289
33 .074 .137 .094 .183 .135 .239 .166 .269 .196 .291

54 .077 .137 .097 .183 .133 .238 .159 .267 .182 .289
lr .011 .027 .020 .039 .034 .056 .062 .066 .076 .075
t .289 .140 .287 .182 .294 .996 .235 .256 .990 .268

= 0.5

si .145 .426 .248 .597 .426 .750 .540 .809 .632 .845

S2 .168 .426 .269 .597 .437 .750 .541 .809 .624 .845

53 .167 .424 .268 .595 .436 .749 .541 .808 .624 .845

54 .180 .429 .280 .598 .430 .749 .518 .808 .586 .845

lr .042 .174 .096 .312 .214 .485 .307 .567 .418 .628
t .454 .424 .507 .585 .598 .719 .626 .773 .688 .802

= 0.7

s1 .274 .680 .452 .840 .678. .934 .787 .960 .857 .972

s2 .302 .680 .475 .840 .688 .934 .789 .960 .854 .972

53 .302 .674 .476 .836 .689 .932 .790 .959 .855 .972

54 .328 .682 .494 .840 .684 .933 .771 .958 .829 .971

lr .118 .407 .258 .624 .452 .805 .609 .862 .745 .894

t .574 .676 .688 .826 .798 .925 .860 .952 .903 .963

= 0.9

.476 .859 .674 .949 .854 .985 .919 .993 .954 .996

.505 .359 .694 .949 .861 .985 .921 .993 .954 .996
33 .507 .851 .696 .945 .862 .984 .922 .992 .955 .995

34 .539 .858 .713 .948 .860 .985 .913 .992 .944 .995
lr .296 .674 .500 .858 .725 .953 .836 .969 .914 .981
t .728 .856 .823 .937 .909 .984 .958 .991 .974 .995



Table 3 - Sizes and powers of the six tests for X3 and X4 under normality

q 1.0 2.0 5.0 10.0 25.0
X3 X4 X3 X4 X3 X4 X3 X4 X3 X4

0 = 0.0

s 1 .045 .044 .044 .041 .042 .039 .042 .039 .042 .040
S2 .048 .047 .048 .046 .049 .048 .050 .050 .051 .053
33 .048 .047 .048 .046 .049 .048 .050 .050 .051 .053
34 .048 .047 .048 .046 .049 .048 .050 .050 .051 .053
lr .005 .011 .002 .015 .004 .020 .006 .018 .007 .016
t .063 .153 .067 .143 .060 .131 .058 .102 .061 .077

0 = 0.2

si .094 .077 .126 .102 .179 .157 .214. .206 .243 .258
32 .100 .083 .137 .113 .198 .181 .238 241 .979 .303
33 .100 .083 .137 .114 .198 .182 .239 .242 .273 .304
34 .101 .085 .138 .115 .195 .178 .232 .228 .263 .277
lr .016 .016 .022 .040 .045 .070 .053 .101 ‘ .072 .151
t .113 .219 .160 .273 .993 .306 .250 .328 .260 .373

0 = 0.5

si .271 .197 .432 .346 .638 .605 .736 .754 .802 .853
S2 .283 .209 .451 .368 .660 .636 .758. .784 .822 .878
33 .282 .208 .449 .368 .659 .636 .758 .784 .822 .878
34 .292 .999 .457 .381 .656 .627 .748 .758 .808 .845
lr .079 .071 .182 .188 .383 .405 .506 .586 .599 .760
t .309 .363 .462 .517 .639 .733 .731 .831 .792 .924

0 = 0.7

s 1 .501 .390 .713 .638 .883 .882 .936 .955 .963 .984
S2 .514 .405 .726 .656 .893 .895 .943 .962 .967 .987
33 .509 .401 .723 .652 .891 .893 .942 .962 .967 .987

34 .531 .432 .735 .673 .891 .891 .939 .954 .963 .981
lr .232 .201 .443 .424 .715 .731 .827 .900 .892 .968
t .525 .525 .710 .738 .872 .924 .933 .970 .952 .988

0 = 0.9

si .751 .685 .896 .883 .W2 .981 .988 .995 .994 .999

s2 .759 .696 .902 .890 .274 .983 :989 .996 .995 .999
S3 .753 .688 .899 .886 .973 .981 .989 .995 .995 .999

34 .774 .799 .907 .899 .974 .982 .988 .995 .994 .999
lr .518 .455 .753 .748 .914 .940 .955 .981 .970 .996
t .753 .737 .893 .904 .965 .977 .985 .995 .991 .999



Table 4 - Sizes and powers of the six tests for X5 and X6 under normality

1.0 2.0 5.0

X5 X6 X5 X6 X5 X6

= 0.0

si .017 .013 .022 .018 .035 .032 .050 .050 .072 .078
52 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050
33 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050
54 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050
lr .004 .077 .007 .199 .007 .154 .013 .066 .018 .022
t .400 .448 .342 .375 .247 .262 .184 .200 .125 .152

= 0.2

si .023 .020 .035 .035 .072 .088 .117 .161 .182 .268

s2 .063 .069 .073 .086 .095 .123 .115 .158 .137 .199
33 .062 .069 .074 .086 .093 .122 .112 .157 .133 .198

34 .062 .069 .070 .085 .090 .118 .106 .148 .123 .180
lr .009 .093 .009 .141 .026 .180 .037 .120 .059 .111
t .419 .511 .396 .466 .334 .423 .303 .419 .294 .419

= 0.5

si .045 .053 .091 .129 .999 .361 .359 .581 .515 .774

S2 .103 .138 .153 .997 .258 .420 .351 .573 .448 .710
33 .102 .137 .150 .997 .255 .420 .346 .573 .442 .710

34 .104 .142 .151 .231 .244 .409 .321 .544 .397 .662
lr .016 .144 .042 .247 .105 .335 .185 .454 .323 .622
t .489 .620 .500 .653 .549 .753 .604 .824 .667 .884

= 0.7

si .098 .147 .208 .350 .444 . .709 .623 .881 .774 .963

S2 .177 .275 .286 .472 .481 .751 .615 .879 .728 .949
33 .179 .277 .291 .475 .487 .754 .620 .881 .731 .949

34 .189 .296 .298 .493 .476 .750 .591 .866 .687 .932
lr .049 .243 .115 .451 .274 .669 .439 .804 .616 .926
t .557 .726 .608 .822 .712 .923 .791 .958 .866 .986

= 0.9

si .278 .522 .475 .783 .728 .955 .852 .989 .930 .998

52 .371 .644 .548 .843 .754 .964 .351 .989 .915 .997
33 .389 .652 .567 .848 .768 .966 .861 .990 .921 .997

34 .417 .690 .585 .866 .765 .967 .848 .989 .902 .996
lr .169 .590 .332 .785 .571 .931 .715 .976 .864 .995
t .658 .892 .765 .950 .852 .984 .922 .988 .963 .999

10.0

X5 X6

25.0

X5 X6



Table 5 - Size performance of the six tests for X2, X3 and X6 under nonnormality

Skewness = 1,
Kurtosis = 6 Kurtosis = 9 Kurtosis = 6

X2 X3 X6 X2 X3 X6 X2 X3 X6

= 0.0

si .053 .049 .011 .048 .046 .012 .058 .055 .013

S2 .053 .045 .049 .049 .046 .049 .059 .050 .055
33 .054 .046 .050 .051 .047 .050 .062 .053 .054
S4 .053 .043 .040 .049 .043 .044 .057 .048 .052
lr .008 .006 .042 .007 .006 .053 .009 .007 .046
t .057 .044 .584 .052 .040 .576 .049 .052 .575

= 2.0

si .039 .034 .021 .039 .031 .025 .041 .033 .023

S2 .039 .046 .057 .037 .042 .058 .041 .036 .065
S3 .040 .044 .056 .041 .040 .058 .041 .040 .063

54 .043 .042 .051 .041 .038 .049 .040 '.035 .062
lr .002 .003 .106 .003 .003 .098 .004 .004 .112
t .047 .053 .391 .047 .048 .395 .049 .060 .373

= 5.0

si .036 .030 .034 .035 .031 .034 .042 .030 .039

S2 .036 .037 .053 .035 .035 .050 .042 .037 .053
53 .037 .039 .052 .036 .036 .053 .044 .036 .054

54 .040 .039 .046 .040 .036 .047 .045 .035 .059
lv .004 .003 .119 .002 .003 .100 .006 .004 .113
t .053 .057 .268 .050 .054 .280 .049 .054 .268

= 1.0.0

si .044 .030 .051 .040 .030 .052 .047 .034 .057

32 .044 .035 .056 .040 .036 .055 .048 .038 .050
S3 .045 .037 .057 .041 .037 .055 .048 .040 .051

34 .046 .037 .051 .043 .037 .051 .049 .041 .056
lr .008 .005 .089 .005 .005 .079 .006 .004 .085
t .047 .055 .210 .046 .054 .919 .047 .049 .211
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Table 6 - Power performance of the six tests for X2, X3 and X6 under nonnormality

Kurtosis = 6 Kurtosis •••••••• 9

Skewness

Kurtosis

1,

6

Si

S2

53

54

lr

X2 X3 X6 X2 X3 X6 X2 X3 X6

= 1.0, = 0.2

.128 .094 .027 .129 .093 .028 .133 .086 .030

.129 .095 .081 .128 ..100 .082 .132 .092 .086

.128 .100 .081 .124 .100 .084 .137 .096 .086

.131 .092 .083 .129 .094 .084 .128 .092 .085

.029 .014 .091 .026 .012 .089 .021 .009 .106

.127 .107 .514 .123 .098 .507 .132 .114 .491

q = 10.0, ó = 0.9

si .993 .989 .983 .992 .990 .983 .991 .985 .984

s2 .993 .993 .9S3 .992 .993 .981 .991 .988 .985

53 .993 .992 .985 .992 .993 .981 .990 .988 .986

54 .993 .994 .937 .993 .994 .983 .990 .988 .986

lr .972 .949 .973 .971 .950 .969 .967 .949 .973

.990 .983 .998 .991 .981 .995 .986 .979 .999

q = 2.0, p = 0.7

si .835 .711 .348 .831 .713 .351 .831 .708 .343

S2 .836 .721 .482 .832 .716 .489 .830 .722 .483

53 .827 .716 .483 .825 .714 .491 .826 .717 .486

54 .831 .728 .500 .327 .793 .505 .832 .733 .499

ir .627 .445 .391 .611 .437 .389 .624 .423 .402

.805 .675 .312 .799 .802 .809 .673 .800

= 5.0, = 0.5

si .761 .648 .364 .766 .641 .366 .765 .662 .353

s2 .761 .668 .420 .766 .660 .417 .766 .681 .419

53 .758 .664 .413 .759 .662 .418 .767 .679 .420

S4 .761 .663 .406 .761 .653 .403 .768 .669 .399

lr .469 .369 .345 .469 .364 .335 .476 .356 .340

t .707 .603 .756 .705 .605 .752 .714 .617 .742
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APPENDIX

Critical values, sizes and powers of the APOI tests require calculation of probabilities

of the form,

Pr[s(A0*, Ai, 01) < c*

= Pr[Eln-i

U N(0, E)]

<0], (14)

in which, eri are independent xf-1 random variables and coi are the non-zero eigenvalues of,

(E1/2)1(A-1 A-1X(XIA-1X)— 1 xIA-1 c*(0-1 
Cr1

aX(X10-1X)-1Xle-1))E1/2,

where. = (In + C2(01)) and 0 = (in ± Ao*Q0). The RHS of (14) can be calculated

using Koerts and Abrahamse's (1969) FQUAD subroutine or Davies (1980) algorithm.

Calculation of critical values require c* and Ao* to be found that set (14) equal to the desired

nominal size at E = /77 and E .T„ 4' Q0. This can be done iteratively as outlined in

section 3. Sizes and powers can be calculated from (14) by setting E = I, + AoS20 and

E = I + A1C2( 01), respectively.
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