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Abstract

In linear time-series regression analysis, there is typically uncertainty

about which variables to include as regressors and the exact form of the

disturbance process. This paper uses the Monte Carlo method to investigate

the predictive performance of nine different pretesting strategies for

misspecification. Data generating processes used in the study include

first-order autoregressive (AR(1)) disturbances, first-order moving average

disturbances, an extra exogenous regressor and the lagged dependent variable

as an extra regressor. We find that remarkably robust predictions for a

range of misspecified models result from applying the Durbin-Watson test for

autocorrelation and correcting for AR(1) disturbances when the test is

significant.



1. Introduction

In economic time series applications of the linear regression model,

there is typically uncertainty about which variables to include as regress-

ors and the exact form of the disturbance process. It has long been recog-

nised that misspecification of the regressors or the disturbances can lead

to misleading inferences and inefficient predictions. Since the 1950's, a

widely adopted strategy to guard against these problems has been to test for

autocorrelation in the disturbances, typically using the Durbin-Watson (DW)

test. Because this test was originally designed to detect first-order auto-

regressive (AR(1)) disturbances, some investigators immediately assume AR(1)

disturbances upon finding a significant DW statistic. As pointed out by

Griliches (1966) and Carr (1972), a significant DW test can also be

caused by omitted regressors. One popular interpretation is that a

significant DW test indicates a problem with the dynamics of the regression

that might be overcome by the inclusion of a lagged dependent variable.

Furthermore, King (1983b) has shown that the DW test is approximately

locally best invariant against first-order moving average (MA(1))

disturbances. This together with some support from economic theory (e.g.,

see Rowley and Wilton (1973), Sims (1974) and Nicholls, Pagan and Terrell

(1975)) has led to an increased recognition of MA(1) disturbances as an

important alternative to AR(1) errors. There is also a growing literature

concerned with testing between these two competing disturbance processes

(e.g., see King (1983a, 1987b), Burke, Godfrey and Tremayne (1990) and

Silvapulle and King (1991)).

Thus a minimal list of possible reasons for a significant DW test would

include:

(i) a Type I error has occurred,

(ii) the regression has AR(1) disturbances,
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(iii) the regression has MA(1) disturbances,

(iv) an important exogenous regressor has been omitted,

(v) the lagged dependent variable has been omitted as a regressor.

If forecasting accuracy is the primary goal, it is not clear how best to

proceed. It is often assumed that AR(1) disturbances help model the effects

of omitted regressors. Should one therefore just correct for AR(1) disturb-

ances in the standard way in the hope that this will result in reasonably

accurate predictions? On the other hand, a case could be made for the

inclusion of a lagged dependent variable. Should a series of pairwise tests

be conducted in an attempt to come up with the true model which is then used

to construct forecasts? How is the forecasting accuracy of this approach

affected by the inevitable Type I and Type II errors that would occur in

such a series of preliminary tests?

Much has been written on the effects of pre-testing on estimation and

hypothesis testing (e.g., see Wallace (1977), Judge and Bock (1978), Judge

(1984) and Giles and Giles (1993)). Unfortunately little is known about its

effects on out of sample forecasting accuracy. King and Giles (1984)

investigated the effects of pre-testing for AR(1) disturbances on

estimation, testing and forecasting in the context of the linear regression

model with AR(1) errors. This setting typifies much of the pre-testing

literature in which only two competing models and one pre-test are

considered. We are interested in a situation in which there are five

possible models and even more potential pre-tests.

The aim of this paper is to investigate the effects of a range of pre-

testing strategies on the predictive performance of the general linear model

under the five scenarios implied by (i) to (v) above using the Monte Carlo

method. To keep the study manageable, we have restricted our attention to
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nine possible strategies which range from ignoring the DW test and always

predicting using ordinary least squares (OLS) to conducting a series of

pre-tests including tests for autocorrelation, omitted regressors and a

non-nested test of AR(1) disturbances against MA(1) disturbances.

The plan of the paper is as follows. Section 2 outlines the various

models, estimators, tests and predictors used in the study. Section 3

discusses the nine alternative pre-test strategies the study investigates.

The design of the Monte Carlo experiment is presented in Section 4 and its

results are discussed in Section 5. We find that the familiar procedure of

testing for autocorrelation using the DW test and correcting for AR(1)

disturbances when the test is significant, results in remarkably robust

predictions for a range of misspecified models. This and other conclusions

are presented in Section 6.

2. Models, Estimators, Predictors and Tests

This section outlines the various models, estimators, predictors and

preliminary tests that were used in the Monte Carlo experiment reported

below.

2.1 Models, Estimators and Predictors

The underlying model is

y = xg + u (1)

where y is an nx1 vector of observations on the dependent variable, X is an

nxk matrix of fixed regressors with rank k n, g is a kxl vector of unknown

parameters and u is the disturbance vector such that

N(0,c
2
I ) .

. n
(2)
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The aim is to predict 
yn+i' 

i = 1,.. m, given x . which is a kx1 vector of
n+1

the (n+i)
th 

observations on each of the k regressors. The best linear un-

biased predictor (BLUP) is

. = x'
+
. f3 . m , i = 1,.. , , (3)

Yn+1 n 

where ifi = (X'X)-1Xiy is the OLS estimator of g.

.The first variation of (1) and (2) is to assume that the disturbances,

u
t' 

are generated by the stationary AR(1) process

ut = put_i + et , t = 1,...,n (4)

where e = (e
1'
...,e

n 
N(0,m

2
I
n
) and 0 p < 1. (4) implies (2) is

replaced by

N(0,m
2
0(p))

where 0(p) is the nxn matrix
_ _

2
p
n-1

1 P P

P 1 P p
n-2

2
0(p) = (1 - p

2
)
-1

P p 1

n-1 n-2

1

p 1

(5)

If the value of p is known then the BLUP (see Goldberger (1962)) of is

where

= x' + 
Y 

p u
n n+i n+1

-
= (X10

1 
(p)X)-/X'0-1(p)y

(6)

(7)
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is the generalized least squares (GLS) estimator of g and

U y - 
n 

=
n n

(8)

is the GLS residual for the n
th

observation. Unfortunately, the value of p

is typically unknown. The standard approach is to estimate g, 0.2 and p

jointly using Beach and MacKinnon's (1978) full maximum likelihood

- 
procedure. Let ij*, *2 and i; denote the resultant estimators and note that

is given by (7) with p replaced by P. Our predictor (6) now becomes

-i-
Y* = x' p u*
n+i n+i n

where u* is the n
th 

residual defined by (8) with ij replaced by ij*.

(9)

The second variation of (1) and (2) is to assume that the elements of u

are generated by the MA(1) process

u
t 

= e
t 
+ 7e

t-1
(10)

where e
+ 
= (e

0' el' 
...,e

n 
' N(0,0.

2
I
n+1
) and 0 7 1. In this case (2) is

replaced by

N(0,0.
2
E(7))

where E(7) is the nxn tridiagonal matrix

E(7) =

1+72 7 0 0

0 7 1+7
2

0 0

0
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Again the standard approach is to estimate g, a.2 and 7 jointly using full

maximum likelihood. We used Pesaran's (1973) procedure which involves first

reducing VT) to a diagonal matrix by multiplying (1) by an orthogonal

itransformation comprised of the eigenvectors of VT). Let and

denote the resultant estimators of g, c2 and 7, respectively, and observe

that ij is given by (7) with Q(p) replaced by E(i). The predictor analogous

to (9) is

Yn+1 
x
n+1

x' Q,
Yfl+i n+1

i = 2,..

(12)

where e
n 

is the last estimated observation on e
t' 

t = 1,...,n (see King and

McAleer (1987)).

The third variation of (1) and (2) is to assume an extra regressor so

that (1) is replaced by

y = xg + w6 + u (13)

where w is an nx1 vector of observations on the extra exogenous regressor

and 6 is a scalar. The disturbances are assumed to follow (2) which implies

that the BLUP of yn+i is

-+
. = x' g + w .8

Yn+i n+i n+1 (14)

where (3 ,6)' denotes the OLS estimator of (13',6)' from (13) and w
n+i 

is

the (n+i)
th 

observation on the extra exogenous regressor.

The fourth variation of (1) and (2) is to assume the dependent variable

lagged one period is an extra regressor so that (1) is replaced by

= Y-1
0 + xg + u (15)
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where y_l = tv and 0 is an unknown scalar such that lel < 1.

The disturbances are assumed to follow (2) in which case the standard

predictor of 
n+i 

is
Y

y
n+1 

= y
n 

+ x' g ,
n+1

i = 2,... m
Yn+i Yn+i-1e xn+ig'

where (5, 13-')' is the OLS estimator o

2.2 Tests

e, g'Y from (15).

(16)

The DW test for positive autocorrelation rejects the null hypothesis of

(2) when

n

= E ut-1) t=1
^ 12 / E <

t=2 
/

where u
t' 

t = 1,...,n, are the OLS residuals from (1) and d
m 
is the critical

value at the a level of significance. In the Monte Carlo study reported

below, exact values of d
m 

were found as outlined by King (1987a, p27) using

a modified version of Koerts and Abrahamse's (1969) FQUAD subroutine.

King's (1987b) point optimal invariant (POI) test of the null

hypothesis that u
t 
is generated by the thtationary AR(1) process (4) against

the alternative hypothesis that ut is generated by the MA(1) process (10),

optimizes power at 7 = 1 > 0 where Ti is a fixed value chosen by the

investigator. The test is based on the critical region

r(71,pi) =

where u and u are the GLS residual vectors from (1) assuming covariance

171,E-1(_ )171
4 1

< c
a 

(17)
a,0-14)

matrices Z(71) and 0(p1), respectively, and ca is the critical value. For

(17) to be the critical region of a POI test requires that
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and

Pr[r(71,p1)

Pr[r(71,P1)

<C
 

I u N(0,0(P1))] = a

< c
a 

I u N(0,0(p)), 0 p < 1]
be solved jointly for (31 and co: where a is the desired level of signific-

ance. An algorithm for achieving this is outlined by King (1987b) who also

presents tables of solved values of c
a 

and pl for X matrices which are con-

sidered representative in one sense and for the choices 71 = 0.5 and 0.75.

He suggested such values can be used to apply an approximate test. This

approximate POI test with 71 = 0.5 was used in the study reported below.

The standard OLS-based t-test was used to test H
0 

: 6 = 0 against

H
a 
: 6 * 0 in (13) and also to test H

0 
: 0 = 0 against Ha : 0 > 0 in (15).

In both cases, critical values from the Student's t distribution with n-k-1

degrees of freedom were used for sample sizes of 15 and 30 while standard

normal critical values were used for n = 60. In the case of testing

0 
0 = 0 in the dynamic regression (15), the justification for the use of

Student's t critical values comes from Nankervis and .Savin (1987). They

showed that the small disturbance distributions of t and F statistics from

(15) are the same as those for (15) with y...1 replaced by its expected value.

3. The Alternative Pre-test Strategies

The various pre-test strategies investigated in the study reported

below are outlined in this section. In order to keep the study manageable,

we restricted our attention to nine different strategies. Clearly there are

many more that we could have included. The nine strategies, which all begin

with the application of the DW test to (1), are:
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Si : Ignore the DW test and always predict using (3) which assumes (1) and

(2) is the true model.

S2 : If the DW test is insignificant, predict using (3), otherwise correct

for AR(1) disturbances and predict using (9).

S3 : If the DW test is insignificant, predict using (3), otherwise conduct

King's approximate POI test. of . AR(.1).....Aisturbances. _against MA(1)

disturbances. If this test finds in favour of AR(1) disturbances,

correct for AR(1) disturbances and predict using (9), otherwise correct

for MA(1) disturbances and predict using (12).

S4 : If the DW test is insignificant, predict using (3), otherwise test for

an omitted exogenous regressor as in (13). If the t-test of 6 is

insignificant, predict using (3), otherwise include the extra regressor

and predict using (14).

S5 : If the DW test is insignificant, predict using (3), otherwise test for

an omitted exogenous regressor as in (13). If the t-test of 6 is

insignificant, correct for AR(1) disturbances and predict using (9),

otherwise include the extra regressor and predict using (14).

S6 If the DW test is insignificant, predict using (3), otherwise test for

an omitted exogenous regressor as in (13). If the t-test of 6 is

significant, include the extra regressor and predict using (14),

otherwise conduct King's approximate POI test of AR(1) disturbances

against MA(1) disturbances. If this test finds in favour of AR(1)

disturbances, correct for AR(1) disturbances and predict using (9),

otherwise correct for MA(1) disturbances and predict using (12).

S7 : If the DW test is insignificant, predict using (3), otherwise test for

an omitted lagged dependent variable as in (15). If the t-test of 0 is

insignificant, predict using (3), otherwise include the lagged

dependent variable and predict using (16).

9



S8 : If the DW test is insignificant, predict using 3), otherwise test for

an omitted lagged dependent variable as in (15). If the t-test of 0 is

insignificant, correct for AR(1) disturbances and predict using (9),.

otherwise include the lagged dependent variable and predict using (16).

S9 : .If the DW test is insignificant, predict using (3), otherwise test for

an omitted lagged dependent variable as in (15). If the t-test of 0 is

significant, include the lagged dependent variable and predict using

(16), otherwise conduct King's approximate POI test of AR(1)

disturbances against MA(1) disturbances. If this test finds in favour

of AR(1) disturbances, correct for AR(1) disturbances and predict using

(9), otherwise correct for MA(1) disturbances and predict using (12).

In summary, strategies Si, S2 and S3 ignore the possibility of omitted

regressors and successively respond to a significant DW test by ignoring it

(Si), assuming AR(1) disturbances is the only possibility (S2) and assuming

AR(1) and MA(1) disturbances are the only possibilities (S3). Strategies

S4, S5 and S6 allow for the possibility of an omitted exogenous regressor

whose identity is known. If the regressor is found to be significant, the

new model is used for prediction. Otherwise we fall back to strategies Si,

S2 and S3 to deal with the significant DW statistic. Strategies S7, S8 and

S9 are just as S4, S5 and S6, respectively, but with the lagged dependent

variable being the likely omitted regressor. In all cases we assume

positive autocorrelation.

4. Design of the Monte Carlo Experiment

In order to study the effects of the various pre-test strategies on

prediction accuracy, a Monte Carlo experiment was conducted using 1000

replications. Let a1,... ,a denote the eigenvectors corresponding to the

eigenvalues of the nxn DW Al matrix arranged in ascending order, i.e.
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a
1 

n
-1/2

a. = (2/n)
1/2

(cos[u(i.-1)/2n], cos[3n(i-1)/2n],1

cos[(2n-1)7r(i-1)/2n})', i = 2,...,n

The following design matrices with sample sizes of n = 15, 30 and 60 were

used:

X1 : The regressors are a1,a2,...,ak where k = 3,5. The extra exogenous

regressor in (13) is a
k+1

.

X2 : The regressors are a (a +a )/Iff,...,(a
k+an-k+2

)/if where k = 3,5. Thel' .2 n

extra exogenous regressor in (13) is (ak+1+an-k+1)/if.

X3 : The regressors are a constant dummy and log of annual real income per

capita from Durbin and Watson's (1951) consumption of spirits example

(k=2). The extra exogenous regressor in (13) is the log of the

relative price of spirits.

X4 : The regressors are a constant dummy, the Australian quarterly consumer

price index (CPI) and quarterly seasonally adjusted Australian house-

hold disposable income commencing 1959(1) (k=3). The extra exogenous

regressor in (13) is the income series lagged one quarter.

X5 : The regressors are a constant dummy, three quarterly seasonal dummies,

quarterly Australian gross national expenditure (GNE) commencing

1966(3) (k=5). The extra exogenous regressor in (13) is the two-year

Australian Government bond rate.

X1 and X2 are artificially generated data sets that represent two extremes.

For Xl, OLS is approximately the best linear unbiased estimator in the

presence of either AR(1) or MA(1) disturbances and the DW test is

approximately uniformly most powerful invariant. Watson (1955) found that

for X2, OLS is most inefficient when the regression disturbances are

(approximately) AR(1). The DW test is also known to perform poorly against
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AR(1) disturbances when p is near one for X2 (see King (1985)). X3 is

comprised of relatively smooth annual data while X4 and X5 are constructed

from quarterly data with varying degrees of seasonality and collinearity.

Where required, independent pseudo-random normal disturbances were

generated by applying the Box-Muller transformation to [0,1] uniform random

variables produced by the RAN intrinsic on a VAX11-780 computer. The

quality of the resultant string of N(0,1) pseudo-random variates has been

examined by Giles and Beattie (1984).

After each set of disturbances was calculated, for each design matrix,

the yt's were generated by each of the following models:

M1 : The linear regression, (1), with AR(1) errors, (4), for p = 0.0, 0.3,

0.5, 0.9.

M2 : The linear regression, (1), with MA(1) errors, (10), for 7 = 0.1, 0.3,

0.5, 0.9.

M3 : The linear regression with an extra exogenous regressor, (13), with

independent errors, (2), for 6 = 0.2, 0.5, 0.8, 1.0.

M4 : The linear regression with a lagged dependent variable as an additional

regressor, (15), with independent errors, (2), for 0 = 0.2, 0.4, 0.6,

0.8.

Observe that model M1 with p = 0 is the well behaved regression (1) and (2).

We conducted some preliminary experiments which showed that prediction

errors were reasonably insensitive to the values taken by g. In fact

because of invariance of the component tests and estimators, strategies Si -

S6 are invariant to the value taken by g for models M1 and M2 and are nearly

invariant for S7 - S9. For models M3 and M4, large g values tend to push

the power of the component t-tests towards one. In order to obtain t-test
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powers that are neither too high or too low, the coefficient of the CPI

series in X4 was set to 10 and the coefficient of the GNE series in X5 was

set to 1.5.

For each set of generated yt values, nine sets of one-, two- and

four-step ahead predictions were produced using each of the nine strategies

in turn. Eight post estimation sample observations were used to assess the

accuracy of these predictions. For each set of predictions, we calculated

the mean prediction error (MPE), mean absolute prediction error (MAPE), and

the root mean squared prediction error (RMSPE).

5. The Results

In order to analyse the results, we ranked each of the nine strategies

for each different data generating process on the basis of the RMSPEs.

Aggregates of the number of times different strategies were ranked first to

third for M1 - M4 are presented in Tables 1 - 4, respectively. The rankings

based on MAPEs were almost identical to those based on RMSPEs so we

concentrated on RMSPEs and MPEs in the following analysis.

5.1 AR(1) Disturbances

Under M1 (AR(1) disturbances), the MPEs show the forecasts are

typically biased upwards and this bias increases as p increases, m increases

and n decreases, ceteris paribus. Also generally RMSPEs increase with p and

m but decrease with n, ceteris paribus. The greatest differences between

the best and worst strategy are observed when m = 1 and these differences

become less evident as m increases.

As expected when p = 0.0, Si is the optimal choice of strategyalthough

when n = 15, the RMSPEs of all nine strategies are very similar. For non-

zero values of p, S2 is frequently the optimal strategy in terms of RMSPE,
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particularly for m = 1. The next best overall strategy appears to be S3.

Not surprisingly, for moderate and large values of p, the strategies that

only use OLS (Si, S4 and S7) produce the worst predictions.

5.2 MA(1) Disturbances

The MPEs suggest a general upward bias in the predictions under M2

(MA(1) disturbances) with nO.systematic- pattern - as 7-and -nwary. The .RMSPEs

of all strategies under M2 increase as increases and as n declines,

ceteris paribus. For 7 0.3, there is a tendency for the RMSPEs of all

nine strategies to merge as m increases, especially for large n. When m and

7 are large, the results tend to cluster into 3 distinct groups, with Si, S2

and S3 having the smallest RMSPEs and S7, S8 and S9 typically having the

largest RMSPEs.

In general, Si is the best strategy when 7 is small. • S2 is best over-

all for large 7 values when m = 1 which is somewhat surprising given that S3

takes account of the possibility of MA(1) disturbances. For larger m

values, Si continues to perform well although S3 is optimal for some design

matrices. When m = 4, all strategies tend to merge. Overall Si, S2 and S3

are the best strategies and the small differences observed between their

RMSPEs suggests that in the presence of MA(1) disturbances, any one of these

three strategies is suitable.

5.3 An Extra Exogenous Regressor

In the case of M3 (an extra exogenous regressor), calculated MPEs

indicate that the direction of bias in the predictions, depends on the design

matrix. It is generally a downward bias for Xi, X2 and X3 and an upward

bias for X4 and X5. Also the bias increases as 6, the coefficient of the

extra exogenous regressor, increases and n increases, ceteris paribus. The

bias of S2 and S3; S5 and S6; and S8 and S9 tend to be identical. When 6 =
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1.0, the bias of Si is significantly larger than those of the other

strategies.

The RMSPEs of all nine strategies typically first decline slightly as 6

increases from 0.2 to 0.5 and then increase as 6 increases beyond 0.5,

ceteris paribus. As expected, the three appropriate strategies, S4, S5 and

S6,- frequently rank in the top three strategies in terms of RMSPEs,

particularly when 6 is large. The differences between these strategies are

negligible when 6 = 1.0. For small to moderate 6 values, S2 is often the

best strategy followed by S3. This is particularly true for 6 = 0.2. In

almost all cases, the performances of S2 and S3 are relatively close to

those of S4, S5 and S6. Again we see that even though other strategies

should be favoured on theoretical grounds, S2 is a competitive strategy.

5.4 The Lagged Dependent Variable as an Extra Regressor

The MPEs under M4 show a general upward bias in the predictions from Si

- S6 and these biases increase with 0. In contrast, the predictions from S7

- S9 show a general downward bias, especially when n is large. Groupings of

strategies with very similar biases are S2 and S3; S5 and S6; and S7, S8 and

S9. The RMSPEs of all strategies generally increase with 0, ceteris

paribus.

One would expect the results to favour a strategy from S7, S8 and S9.

However, the best overall strategy appears to be S2 for nearly all 0 values.

As m increases, the frequency with which S2 is best declines. In most

cases, especially for large 0 values, S8, S9 and S7 rank amongst the top

four on the basis of RMSPE. The dominance of S2 is specific to design

matrices, being favoured by X1, X2 and X3. For X4 and X5, S8 is the best

strategy and for these .design matrices as 0 and n increase, the discrepancy

in RMSPE between S8 and S2 gets significantly larger. A distinguishing
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feature of X4 and X5 is that they contain seasonal regressors. Although S2

appears to be the best strategy overall, some design matrices exist for

which, when 0 is large, a substantial loss in accuracy of prediction can.

occur if one proceeds to correct for AR(1) disturbances without first check-

ing whether to include a lagged dependent .variable.

6. Concluding Remarks

Naturally, care must be taken when generalizing from a limited Monte

Carlo experiment such as the one reported above. However, in this case, all

the results point in a similar direction. We find that strategy S2, which

simply involves correcting for AR(1) disturbances if the DW statistic is

significant, frequently provides the best predictions. When they are not

the best predictions, their RMSPEs are almost always not far from the RMSPE

of the best predictions. The only serious exceptions occur when the

coefficient of the additional term, whether it be MA(1) errors, an extra

exogenous regressor or the lagged dependent variable as an extra regressor,

is large. What is somewhat surprising is the fact that the AR(1)

disturbance model provides better forecasts than those that use knowledge of

the true model when this coefficient is small. We therefore conclude that

the familiar procedure of testing for autocorrelation using the DW test in a

time-series regression and correcting for AR(1) disturbances when the test

is significant, provides remarkably robust predictions for a range of

misspecified models. If the misspecification is extreme then obviously

better predictions will result from using a strategy which includes the

correct model.

•
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Table 1: Number of times each strategy is ranked 1st, 2nd and 3rd when the

regression disturbances follow an AR(1) process (41).

m = 1 m = 2 m = 4

p = 0.0 0.3 0.5 0.9 0.0 0.3 0.5 0.9 0.0 0.3 0.5 0.9

Strategy Rank

51 1st 15 5 1 0 15 9 2 1 18 13 3 1

2nd 5 0 1 1 3 3 0 0 0 5 2 0

3rd 1 2 0 0 0 7 2 0 1 1 6 0

52. 1st 3 7 17 17 7 11 16 17 12 10 13 17

2nd 3 4 2 1 5 4 4 3 1 6 4 1

3rd 5 7 0 - 1 4 2 1 0 4 3 3 2

S3 1st 3 8 5 11 8 8 7 11 10 9 13 14

2nd 2 5 11 7 5 6 12 8 1 3 2 4

3rd 5 4 3 0 3 2 1 0 4 3 5 2

S4 1st 7 1 0 0 6 3 0 1 8 4 0 0

2nd 8 2 0 1 1 1 0 0 1 1 1 0

3rd 1 1 1 1 1 1 1 0 1 0 0 0

S5 1st 3 2 1 1 4 0 0 2 6 4 3 2

2nd 1 0 3 0 1 2 1 0 0 1 1 0

3rd 1 5 5 3 2 3 9 9 0 4 5 7

S6 1st 2 2 1 0 4 1 0 1 4 2 1 2

2nd 2 1 0 1 1 0 2 1 0 1 1 1

3rd 0 4 3 2 2 2 7 7 2 3 6 7

S7 1st 5 1 1 1 7 2 1 1 11 0 1 0

2nd 6 0 0 0 5 0 0 0 1 0 0 0

3rd 2 1 2 5 2 1 2 4 2 1 0 5

S8 1st 2 1 0 0 1 0 0 0 8 1 1 2

2nd 1 2 1 1 0 1 3 0 0 0 0 0

3rd 3 3 7 11 4 1 5 8 2 2 1 8

S9 1st 1 1 0 0 6 0 0 0 7 2 1 2

2nd 2 3 3 2 1 0 0 1 0 0 0 0

3rd 4 3 4 9 2 2 8 7 2 1 1 6
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Table 2: Number of times each strategy is ranked 1st, 2nd and 3rd when the
regression disturbances follow an MA(1) process (M2).

m= 1 m = 2 m = 4

7 = 0.1 0.3 0.5 0.9 0.1 0.3 0.5 0.9 0.1 0.3 0.5 0.9

Strategy Rank

51 1st 15 6 2 0 17 17 17 12 18 15 12 7

2nd 4 1 0 0 2 3 1 5 2 2 3 5

3rd 0 2 3 1 1 1 2 1 0 2 2 0

S2 1st 1 9 16 17 4 2 3 0 9 10 8 2

2nd 4 4 4 3 7 6 3 3 5 6 5 6

3rd 3 5 1 1 3 5 6 5 3 1 6 10

S3 1st 2 4 2 5 4 2 7 6 10 11 10 12

2nd 4 5 6 2 6 8 4 11 5 5 5 4

3rd 5 5 4 3 4 5 5 0 1 1 2 4

S4 1st 4 0 0 0 5 4 3 2 6 4 3 1

2nd 7 3 1 0 5 5 6 3 2 2 1 2

3rd 3 0 0 0 1 3 1 6 0 0 0 0

S5 1st 1 3 2 0 2 3 1 0 4 2 2 2

2nd 0 1 5 8 0 0 0 1 0 3 0 0

3rd 1 2 4 5 0 1 1 1 1 1 5 0

S6 1st 1 2 1 0 1 0 3 2 3 3 2 1

2nd 1 1 1 1 0 1 0 2 0 1 0 4

3rd 3 3 1 2 1 0 1 4 1 2 2 3

S7 1st 4 1 0 0 3 1 0 0 8 1 0 0

2nd 3 0 0 1 5 0 0 0 3 0 0 0

3rd 3 1 2 4 2 4 2 2 0 2 0 0

58 1st 1 1 1 1 0 0 0 0 7 1 1 0

2nd 0 2 4 4 2 0 0 0 2 0 0 1

3rd 3 7 3 7 0 0 1 0 0 1 1 0

S9 1st 1 0 0 0 0 0 0 0 7 1 1 2

2nd 1 2. 0 1 2 0 0 0 1 0 0 0

3rd 3 8 3 2 0 1 1 0 0 1 2 0
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Table 3: Number of times each strategy is ranked 1st, 2nd and 3rd when the

regression contains an extra exogenous regressor (43).

m = 1 m = 2 m = 4

8 = 0.2 0.5 0.8 1.0 0.2 0.5 0.8 1.0 0.2 0.5 0.8 1.0

Strategy Rank

Si 1st 0 4 5 6 2 5 7 7 1 3 6 5

2nd 0 1 3 1 0 0 1 1 0 1 0 2

3rd 1 1 0 1 2 1 1 1 6 4 0 0

S2 1st 17 13 0 0 14 5 3 2 19 7 3 2

2nd 1 2 2 1 3 4 3 2 0 3 2 2

3rd 1 1 2 1 2 3 0 2 0 2 0 2

S3 1st 2 3 0 0 9 3 4 1 15 6 2 1

2nd 7 5 1 1 6 2 1 2 4 4 1 2

3rd 7 0 0 0 2 3 1 1 0 1 0 1

S4 1st 2 3 8 13 1 4 8 13 0 4 15 17

2nd 0 1 2 2 0 1 0 1 0 0 1 0

3rd 0 0 8 4 0 5 7 3 0 2 2 1

S5 1st 3 2 12 12 9 9 14 14 0 11 12 13

2nd 3 7 0 1 1 1 1 2 0 0 4 2

3rd 3 2 3 2 2 2 1 1 8 1 1 3

56 1st 2 2 8 10 2 7 13 12 0 9 10 13

2nd 0 3 3 1 0 3 1 2 0 1 4 1

3rd 3 2 2 2 7 1 1 1 6 0 2 3

S7 1st 0 1 2 2 0 0 2 5 2 2 1 1

2nd . 1 0 1 3 1 0 1 1 0 0 0 1

3rd 0 1 3 1 3 2 0 0 1 0 0 0

S8 1st 0 2 0 0 1 4 2 2 2 3 1 2

2nd 5 4 1 0 0 0 0 1 0 0 0 0

3rd 8 2 1 1 5 2 1 0 1 0 0 0

S9 1st 0 1 0 0 0 2 2 2 2 2 0 1

2nd 3 1 1 0 1 1 0 1 0 0 0 0

3rd 2 4 0 0 4 2 1 0 1 0 0 0

22

•



a

Table 4: Number of times each strategy is ranked 1st, 2nd and 3rd when the
regression contains a lagged dependent variable as a regressor (M4).

m = 1 m = 2 m = 4

0 = 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Strategy Rank

51 1st 4 0 0 1 9 2 0 2 9 9 6 2

2nd 0 0 1 0 1 1 1 0 2 0 1 0

3rd 2 0 0 0 5 3 2 1 4 4 1 0

S2 1st 10 11 12 10 10 5 11 12 7 7 7 12

2nd 2 2 2 1 5 3 1 0 5 1 4 0

3rd 4 0 1 0 3 2 1 1 3 3 0 0

S3 1st 5 2 3 4 8 9 4 4 9 8 7 3

2nd 5 6 5 4 7 2 7 4 3 3 3 8

3rd 3 4 0 0 0 2 1 2 4 2 1 1

S4 1st 0 1 1 3 2 2 0 2 4 2 4 2

2nd 1 0 1 0 1 0 1 0 3 4 2 1

3rd 0 0 0 0 1 1 1 0 0 1 0 0

S5 1st 2 0 1 2 2 2 1 2 3 0 1 2

2nd 2 3 2 1 1 1 2 1 1 0 1 1

3rd 3 2 1 0 2 2 2 2 2 1 3 3

S6 1st 2 0 0 2 1 4 1 2 3 0 1 2

2nd 1 0 2 1 0 0 2 0 1 0 0 0

3rd 1 2 0 0 2 1 1 2 2 0 3 3

S7 1st 0 4 3 8 2 5 6 5 2 4 5 7

2nd 0 0 5 3 0 0 2 3 1 0 0 0

3rd 4 3 5 6 3 5 4 5 3 2 7 6

S8 1st 5 9 7 11 2 8 7 7 1 4 6 8

2nd 5 3 5 3 1 1 2 5 0 1 0 0

3rd 2 6 6 4 2 5 4 4 2 3 5 6

S9 1st 3 8 7 9 3 6 7 9 1 5 6 8

2nd 3 1 5 4 1 2 3 3 0 0 0 0

3rd 4 4 6 4 1 4 4 4 3 3 6 7
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