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Abstract
This note considers a model of (recurrent) univariate binary outcomes which
incorporates random individual effects. Given simplifying distributional
assumptions, a likelihood can easily be obtained having the attractive feature
of being the product of contributions which only involve sums and no numerical
integration. A recent paper by Conaway (1990) considers the same problem but
solves it by finding expressions for the probabilities of all the 2T possible
sequences of the T recurrent binary outcomes, some of which will not be
observed in a given data set. The approach adopted in this paper derives an
expression for the appropriate likelihood given a particular set of data. The
likelihood, score vector and hessian matrix can all be written in simple forms
which readily permits the use of Newton-Raphsonigradient methods to locate the
roots of the score equations. Simulation experiments suggest that convergence
is rapid and also provide evidence on the robustness of the model to
distributional misspecification.
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1. Introduction.

In this paper we derive a tractable likelihood function for the situation
in which the econometfician has binary responses (indicating the presence or
absence of an event) for a collection of n individuals over T equally spaced
discrete time periods (see Hsiao, Chapter 7, (1986)). We assume a static
model which • includes _unobserved _.randorm_individual..... _effects ..(or, perhaps,
dynamic models in which the relevant pre-sample history can realistically be
regarded as truly exogenous) so that the problem of . initial conditions (see
Hsiao (1986, p.169)) will not be an issue. In such a model primary interest
focusses on the estimation of the probability that the event of interest
occurs (for a particular individual at a given time). Such probabilities
could be estimated separately in each time period using simple probit or logit
models. The panel nature of the data, however, permits the evaluation of the
correlation that may exist between the occurrence, or otherwise, of the event
from one time period to the next. Moreover, exploiting the panel will,
presumably, lead to more efficient estimation. The most commonly used
specification is that of a probit model with random effects (see, for example,
LIMDEP version 6 (Greene (1991))).

The distributional assumptions adopted in this paper permit the
likelihood to be expressed as a sequence of sums involving no numerical
integration. A recent paper by Conaway (1990) has also discussed the form of
such a likelihood. Adopting the same statistical framework as ours, Conaway
provides a way of calculating all the probabilities corresponding to the 2T

different discrete responses that could arise. The appropriate form for the
likelihood is then implied using these probabilities. The derivation in this
paper provides a simple expression for the likelihood obtained directly from
the observed set of responses. This approach has an advantage when T is even
only moderately large since contributions to the likelihood involve easily
calculated sums, whereas the method detailed by Conaway would involve the
calculation of essentially superfluous probabilities and the inversion of a

(2T x 21) matrix. Moreover, simple expressions for the score vector and

hessian matrix are also provided in this paper thus readily enabling standard

Newton-Raphson/gradient methods to be employed.

The layout of the paper is as follows: section 2 details the statistical
model and concludes by providing a simple expression for the likelihood.
Section 3 gives the necessary derivations required to implement numerical



optimisation procedures designed to locate maximum likelihood estimates as
roots of the score equations. In section 4 we report findings from some
simulation experiments.

2. The model.

We begin by postulating a binary panel data model, conditional on random

individual _specific _effects. The. observed .behaviour. of -individual i in time

period t derives from

y 
it 
= x.'p + u. +cit it (1)

where the observed response is yit = 1 if y*.t> 0 and zero otherwise and the

x.' is a (1 x p) vector of static covariates, some of which may be time

invariant. In particular, we shall assume that it contains a constant term,

implying an intercept parameter pi. The errors terms uit are independently

and identically distributed Extreme Value (log-Weibull) variates having

cumulative distribution function exp(-exp(-u)), at the point u.

Dropping the individual identifier, for ease of notation, the probability

that yt = 1, conditional on e, is thus 1 - exp(-exp(x't13+e)). This can be

expressed as 1 - exp(-vdt), where dt = exp(x) and v = exp(e) > 0. The

contribution to the likelihood based on that individual's observed event

history, y' = (y1,...,y,r), but conditional on v, is written

ffv) = II  exp(-vdt) II {1 - exp(-vdt)} (2)

tE A te A -

where A = t; yt = 1). Expanding the products we obtain

ffv) = exp -v _ exp -v [clt + j
kA tE A kA

+E exp -v (cis + dt + dk]]
sctE A 1(0 A

-EE exp -v + ds + dt + clic))
ms<tE A ke A

(-1)zeXp ( -V E dt)

t=1

(3)
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where z = ET i y, (i.e., the total number of 'ones').t.t

In order to get appropriate likelihood contributions we integrate out the

random effects term, v, by taking the expected value of the expression given

in (3), i.e., we evaluate E[ffv)] = ffv)h(v)dv. This requires the adoption

of a parametric form for h(v), the density of v. For simplicity we assume that

V is a gamma random variable having unit mean and variance Ti > 0. This

specification is not uncommon when considering problems of neglected

heterogeneity, see, for example, Lancaster (1985), (1990), Crowder (1985),

Conaway (1990) and Fry (1988).

When taking the expected value of (3) we simply note that we require the

expectation of sums. Further, the expectation of each term in the sum can be

obtained from the definition of the moment generating function of a gamma

random variable. We thus obtain, marginal with respect to v, the likelihood

contribution as

C = E[m] = 1 + TIdk

ke A

- ( 1 + T1 + d )41-1t k
tE A kA

+E + Ti (cis + dt + dk) IT1-1

s<tE A kA

_EE ( ds + d + dkil-11-1

ms<tE A Ice A

41-1

(-1)1 1 + di)

t=i

(4)

and the likelihood for the sample of all individual histories is the product

of the individual contributions. From (4) we see that a typical contribution

only has z+1 'components'. Such a contribution is not too onerous to compute

if typically the total number of occurrences, z, of the event of interest is

small.

In his paper Conaway notes that the log of this likelihood (for

individual i) can be• expressed as log(t) = 5 log(ny), where the oy are a
Y Y

sequence of 2T indicator variables which equal unity if individual i is

3



observed to have event history y' (and zero otherwise) and 7ry is the marginal

probability of this event history. Conaway then details a method (involving

the inversion of a (2T x 21) matrix) whereby all these 2T probabilities can be

obtained, although in a given application some of these probabilities will not

be needed. The resulting expression is then used to construct the likelihood.

The approach adopted in this paper does not require the calculation of

superfluous probabilities. Moreover, in the next section, we provide

expressions for the first and second derivatives of the log-likelihood.

Note that the model described by the likelihood given in (4) obtains when

the compound errors vt = ut + e (t = 1,...,T) have a multivariate Burr Type II

(see Fry (1988), (1993)) distribution with fixed correlation structure given

by

cons(vt,vs) Ti me-1)(71 +-i) Ne(1) t # 5

where ig'(.) denotes the trigamma function. In general, the random vector

= ((
q
) has a multivariate Burr distribution if it has a distribution

function given by 1

-1
F(c) = 1 + Eexpeyill .

j=1

The marginals of this joint distribution are also Burr. Thus it is easy

to express the probability that y, = 0 as

Pr[Yt = 0] = PrNt -120'xj = [1 + nexP(rx) l•

Using the joint distribution function, given above, we can express the

individual likelihood contributions, (4), in a more compact manner. Firstly,

for ease of notation we write a = IV and re-define the intercept term in the

regression to be PI log(a). Now let Ai = {tap t(2), ...4(j)) be any

1 The multivariate density function follows immediately and is uni-modal at

' = 0'. This density is different to that given by Fry (1989) since it

results from slightly different mixing arguments. In the limit, as TI -) 0

• we obtain the multivariate distribution function for a sequence of

independent extreme value random variables. The mixing arguments of . Fry

(1988), on the other hand, do not readily provide such a non-degenerate

limiting case.
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subset of j integers from the set A = {t; yt = 1 2; clearly, there are

= z such combinations of these j integers. Define the following:

w0 = dk and w- =• dr,

ice A rE A-

observing that there are zCj ways of obtaining Wi.3 For example, if A
contains the elements {1,2,3,4}, then w2 can be expressed as (d1 + dO,
(d1 + d3), (d1 + d4), (d2 + d3), (d2 + d4) or (d3 + d4). With these
preliminaries it will be useful to define a sequence of (Burr distribution)
functions as

Fao = [1 + wo]a and Vic = [1 + wo + wir a, j = 1,...,z,

with Gri = Flap, = 0,...,z, where, the sum is taken over all possible
A-CA

choices for Ai with Go = Fao and Gz = Faz 
= [1 + ET d i-a. Again, using the

previous simple example for illustrative purposes, we see that

G2 = [1 + Wo + (di + d2)1
-a + [1 + wo + (di + d3)]-a

+ [1 + wo + (di + d4)]-a + [1 + wo + (d2 + d3)]-a

+ [1 + wo + (d2 + d4)]-a + [1 + wo + (d3 + d4)]-a.

With this simplifying notation, the likelihood for individual i is thus

C = E(-1)1Gj (5)

giving the log-likelihood, given a sample of n individual event histories, as
40) = 

r1 " 
. log(C) where 0 = (3',a)' is the (p+1 x 1) vector of unknown1= 

parameters.

Having derived a simple expression for the likelihood, which only
involves relatively straightforward sums, we can now quite easily obtain first
and second order partial derivatives of L.(0). These can be used in a
numerical optimisation procedure in order to locate the roots of the score

2 We have the identity, Az E. A.

Observe that Wo + Wz = ET d
t=rt



equations aL(6)/a01 = 0, 1 = 1,...,p+1, where o denotes the maximum likelihood
estimate of 0. The required derivations are given in the next section.

3. Model estimation.

Given the log-likelihood L(0), as defined above, we have that
aL(0)1a0' = = 7.4.14-1-641a0'; and as e, is a sum of terms
itself. these -.derivatives- -are—clearly---manageable. In-particular we •can write,
dropping the observational subscript,

arla0 =E(-1)laGia0 =E(_Di aFai/a0.

AicA

To proceed, we introduce the following notation (which is similar in spirit to
that used at the end of section 2),

m0 = dkxk ; m=
ke A rE A-

i

Mo = dkxkx,,, ; 1\4; =drx,K, j = 1, ...,z, (p x p).
kA rE A-

i

Now, first and second-order partial derivatives of Fai are given by

agVa131 - aFT1(m0 + mi) 1aFeic/a0
aFT/aa - Vtlog. (1 + wo + .wi)

a aa2F •/ =

a(a+1)F7142(mo + mi)(mo + - Fr1(1 + logeir)(mo + mi)

- aFci(4-1(M0 + Mi)

- Fci(44(1 + /ogF7)(m0 + : FcicUog(1 + wo + wi I
2

The (p+1 x 1) score vector can thus be written as (summing over individuals)

8.40)/a0 = Nog/a° = { t }if aFcivaol,
i.1 i.1 .j;) 

A-JCA 
•
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and the (p+1 x p+1) hessian as

i ia2.40)/a9a0' =E({4}-1{E(4)i aFc.c/a8ael - 
alogr Nog e 

J
1.1 j4 A-CA

These expressions can then be used in a standard Newton-Raphson type iterative
procedure to locate . the -maximum likelihood estimate. Experimentation with
simulated data suggests that convergence is very rapid.

4. Simulation evidence.

The simulation evidence presented in this section - arises from three
experiments. Firstly we

likelihood estimates when

assumptions of section 2;

with parameter Ti > 0,

likelihood contributions.

likelihood estimates are

assess the performance of the 'Burr' maximum

data are generated according to the distributional

i.e., the compound errors vt are multivariate Burr

so that f defined at (3) provides the correct

Secondly, the properties of these maximum

investigated when the data are actually generated
according to a probit specification; i.e., the unobservables, uit and ei in
equation (1) are both normally distributed (with the variance of uit
normalised at unity) so that the compound errors, vt, are normally distributed
mean zero, variance (1.-p)-1 and correlation structure corr(vt,vs) = P.
Finally, we use a data generation process where both uit and ei are chi-square
random variables. For all three experiments we assess the ability of the
estimated model to correctly predict the probabilities associated with the
Particular event in a given time period; thus, for individuals observed
repeatedly over T time periods, we wish to estimate T probabilities,
Pr[y, = 0], t = 1,...,T (or Pr[yt = 1]). We will therefore not be concerned
directly with estimation of parameters.

Data are generated according to the specification given at equation (1)
in which four regressors, xid, are employed:

x1t1 - = 1, for all i And t;

= U(2,10), a uniform random variable held fixed over t;
Xit3 = 1 if 4 > 0 and zero otherwise, where 4

according to x:t3 = o(xit2-6) + e, ei - N(0,1), and

so that the correlation between xit3 and xit2 is 1/2.

variable x1t3 is also held fixed over t;

is generated

5 is chosen

The dummy

7



xio = 0.1t + + U(-0.5,0.5), which varies over i and t.

These regressors were all held fixed in repeated sampling. In all
experiments 1000 replications of sample data were employed and the values of
the regression coefficients in equation (1), N, 1 = 1,...,4, were -3, 0.3, 1
and 1 respectively. Further, for the results reported here n = 250 and T = 4.

Probabilities of interest will be denoted 7Ct = Pr[yt = 0], t = 1,...,4,
and are calculated as follows. Let ct = -13'x, t = 1, ...,4 where xt is a
vector containing given values of the regressors (common to all individuals)
at time t. Then the 'true' probabilities can be obtained using the marginal
distribution functions for vt, t = 1, ...,4 as defined by the data generation
process (either Burr, Normal, or Chi-squared):

F, = Prjvt ct], t = 1, ...,4.

Using the Burr model we can obtain estimates of these probabilities by
replacing the true parameter values in the above with the obtained maximum
likelihood estimates.4 In the experiments reported below the estimated
probabilities (and true probabilities) are calculated when the regressor
variable, for time period t, is evaluated at its sample mean over individuals,
except xt3 which takes the value 1.5 The comparison with the true
probabilities is then made by taldng the means of these estimated
probabilities over the 1000 replications of sample data. The results are
summarised in Table 1.

Experiment A: The Burr Model

Here we report the results over 1000 replications of sample data when
n = 250, T = 4, vt, t = 1, ...,4 distributed multivariate Burr with n = 2; the
implied correlation between vt and vs is thus 0.75. For maximum likelihood
estimation we use the parameterisation adopted in section 3 (i.e., write
a = = 0.5 and re-define the intercept to be 131 - log(a)) = -2.7. Although
a full set of simulation results are not reported here (but are available upon
request) we note that, over the 1000 replications, the mean of the MLE . for a

4 Note that when evaluating the true probabilities, the functional forms for
Ft are given by the assumptions of data generation process. When
constructing the implied estimated probabilities, the functional forms for
Ft are given by the assumptions underlying the estimated model.

5 These values of rti, 1=1,2,3, will be the same for all time periods since
the first three regressors are time invariant. The sample mean of xt4,
however, changes with t.
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was 0.51 compared to the true value of 0.5. When estimating the value of the
f3 parameters in (1), the means of the maximum likelihood estimates were -3.01,
0.30, 1.02 and 1.01, very close to the true parameter values. The means of the
estimated standard errors (using the estimated hessian) were also very close
to the observed standard deviation of the maximum likelihood estimates.
Individual t-ratios are constructed of the hypotheses 02=0.3, 133.1.0, 134.1.0
and -a=0.5; over the --1000- replications the :.observed -rejection frequencies (at
the nominal 5% level) are 4.8%, 4.0%, 5.5% and 4.8%, respectively, which
appear reasonable. For this experiment, and in others not reported here, the
optimisation routine exhibited rapid convergence.

Experiment B: The Probit Model

In this experiment 1000 replications of sample data were taken with
n = 250, T = 4, and where vt, t = 1, ...,4 is multivariate Normal with zero
means, variances equal to 2 and a correlation of p = 0.5. Using this data
generation process we again obtain 'Burl' maximum likelihood estimates and,
using these, estimate (under the Buff assumption) the probabilities discussed
above. The fact that vt, t = 1, ...,4 is actually multivariate Normal means
that the corresponding tame probabilities can easily be constructed as
= 015(ct/r2"), where V.) denotes the standard normal cdf.

Experiment C: Chi-square errors

In this experiment 1000 replications of sample data were taken with
n = 250, T = 4, where ut was a standardised x24 random variable distributed
independently of e which was a centred x22 variate (i.e., having zero mean and
variance equal to 4) and scaled to have variance 0.5. Thus, in an obvious
notation, vt = (x26 - 6)/1T. 'Burr' maximum likelihood estimates are obtained
and used to obtained estimated probabilities, 1Ct. The true probabilities are
Itt = Pr[ x26 ;Fr + 6].

The mean of the estimated probabilities, over the 1000 replications, and
the true probabilities are presented below in Table 1. Under each experiment
label the true probabilities are given in the left hand column and the
corresponding mean of the estimated probabilities are given in the right hand
column. All estimated results in Table 1 are based on the assumption of a
Bliff likelihood as defined by equations (4) and (5). The results reported
under Experiment A simply confirm that maximum likelihood estimation does well
at estimating the appropriate probabilities under a correctly specified Burr
model.

9



The encouraging result, under Experiment B and C, is that the (Burr)
estimated probabilities are still close to the true probabilities even when
the the compound errors (vt = e + ut) are not, themselves, multivariate Burr.
Although the divergence between true and estimated is greater than under
Experiment A, the agreement is remarkably close.

Table •1: Burr Results

A: vt— Burr ' B: vt— Normal C:

v, =

Chi-square

(d - 6)/Fir

True Estimated — True Estimated True Estimated

'ni
r.2
ir,3

7E4

0.630
0.592
0.559
0.515

0.630
0.590
0.558
0.514

0.577
0.521
0.474
0.409

0.589
0.531
0.483
0.417

0.658
0.600
0.547
0.466

0.649
0.583
0.525
0.442

Notes: In Experiment C, ut is standardised to have zero mean and
unit variance, E has zero mean and variance equal to 0$.

It is also worth noting that, under Experiment B, the mean values of the
MLE's for 132, 133 and 134 are (respectively) 1.17, 1.16 and 1.18 times the true
values of these coefficients. This suggests that there is simply a re-scaling
effect taking place (rather like the difference between logit and probit) but
this does not adversely affect the ability of the model to estimate the
required probabilities.6 In order to investigate this a bit further we can
look at the true marginal distribution function of vt, which is cto(v/-12) and
compare it with the fitted marginal distribution obtained from the Bun
estimates. The fitted marginal distribution function is constructed as

F(v) = [1 + exp(v/t)la

6 A similar re-scaling effect is not observed for the estimated intercept
term. This is probably due to the fact whilst the _ bivariate normal
distribution has a zero mean vector, this is not necessarily true of the
bivariate Burr. On the assumption that the estimation routine will
endeavour to provide a Burr distribution which approximates the true
normal distribution then there may be a mean adjustment, through. the
estimated cc = TV' parameter, which will be absorbed into the estimated
intereept.

10



where a = 0.9575 is the mean of the Burr estimates for a and t = 1/1.17 is the
observed scaling factor. The two distribution functions are graphed in Figure
1. There seems to be very close agreement between the two distribution
functions, except in the extreme tails. This provides some further evidence
on the ability of the Burr model to adequately mimic a probit specification.

•--insert -figure .1 here

In the case of Experiment C, a Similar rescaling effect is not so clearly
apparent. The actual mean values of the MLE's for 13j, j = 2,3,4 are 0.36,
1.17 and 1.26, in this case. Nonetheless, the estimated probabilities
reported in Table 1, under this experiment, are close to (but slightly
underestimate) the 'true' probabilities.

Finally, in order to a compare the performance of Burr against probit
formulations, estimated probabilities were obtained using a probit
specification for experiments A and C described above. Exactly the same set
of (fixed in repeated samples) regressors were employed, but simulation
results were obtained using LIMDEP (Greene, 1991) using 100 samples of
replicated data. Under Experiment B, 100 replications gave estimated
probabilities which were very close to their true values. The results for
Experiments A and C are reported in Table 2.

Table 2: Probit Results using LEMDEP

A: vt-- Burr . C: Chi-square

71 = 2 vt =(f6 - 6)/W
1 A

True Estimated True Estimated
ic 1 0.630 0.625 0.658 0.623
IC2 0.592 0.590 0.600 0.559
7c3 0.559 0.560 0.547 0.504
7c4 0.515 0.518 0.466 0.428

The probit specification does well in Experiment A when the data are
generated according to a Burr specification and again the• estimated slope
coefficients in the regression function are rescaled by a factor of about
0.79. However, when the data are generated according to the chi-squared
specification then the probit model underestimates the true probabilities of

11



interest and, significantly, does not perform as well as the Burr model. This
must be due, in part, to the flexibility of the Burr formulation.7

5. Conclusion.

In this paper we have provided computationally simple expressions which
facilitate maximum likelihood estimation of parameters in an econometric model
of recurrent-. binary-- outcomes,- —incorporating- - individual random effects. The
simplifying stochastic assumptions leads to an attractive expression for the
log-likelihood and associated partial derivatives • which only involve
elementary sums. Thus numerical integration, which characterises alternative
model specifications (such as the multivariate probit), has been replaced by
arithmetically tractable sums.

Although this paper refers to 'event histories' the methodology, and
algebra, used here could equally be well applied to multivariate choice models
in which an individual can make any number of choices (not just one) from a
set of T alternatives (see Fry (1988) for a discussion of a simple tri-variate
choice model).

Simulation experiments revealed rapid convergence using a simple Newton-
Raphson optimisation routine, even when the number of repeated spells is as
large as 5. The results presented in section 4 also show that the (Burr)
estimation of relevant probabilities can remain accurate when the data are
generated under alternative distributional assumptions. In the simulations
.reported here, the Burr specification adequately modelled normality and proved
to be more flexible than the probit specification under alternative chi-
squared distributional assumptions. Thus the Burr model suggests itself as a
relatively simple alternative to the more commonly adopted (and restrictive)
probit model.

7 See also Fry and Orrne (1993) for an application of the Burr model in Tobit-
type (censored) linear regressions having normal and chi-squared errors.

rs
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