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ABSTRACT

This paper is concerned with tests of the covariance matrix of the

disturbances in the linear regression model that involve nuisance parameters

which cannot be eliminated by usual invariance arguments. Score-based tests,

namely Lagrange multiplier (LM) and locally most mean powerful (LMMP) tests

are derived from the marginal likelihood. Applications considered include

(i) testing for random regression coefficients; (ii) testing for second-

order autoregressive (AR(2)) disturbances in the presence of AR(1) disturb-

ances; and (iii) testing for ARMA(1,1) disturbances; each in the presence of

AR(1) disturbances. An empirical size and power comparison shows that typic-

ally the new tests have more accurate asymPtotic critical values and slightly

more power than their respective conventional counterparts.
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1. Introduction

There is a large literature on testing the form of the covariance matrix

of the disturbance term in the linear regression model. Reviews of various

aspects of this literature have been written by Godfrey (1988), Judge et al.

(1985), King (1987a, 1987b), Pagan and Hall (1983) and Pagan (1984), among

others. The vast majority of this literature is concerned with testing the

null hypothesis of white noise regression disturbances. However, it is

reasonably unlikely that a given application of the linear regression model

to economic data should have white noise disturbances. In fact, the large

literature on testing regression disturbances acknowledges this very point.

Therefore, it is highly desirable to be able to perform diagnostic tests of

the regression disturbances in the presence of autocorrelation and/or hetero-

scedasticity.

An obvious candidate for such a role is the Lagrange multiplier (LM)

test. Unfortunately, there is some doubt about the accuracy of the asymp-

totic critical values of this test, particularly when testing for hetero-

scedasticity. For example, Monte Carlo experiments reported by Breusch and

Pagan (1979), Godfrey (1978), Griffiths and Surekha (1986) and Honda (1988)

show that the LM test for heteroscedasticity rejects the null hypothesis less

frequently than it should. Also, Moulton and Randolph (1989) report a

similar problem with the LM test for error components in regressions with up

to 506 observations.

An alternative approach to constructing LM tests of the covariance

matrix of regression disturbances has been advocated by Ara and King (1993).

Their approach involves treating a maximal invariant statistic as the

observed data and using the density of the maximal invariant as the

likelihood function. They showed that this is also equivalent to basing the
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inference on the marginal likelihood function. Use of the marginal

likelihood function was first suggested by Kalbfleisch and Sprott (1970).

Others to have proposed its use, particularly in the context of estimation,

include Levenbach (1972, 1973), Patterson and Thompson (1975), Cooper and

Thompson (1977) and Tunnicliffe Wilson (1989). The main theme of this

literature is that the use of the marginal likelihood helps reduce bias.

Results reported by Corduas (1986) and Ara and King (1993) show that the

likelihood ratio and LM. tests based on marginal likelihood functions are

clearly more accurate than their conventional counterparts.

When more than one parameter is being tested, the LM test is a two-sided

procedure. Natural one-sided testing problems often arise through economic

theory and functional considerations such as variances being positive.

Recently, King and Wu (1993) suggested an alternative form of the LM test for

such problems. Their test statistic is based on the sum of scores. • In the

absence of nuisance parameters, this test is locally most mean powerful

(LMMP) as it maximizes the mean slope of the power hypersurface in the

neighbourhood of the null hypothesis.

In this paper we consider the construction of LM and asymptotic LMMP

(ALMMP) tests using the marginal likelihood function. We extend the work of

Ara and King (1993) by dealing with testing problems involving nuisance para-

meters which cannot be eliminated by the use of invariance arguments or marg-

inal likelihood methods. There are two reasons for expecting this approach

to be superior to that based on the classical likelihood function. The first

is the direct elimination of certain nuisance parameters which, from the

evidence reported by Ara and King (1993), can be expected to improve the

accuracy of asymptotic critical values. The second potential improvement

comes from the use of maximum marginal likelihood estimates of those



parameters which cannot be directly eliminated. Such estimates are expected

to be less biased than their classical counterparts and as we shall see, this

has the potential to improve power. Applications include- (i) testing for

random regression coefficients in the presence of first-order autoregressive

. (AR(1)) disturbances; (ii) testing for AR(2) disturbances in the presence of

AR(1) disturbances; and (iii) testing for ARMA(1,1) disturbances in the

presence of AR(1) disturbances.

The plan of the paper is as follows. Section 2 considers the theory of

constructing marginal-likelihood-based LM and ALMMP tests in the context of

testing regression disturbances. The three applications are discussed in

section 3. Section 4 reports a Monte Carlo experiment which compares the

small-sample sizes and powers of the conventional and marginal-likelihood-

based LM and ALMMP tests of Hildreth-Houck random coefficients in the

presence of AR(1) regression disturbances. Some concluding remarks are made

in the final section.

2. Theory

Consider the linear regression model with non-spherical disturbances

= YR + U ; U "' N(0T
2
We)) , (1)

where y is nxl, X is nxk, nonstochastic and of rank k < n, and 2(0) is a

symmetric nxn matrix that is positive definite for 0 (px1) in a subset of RP

which is of interest. The vectors g and 0 and the scalar T
2 

are unknown.

Suppose 0. is partitioned as

(3' = (w
'
,41)

where w' = 
(01"' 

0
q 

and 4' =
q+1p

) are qx1 and (p-q)x1,"  .

respectively.
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or

We are interested in testing Ho : w = 0 against either

H
a 
: w * 0

H
a 
: w > 0

where, in this context, > denotes for each component with a strict inequal-

ity for at least one component. This testing problem is invariant with

respect to transformations of the form

y ----> + xn
nOY

where no is a positive scalar and n is a kx1 vector.

(2)

Let m = n-k, M = I
n 
- X(X'X)

-1
X', z = My be the ordinary least squares

(OLS) residual vector from (1) and P be an mxn matrix such that PP' = I
m 
and

P'P = M. The mx1 vector

= Pz (z'P'Pz)
1/2

is a maximal invariant under the group of transformations given by (2). Its

probability density function is

where

1 
f(v;E)dv = -r(m/2)n 

-m/2 
1P0(0)Pil

-1/2
a
-m/2

dv
2

a = vi(P0(0)P') iv

- -1
= (0)uft'z

(3)

U is the generalized least squares (GLS) residual vector assuming covariance

matrix cr
2WO) and dv denotes the uniform measure on the surface of the unit

m -sphere.
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We wish to consider only invariant tests. The principle of invariance

implies that we can treat v as the observed random vector and (3) as its

density function. As Ara and King (1993) point out, we can therefore treat

(3) as a likelihood function for 0 and derive standard tests such as the

likelihood ratio, Wald and LM tests. Ara and King also observed that this

approach is equivalent to using the marginal likelihood for 0 because (3) is

directly proportional to the marginal likelihood for 0 given by Tunnicliffe

Wilson (1989). Thus by invariance or, equivalently, by the adoption of

marginal likelihood methods, we have reduced the testing problem to one only

involving 0. The subvector - of 0, A, is a (p-q)xl vector of nuisance

parameters.

The log likelihood function implied by (3) is

1L(0) = constant - - log IP0(0)P1 - - log [v1(P0(0)P')-1v] .2 2

Ara and King (1993) have shown that the scores can be written as

3L(e) _
ae. 2

1

ao-1(e) ciae.1
fi,g2-1(13),1

2

.thand that the i,j element of the information matrix of L(0) is

E{- awe) 
A
(0) 

ao(e)] /m tr[A(0) (2m+4)ae. ae.

1 /- ft+(0) ar.)]tr 
80(0)ae.1 (2m+4)

awe)]
ae.1

where fi is the GLS residual vector assuming covariance matrix 0(0) and
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A(0) =
-1(e) - -1cepc(vo-1(e)x)-1X'S2-1(e)

= Iv(P0(0)P1)
-1
P

In order to construct the LM test of H
0 

against H
a 

based on (3), we need

the scores with respect to w = (01,...,0 )' and the information matrix eval-

uated under H0. . denote . the values._ which... maximize the _marginal

likelihood (3) when w = 0; i.e., under Ho, and let Ô = (0',11')'. Define

A(A) = a(e)i ae.1

and note that

an-1(e)
ae.1

13 =

e =

= -n-1(3)A.(A)o-1(8) .

Let denote the qxl vector of scores with respect to the elements of w

evaluated at w = 0 and µ = L. Thus

where

m
s. = p0-1(8)A (µ)0-1(8)CIA'0-1(o)ii] 2 

- tr[A(o)Ai(µ)]/2

X*

= tar; [e'.A. )eie'd -

- X,(4)(,)-1X:,

=

Ai(1.0 Wer1/2A.(µ){0(5)-1/211 ,

e = 
Q(8)-1/2 „
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is the OLS residual vector from the regression

. 0(5)-1/20(6)-1/2y Xg + (4)

- A
isi.e., (1) after transformation by premultiplication by 

0(5)1/2, 
and u 

the GLS residual vector assuming covariance matrix 0(5). Let i denote the

A .
pxp information matrix evaluated at w = 0 and µ µ= . Its i

th
,j element is

given by

i(i„j) = m ti),(8)A. (µ)A(o)Aj(µ)] if (2m + 4)

- ftriA(e)Ai(µ)] tr[A(0)Vildl / (2m + 4)

m r[M,-ii(A)M,-Aj(A)1 / + 4)

- ftr[t4,7ii(µ)] tr[M,-Apadl / (2m + 4) .

Partition i as

[i i
12
1

121 122

where i
11 

and i
22 

are qxq and (p - q)x(p -q), respectively.

The LM test of H
0 

against H
a
: w * 0 rejects H

0 
for large values of

r = ;' [ - 1-1 ^
11 12 22 121] s

(5)

assuming an asymptotic chi-squared distribution with q degrees of freedom

under H
0.

A
If the information matrix evaluated at 0 = 0 is block diagonal,

= 0, then (5) simplifies toi.e.' 112 = 121

-1 -
r = s'I 

11 
s.
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In the special case of q = 1, (5) becomes

r = fLn- 
1
(µ)ele'e - 

m*Al(A)] 2}2 [ - 112 12112 

and a one-sided LM test of H
0 

against H
a 
: w > 0 involves rejecting H

0 
for

large values of

e'Al(A)e/e'e - tr[M*Al(A)] / 2} [ - 122 1 
11/2

11 12 22 21] (6)

which has an asymptotic standard normal distribution under Ho.

If as well as q = 1, the information matrix is block diagonal, the one-

sided LM test statistic (6) is of the form

ei-ii(A)eiree -

fm tr[M*Al(A)]2 / (2m + 4) - (tr[M,A10701)2/ (2m 4. 4)11/2 
(7)

It is noteworthy that this test statistic is of the form of King and

Hillier's (1985) LBI test applied to (4) assuming g = A and using the stand-

ard two-moment normal approximation (see Evans and King, 1985) to obtain

critical values.

In the case of testing H
0 

against H
a 

when q > 1, we can construct an

ALMMP test by applying the results of King and Wu (1993) to the density func-

tion of v given by (3). This test rejects Ho for large values of

L ft' - ei 41/2
/ 11 12 22 21

i=1

t, it
1/2fm ei -A-(A)e/ele - tr[1,4,A(A]li 

_ i-1i1/2 
(8)ft'i

11
t

12 22 21 f



_ q_
where A(µ) = E Ai(µ) and is the q x 1 vector of ones. This statistic has a

i=1

standard normal asymptotic distribution under Ho. If the information matrix

evaluated at 0 = Ô is block diagonal, then the denominator of (8) becomes the

square root of

m tr[1,4*Ai(11)M,A*J(1)] y(12m + 4)

- ftr[M,-A-i(A)] tr[M,AJ OI]} it (2m + 4)

tr[m,A(A)] 2 - (tr[M,A(µ)])2}y( (2m + 4)

In other words, T is of the form of (7) with

A (A) = -A(A).

3. Applications

This section demonstrates the application of the above theory to

(i) testing for Hildreth-Houck (1968) random regression coefficients in the

presence of AR(1) disturbances, (ii) testing for AR(2) disturbances in the

presence of AR(1) disturbances, and (iii) testing for ARMA(1,1) disturbances

in the presence of AR(1) disturbances.

3.1 Testing for Hildreth-Houck random coefficients in the presence of AR(1)

disturbances

Assuming the first column of X is a column of ones, write (1) as

Yt =
t = 1,...,n. (9) 13tixti ut'jE 

=2

9



The Hildreth-Houck model assumes the regression coefficients g ,tj
j = 2,...,k, at time t are generated as

gtj = + v
j tj'

t = 1,...,n, (10)

2where v
tj 

IN(0,T.), j = 2, k. The disturbance term u
t 
is assumed to be

generated by the stationary AR(1) process

ut = put_i + et, I p I < 1

2 2 2 2in which e
t 

IN(0,T
e
) and var(u

t
) = T = T /(1-p). Substituting (10) intoU e

(9), the model can be written as

where

Yt gi E 
tj 
. w, t = 1,...,n, 

j t
j=2

wt 
= U

t
E xt;vtj •
j=2

Assuming mutual independence between e
t 

and v
tj' 

j = 2,...,k, the co-

variance matrix of w = (w...,w
n
)' can be written as

2 n-1
(1+M j4 j) P

(1+Ax
2 
)

j 2j

Var(w) = T
2

= T 
2
u
0(0)

2 2
(1+):Xix3j)

n-1 2
. (14-Dixnj)

10



2 2 
where Ai = crycru, j = 2,...,k, 0' = (A

2'
A
3'
...,X

k
,p) and summation is from

j = 2 to k. Let A' = (A2,...,Ak). Our testing problem is one of testing

against

H0: A = 0

H
a
: X > 0

in the context of (1).

In order to construct the marginal-likelihood-based LM and ALMMP test

statistics, r and T, respectively, note that p = k, q = k-1,

and

. (142)-1/2

A
k
(i)) =

0

1

21)

-2 1/2
(1-p ) 0 0

4 1 0

0 4 1

0

0

1 0

0 0 . 1

= diag(x,...,x.),
awe) 
ax. lj nj

0

. (n -1)Pn -2

1

(n-i)'2 . 1 0

(12)



where P is the value of p which maximizes the log marginal likelihood func-

tion - L(0) with 0' = (0,0,...0,p). The residual vector e is (1 - 
2 
p )-1/2

times the OLS residual vector from the transformed model

-2 1/2 -2 1/2 -2 1/2
(1 - p ) y

1 
= (1 - p ) )(it:3 + (1 - p ) u

1 
(13)

1 

Y PY-t -1= (xt - Pxt_1)'g + ut - Put_i, t = 2,.. (14)

where x't = (1, xt2,...,xtk). The nxn matrix Aj_1(P) for j = 2,...,k is tri-

diagonal and symmetric with main diagonal

( 2 2 -2 2 -2Ix (x + p - P ),.. 
2 -2 2 -2
x + p x - p )1j 2j 

xii 
nj n-lj

and main off-diagonal

-2 -1/2 2 - 2 -2 - 2 -2
(4(1 - p ) x

1j ' 
p- px

2j
/(1 - p ),...,-px 1 - p )).

The nxn matrix "A(P) used in the ALMMP test has the same form. Its main diag-

onal is

irk2 r(x2 
2x.)/(1 

r(x2 -,-,2x2 )/(1 _ i.32))
IL 1 2j P l nj n-1j 

and its main off-diagonal is

-2 -1/2 2 - 2 -2 - 2 -2
(4(1 - p ) Ex - pE (1 - p ),...,-PEx 1(1 P )),lj' 

x2j/ 
n-1j

where again summation is from j = 2 to k.

12



3.2 Testing for AR(2) disturbances in the presence of AR(1) disturbances

Consider the linear regression model (1) in which the disturbances are

generated by the stationary AR(2) process

ut = plut_i + p2ut_2 + et

where e
t 
--IN(0,T

2
). In this. model

where

and 0

against

Var(u) = T
2

1 71 72

2 
7
1 

1

• 7n-1

1 7

T1 
1

- Tn-1

(1-p )T
2

2  2 e
T
U 

=
2 2

(1+p2)[(1-p2) - pi]

71 
p
1
/(1-p

2
)

2
p
2 
+ p

1 
/(1-p

2
)

Tj = p1.-j_1 P27j-2 ' = 3, •

1

n - 1,

= 
(p
2, p1)'' 

In this case we are interested in testing

H
0 

p
2 

= 0

13

(15)



H
a 

p
2 

* 0

in the context of (1). Because q = 1, our interest is only in constructing

the LM test statistic (5).

t 1/2
Observe that p = 2. The matrix Wer is given by (11) and A2(P) is

given by (12), where again • is the value of pl which maximizes the log

marginal likelihood function L(0) with 0' = (0,p1). Also the residual vector

- -1/2e is identical to that for the previous application, i.e., (1-p) times

the OLS residual vector from the transformed model (13) and (14). Now

A
l 
CP) =

and

A 
0 P 

i324.1 i3.34.2-il . . -(311-1+(n-2)-(311-3

P 0 
A
P 

^2
p +1

-2 A
p +1 P 0

-3 - -2
p +2p p +1 p 0

0

-„ 4.(n_2)-(p-3
0

•



1

. (1-p )

-2 2) ;3(11/2 -2 1/2 42)1/2 -n-3 -2 1/2--(1- 
i3(14

p ) (1-p ) . p (1-p )

-(3(14 )21/2 -2 -2 cip-44n-2)
-(1+p ) 0 1-p

0 -(1+
2
p ) 0

-(3(142)1/2
1-p 0 -(1+p )

-n-3 -2 1/2 -n-4 -n-2p (1-p ) P

-
-(1+

2
p ) 0

-2
0

3.3 Testing for ARMA(1,1) disturbances in the presence of AR(i) disturbances

Here we consider the linear regression model (1) in which the disturb-

ances are generated by the stationary ARMA(1,1) process

ut = put_i + et + 7et_i, t = 1, n,

2where e
t 

IN(0,m
2
e
). In this model, Var(u) = m

u
 0(0) is given by (15) where

2 1 + 2p7 + 7
2 

2
m
e

M
u 

=
1-p

2

(P+7)(1+pT) 
1

1 + 2p7 + 7
2

7j = P7J-1,
j = 2, .

and 0 = (T,p). We are interested in testing

against

15

.., n-1

•



H
a 

7 #O

in the context of (1).

Note that as for testing for AR(2) disturbances in the presence of AR(1)

t 1/2
disturbances, p = 2, q = 1, the matrix )- iWid s given by (11), A2(P) is

-2-1/2
given by (12) and the residual vector e is (1-p ) times the OLS

residual vector from the transformed model (13) and (14). Now,

and

Thus

(14)
1

(14)

-n-2
0 1 p • p

1 0

1 0

-n-2

0 1

1 0

-2 1/2
0 (1-p)

'21/2
(1-p ) -2P 1

0 1 -2?).

.-2P 1

0 0 . 1 -2P_

-2 1/2 - 2
elA (i3)e = 2(1-P4(1-p ) ee +Ee.e -pEei}//(14).

1 12 i-1
i=3 i=2

16



4. Monte Carlo Experiment

In order to explore the small-sample properties of the LM and ALMMP

tests constructed using the marginal likelihood function, we conducted a

Monte Carlo experiment. The experiment concentrated on the problem of test-

ing for Hildreth-Houck random coefficients in the presence of AR(1) disturb-

ances in (1) as outlined in section 3.1. Estimated sizes and powers of the

two marginal-likelihood-based tests which we denote by MLM and MALMMP were

compared with those of the corresponding LM and ALMMP tests constructed using

the standard likelihood approach.

4.1 Experimental Design 

The Monte Carlo method was used to estimate sizes and powers for the

following nx3 X matrices with n = 20 and n = 60.

Xl: A constant dummy plus two independent trending regressors generated

as

xti = z
ti 

+ 0.25t

where z
 
t = 1, n i = 2, 3 are independent AR(1) time

series generated from

= 0.5zt_iizti 
nti

and

nti 
IN(0,1), t = 1,...., n, i = 2, 3. 

X2: A constant plus quarterly Australian total private capital move-

ments and Australian total Government capital movements.

X3: The first n observations of Durbin and Watson's (1951) consumption

of spirits example.

17



X4: A constant dummy plus quarterly seasonally adjusted Australian

household disposable income and private final consumption

expenditure commencing 1959(4).

The regressors in X1 were constructed with an obvious time trend while those

in X2 have a seasonal component and fluctuate widely. X3 is comprised of

annual data while X2 and X4 use quarterly data. In all cases p = 3 and we

test H
O 
: A

2 
= A

3 
= 0 against H+ : (A

2' 
A
3 
)' > O.

a 

The experiment was conducted in two parts. The first involved using

asymptotic critical values for all tests. In the second part, the Monte

Carlo method was used to estimate appropriate critical values which were then

used to provide a more meaningful comparison of powers. Because‘ the true

size of each test varies with p, the required critical value must result in

sizes less than or equal to the significance level. This value was estimated

as follows. The Monte Carlo method was used to calculate appropriate crit-

ical values at each of p = 0, 0.1, 0.2, ..., 0.9 and, for each test, the

largest value was used as the critical value. These critical values were

then used to calculate the second round of sizes and powers. A nominal sig-

nificance level of five percent and 2000 iterations were used throughout.

From

3
var(w) = cr

2
(1 + E A x2.

t 
)

u j tj
j=2

it is clear that the relative contribution at time t of the stochastic part

of the j
t.h 

regression coefficient to the variance of the composite error

term, w
t
, is A.x

2
.. Thus what constitutes a large value of A depends on the

2
magnitude of x.. We took the view that it was unlikely that gtj wouldt

18



contribute more than 10 times the variance of u
t 

to the composite error term.

We therefore set

where

A. =
J J J

A. = 10 /max( x2 )tj) j =2,3 ,

and calculated sizes and powers at all combinations of p = 0, 0.3, 0.6, 0.9

and A. = 0, 0.02, 0.2, 1; j = 2,3.

All the tests required estimates of p under the null hypothesis of AR(1)

disturbances. For the tests based on the conventional likelihood function, p

was estimated using Beach and MacKinnon's (1978) maximum likelihood

algorithm. For the marginal likelihood based tests, p was estimated by

maximizing the marginal likelihood under Ho which following Tunnicliffe

Wilson (1989) can be written as

f(plu) = (1-p
2)1/

2 X*(p)'X*(p)
-1/2(z*(p)Iz*(P))-m/2

where X*(p) and z*(p) are the nxk X matrix and the OLS residual vector,

respectively, from the transformed regression (13) and (14) in which p

replaces p. We used the IMSL (1989) nonlinear maximization subroutines

DIVMIF, DLFTRG and DLFDRG to solve this optimization problem. The error

variance T
2 

and the components of the parameter vector g were all set to

unity in the simulations. Note that the sizes and powers of each of the

four tests are invariant to the values of g and T2.
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4.2 The Results

Selected estimated sizes based on asymptotic critical values at the

nominal level of 5% are reported in Table 1.

The conventional LM test sizes are typically different from 0.05

especially when p is large.. While for X1 and X4 there did seem to be a

tendency for sizes to get closer to 0.05 as n increases, this was not evident

for X2 and X3. In contrast, almost all estimated sizes of the MLM test were

not significantly different (at the 1% level) from 0.05 and all exceptions

occur for the smaller sample size of n = 20. Estimated sizes for the ALMMP

test are almost all below 0.05, most being significantly so. All estimated

sizes are particularly small when p is large. There is evidence of an

improvement in these sizes as n increases. The estimated sizes of the MALMMP

test are typically much closer to 0.05 than its conventional counterpart,

especially when n = 60.

Selected estimated sizes and powers based on critical values found by

simulation for Xl, X2 and X4 are presented in tables 2, 3 and 4,

respectively.' Because almost all the powers for X3 are less than 0.1, we

have omitted them to save space. The variation in the regressors of X3 is

such that it is very difficult to detect even very large contributions to the

composite error term from stochastic coefficients. Also omitted are the

powers when A. = 0.02, j = 2,3, which are typically. very similar to those for

except when p = 0.9 and n = 60. The following discussion is an

analysis of all the results for Xl, X2 and X4.

Typically powers of all tests increase as n increases. Exceptions are

minorandoccurmostfrequentlywhenp=0.02. There is a very

20

A.



clear tendency for powers to increase as p increases, ceteris paribus,

particularly when n = 60. As expected, powers generally increase as either

2
 or A3 increases although there are a surprising number of exceptions for

X2 (ALMMP and MALMMP tests) and X4 (n = 20).

A comparison of the LM and MLM powers reveals that the

marginal-likelihood-based test (MLM) is typically more powerful than the

conventional LM test. The only exceptions occur for X2 and n = 60 when the

two power curves cross, although the comparison still favours the MLM test

overall. Power improvements of greater than 0.1 are not uncommon when the

MLM test is used in place of the LM test.

The estimated power curves of the ALMMP and MALMMP tests are very

similar, although there is a clear tendency for the MALMMP test to be more

powerful for larger values of p. For the analogous testing problem without p

as a nuisance parameter which can be viewed as a special case of our problem

in which p is unknown, Ara and King (1993) report that these two tests have

identical power curves when exact small sample critical values are used.

This suggests that the modest improvement in power for larger p values is

purely a consequence of using maximum marginal likelihood estimates of p

which are less biased than their conventional counterparts.

For X1 and X4, the ALMMP test is always more .powerful than the LM test

as might be expected. For X2 and n = 20, a similar pattern occurs except on

the boundary (A
2 
= 0 or A

3 
= 0) where there are examples of the LM test being

more powerful. For X2 and n = 60, there are very few situations where the

ALMMP test is more powerful than the LM test. In fact the former test has

relatively poor power whenever X2 or A3 is one. Similar, conclusions can be

drawn from a comparison of the powers of the MALMMP and MLM tests although
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the dominance of the MALMMP test is less pronounced for X1 and X4 and the

comparison favours the MLM test more strongly in the case of X2.

In summary, the use of marginal-likelihood-based tests rather than their

traditional counterparts does typically result in a more accurate test in

terms of both size and power. These improvements are very clear cut in the

case of the LM test and are less obvious for the ALMMP test. The use of an

ALMMP .test in place of the equivalent LM test does improve power as expected

for X1 and X4. For X2, particularly when n = 60, there is evidence of a

serious.power loss. Wu (1991) observed that LMMP tests can suffer a loss of

power when the scores being summed are negatively correlated. This appears

to explain the poor results for X2 given that the two regressors are

negatively correlated.

5. Concluding Remarks 

This paper outlines the construction of marginal-likelihood-based LM and

ALMMP tests of regression disturbances in the presence of nuisance parameters

which cannot be eliminated by the use of the usual invariance arguments.

This extends the work of Ara and King (1993) who reported an improvement in

the accuracy of asymptotic critical values in the case of no nuisance

parameters. The Monte Carlo experiment we report clearly shows that the use

of marginal-likelihood-based tests can improve both sizes and powers,

particularly of the LM test. This appears to be a higher level of

improvement than that reported by Ara and King. In our case, additional

accuracy seems to come from the use of maximum marginal likelihood estimates

of the nuisance parameters. On the basis of these findings, we conjecture

that similar improvements in accuracy exist for likelihood ratio and Wald

tests of regression disturbances in the presence of nuisance parameters.
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Table 1: Estimated sizes of the LM, MLM, ALMMP and MALMMP tests for random
coefficients in the presence of AR(1) disturbances using asymptotic
critical values at the 5% nominal level.

n = 20 n = 60

LM MLM ALMMP MALMMP LM MLM ALMMP MALMMP
X1

0.0 .024 .062 .038 .060 .046 .054 .045 .051

0.2 .024 .064 .036 .059 .042 .050 .050 .058

0.4 .024 .057 .036 .056 .036 .049 .036 .052

0.6 .020 .056 .025 .050 .030 .046 .032 .051

0.8 .015 .050 .018 .044 .032 .050 .025 .051

0.9 .011 .046 .012 .044 .034 .052 .018 .051

X2

0.0 .022 .050 .036 .046 .022 .054 .016 .065

0.2 .020 .048 .027 .045 .020 .057 .017 .056

0.4 .021 .047 .020 .043 .023 .056 .016 .061

0.6 .027 .040 .014 .041 .018 .057 .013 .062

0.8 .060 .038 .009 .046 .015 .058 ..018 .066

0.9 .092 .039 .006 .048 .018 .062 .022 .067

X3

0.0 .050 .057 .012 .040 .044 .050 .042 .054

0.2 .046 .054 .011 .033 .046 .051 .034 .050

0.4 .049 .046 .009 .031 .050 .048 .026 .047

0.6 .062 .044 .006 .024 .056 .052 . .013 .045

0.8 .070 .042 .003 .021 .084 .052 .010 .037

0.9 .071 .044 .001 .017 .114 .048 .004 .029

X4

0.0 .054 .050 .017 .048 .037 .050 .039 .060

0.2 .051 .052 .018 .050 .039 .052 .043 .060

0.4 .070 .044 .016 .039 .036 .052 .040 .062

0.6 .096 .039 .010 .033 .040 .052 .035 .062

0.8 .122 .036 .009 .028 .048 .058 .028 .060

0.9 .131 .040 .008 .024 .068 .054 .022 .057



Table 2: Estimated sizes and powers for X1 of the LM, MLM, ALMMP and MALMMP
tests for random coefficients in the presence of AR(1) disturbances
using empirical critical values at the 5% level.

n = 20 n = 60

LM MLM ALMMP MALMMP LM MLM ALMMP MALMMP

p = 0.0

O 0 .042 .050 .050 .050 .050 .049 .045 .047
.2 .086 .100 .117 .110 .178 .190 .282 .284
1 .224 .252 .304 .308 .718 .731 .814 .820

.2 0 .084 .098 .116 .112 .162 .170 .251 .246
.2 .126 .142 .176 .172 .344 .352 .478 .484
1 .237 .262 .329 .320 .762 .776 .852 .859

1 0 .202 .230 .276 .281 .658 .669 .784 .788
.2 .218 .248 .306 .312 .727 .745 .839 .844
1 .280 .294 .388 .376 .864 .872 .928 .934

p = 0.3

O 0 .044 .048 .045 .050 .042 .048 .047 .044
.2 .100 .113 .132 .130 .224 .232 .329 .334
1 .252 .268 .326 .334 .753 .767 .850 .854

0 .090 .106 .129 .130 .198 .213 .292 .296
.2 .137 .158 .196 .198 .406 .419 .550 .556
1 .256 .284 .350 .354 .796 .804 .885 .890

1 0 .220 .250 .294 .305 .708 .728 .834 .835
.2 .236 .271 .322 .332 .770 .786 .873 .879
1 .291 .318 .401 .409 .880 .892 .940 .944

p = 0.6

O 0 .031 .046 .034 .042 .032 .043 .032 .045
.2 .126 .178 .160 .202 .402 .441 .529 .568
1 .294 .334 .367 .394 .844 .858 .908 .920

.2 0 .104 .152 .154 .186 .356 .404 .486 .526
.2 .170 .211 .240 .278 .596 .633 .745 .768
1 .298 .338 .390 .408 .867 .880 .928 .934

1 0 .257 .308 .340 .362 .823 .842 .912 .918

.2 .272 .316 .364 .388 .850 .866 .929 .936
1 .318 .360 .426 .446 .914 .924 .960 .963

p = 0.9

O 0 .020 .038 .020 .038 .036 .050 .018 .045
.2 .242 .328 .310 .390 .820 .889 .890 .928
1 .390 .411 .479 .498 .938 .954 .970 .974

.2 0 - .206 .308 .287 .364 .792 .871 .886 .934
.2 .274 .346 .376 .420 .888 .925 .946 .961
1 .380 .404 .482 .494 .942 .954 .976 .979

1 0 .336 .390 .440 .466 .936 .950, .980 .983
.2 .341 .386 .455 .480 .941 .954 .982 .982
1 .375 .404 ,500 .512 .956 .962 .984 .988
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Table 3: Estimated sizes and powers for X2 of the LM, MLM, ALMMP and MALMMP
tests for random coefficients in the presence of AR(1) disturbances
using empirical critical values at the 5% level.

12

n = 20 n = 60

LM MLM ALMMP MALMMP LM MLM ALMMP MALMMP

p = 0.0

O 0 .016 .046 .046 .046 .049 .046 .050 .047
.2 .025 .097 .047 .045 .208 .181 .056 .054
1 .072 .210 .046 ..-046 ;681 .-650 .106 .098

.2 0 .017 .068 .110 .111 .098 .098 .108 .110
.2 .021 .089 .106 .097 .230 .222 .125 .118
1 .052 .181 .084 .078 .689 .663 .156 .153

1 0 .038 .106 .246 .242 .254 .302 .350 .336
.2 .036 .116 .226 .226 .358 .391 .341 .329
1 .044 .150 .184 .175 .722 .714 .328 .316

p = 0.3

O 0 .013 .045 .044 .044 .044 .050 .044 .043
.2 .026 .100 .042 .042 .252 .220 .062 .060
1 .084 .237 .046 .044 .758 .728 .115 .110

.2 0 .016 .071 .123 .125 .096 .110 .128 .122
.2 .019 .094 .104 .106 .278 .270 .138 :134
1 .057 .192 .086 .078 .766 .740 .164 .156

1 0 .043 .118 .262 .251 .289 .334 .388 .376
.2 .040 .123 .238 -.-230 .424 .446 .378 .367
1 .043 .148 .184 .184 .788 .785 .351 .336

p = 0.6

O 0 .012 .040 .026 .041 .040 .046 .044 .046
.2 .030 .130 .030 .041 .400 .385 .073 .071
1 .096 .276 .038 .040 .882 .864 .138 .138

.2 0 .013 .078 .132 .168 .108 .148 .168 .181
.2 .018 .108 .114 .133 .434 .441 .180 .181
1 .068 .222 .092 .088 .881 .866 .208 .210

1 0 .046 .132 .284 .295 .372 .466 .504 .518
.2 .045 .133 .258 .268 .576 .624 .472 .482
1 .050 .164 .200 .198 .893 .896 .419 .414

p = 0.9

O 0 .050 .039 .010 .050 .034 .050 .046 .048
.2 .066 .282 .027 .059 .819 .844 .119 .140
1 .146 .383 .046 .062 .980 .983 .211 .226

.2 0 .028 .145 .210 .306 .280 .396 .394 .456
.2 .034 .166 .154 .198 .845 .888 .360 .402
1 .090 .284 .100 .112 .982 .982 .308 .324

1 0 .069 .163 .352 .356 .696 .813 :796 .848
.2 .062 .164 .314 .320 .888 .930 .710 .754
1 .054 .182 .223 .224 .984 .985 .547 .560
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Table 4: Estimated sizes and powers for X4 of the LM, MLM, ALMMP and MALMMP
tests for random coefficients in the presence of AR(1) disturbances
using empirical critical values at the 5% level.

2

n = 20 n = 60

LM MLM ALP MALMMP LM MLM ALP MALMMP

p = 0.0

O 0 .016 .046 .044 .044 .027 .041 .042 .050
.2 .020 .044 .058 .054 .090 .128 .172 .180
1 .020 .060 '.066 .070 :357 :462 .548 .566

.2 0 .021 .048 .060 .056 .086 .127 .174 .180
.2 .020 .052 .060 .062 .176 .240 .308 .313
1 .021 .064 .069 .073 .415 .516 .594 .622

1 0 .022 .064 .073 .076 .378 .475 .572 .586
.2 .021 .067 .074 .078 .430 .522 .620 .638
1 .023 .066 .080 . .079 .548 .646 .716 .728

p = 0.3

O 0 .022 .043 .046 .040 .024 .042 .047 .047
.2 .021 .048 .062 .060 .104 .158 .212 .219
1 .022 .058 .069 .074 .405 .503 .592 .602

.2 0 .022 .054 .065 .062 .106 .157 .215 .222
.2 .021 .054 .067 .070 .214 .286 ,364 .368
1 .026 .061 .072 .075 .456 .546 .638 .6.44

1 0 .023 .063 .073 .079 .426 .524 .621 .633
.2 .026 .064 .074 .080 .472 .564 .656 .664
1 .025 .064 .078 .079 .576 .680 .737 .742

p = 0.6

O 0 .035 .037 .028 .032 .028 .046 .039 .050
.2 .023 .064 .073 .080 .197 .295 .345 .370
1 .026 .061 .078 .082 .508 .621 .676 .688

.2 0 .02.4 .069 .078 .084 .208 .304 .354 .378
.2 .022 .064 .078 .087 .338 .450 .524 .540
1 .025 .062 .078 .080 - .541 .656 .702 .712

1 0 .026 .066 .087 .090 .538 .651 .714 .726
.2 .026 .066 .085 .088 .564 .678 .731 .740
1 .026 .068 .086 .084 .648 .732 .776 .783

p = 0.9

O 0 .050 .038 .016 .020 .050 .• 047 .027 .045
.2 .018 .064 .088 .102 .550 .707 .694 .744
1 .024 .067 .084 .081 .690 .778 .794 .810

.2 0 .018 .070 .098 .110 .580 .726 .727 .770
.2 .022 .068 .088 .096 .658 .770 .782 .810
1 .024 .067 .086 .085 .702 .788 .809 .822

1 0 .026 .071 .092 .091 .736 .819 .842 .856
.2 .024 .071 .092 .090 .730 .816 .841 .852
1 .022 .071 .088 .088 .737 .814 .841 .850
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