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Abstract

This paper presents general formulae for the likelihood ratio (LR),

Wald (W), Lagrange multiplier (LM) and asymptotic locally most mean

powerful (ALMMP) tests of linear regression disturbances using marginal

likelihood methods. These tests can be derived by treating the maximal

invariant statistic for these testing problems as the observed data. By

way of illustration, the marginal-likelihood-based LR, W, LM and ALMMP

tests are constructed for the separate problems of testing for general

AR(4) disturbances and testing for the presence of Hildreth-Houck random

coefficients. Empirical size calculations reported here and elsewhere

suggest that this approach results in tests whose true sizes are much

closer to the nominal size than their conventional counterparts.
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grateful for comments from seminar audiences at the Universities of
California San Diego, Rochester, Iowa, and Canterbury as . well as
Michigan State, Texas A & M and Southern Methodist Universities. We are
particularly grateful to Murray Smith for helping us translate his
results to get the lemma given in section 2.1 and to Alan Morgan and
Vladimir Rouderfer for research assistance.



1 Introduction

Because of the non-experimental nature of almost all economic data,

there is an extensive literature on diagnostic testing of econometric

models. Much of this literature is concerned with testing for spherical

disturbances in the linear regression model, see for example Godfrey

(1988), Judge et al. (1985), King (1987a, 1987b), Pagan and Hall (1983)

and Pagan (1984). There.is.a general.emphasis.onAhree.testing proced-

ures based on the likelihood function, namely the likelihood ratio (LR),

Wald and Lagrange multiplier (LM) tests. Unfortunately, the accuracy in

small-samples of the asymptotic critical values of these tests is ques-

tionable. For example, King (1987a, p.59) concluded that as a test for

autocorrelation in the linear regression model, "the LR test is a part-

icularly unreliable test". Breusch and Pagan (1979), Godfrey (1978),

Griffiths and Surekha (1986) and Honda (1988) all concluded that the

true small-sample size of the LM test for heteroscedasticity is typic-

ally much lower than its nominal size. Also, Moulton and Randolph

(1989) reported remarkable inaccuracies for the asymptotic critical

values of the LM test for error components in regressions with 126 to

506 observations.

One possible explanation is that the presence of nuisance para-

meters (the regression coefficients and disturbance variance) causes

biases in key estimates used in the tests. As Durbin and Watson (1971)

first showed, this problem of nuisance parameters can be overcome by the

use of invariance arguments. A maximal invariant statistic can be found

whose distribution does not depend on the nuisance parameters. Because

all invariant test statistics can be expressed as functions of the max-

imal invariant, optimal invariant testing procedures can be constructed

by treating the maximal invariant as the observed data (see, e.g., King
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and Hillier (1985) and King (1987b)).

An alternative approach that has been attracting attention, partic-

ularly in the context of modelling linear regression disturbances, is

the method of marginal likelihood which was first suggested by Kalb-

fleisch and Sprott (1970). There is growing evidence that its use can

reduce estimation bias. A good example is that of estimating the error

variance in the classical linear model. The maximum likelihood (ML)

estimator is well known to be biased while that based on the marginal

likelihood is the standard unbiased estimator. Also see Tunnicliffe

Wilson (1989) and the references therein. A related estimator of covar-

iance-matrix parameters of the linear regression model is the restricted

(or residual) ML (REML) estimator, see e.g., Harville (1977) and

Robinson (1987). This involves maximizing the marginal likelihood func-

tion of all parameters of the covariance matrix. The scale parameter,

c
2
, is often a nuisance parameter so it is typically more appropriate to

use the marginal likelihood function of all disturbance parameters

2
except cr. This is the approach we favour.

There is some evidence that the use of marginal likelihood methods

can produce more accurate tests of regression disturbances. In contrast

to the performance of the conventional LR test for autocorrelation,

Corduas (1986) found that the marginal-likelihood-based LR test has good

small-sample properties. Moulton and Randolph (1989) reported that the

LM test for error components in regression disturbances constructed from

the restricted likelihood function, can be far more accurate than its

conventional counterpart.

The LR, Wald and LM tests are two-sided test procedures, although
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they can be converted into one-sided tests for one-dimensional testing

problems. Often, one-sided hypotheses arise naturally through economic

theory and functional considerations such as variances always being

positive. An alternative form of the LM test for one-sided tests of

more than one parameter has recently been suggested by King and Wu

(1990). Their test statistic is based on the sum of scores. In the

absence of nuisance parameters, this test is locally most mean powerful

(LMMP) as it maximizes the mean slope of the power hypersurface at the

null hypothesis. The information matrix, can be used to construct an

asymptotic test based on the sum of the scores.

In section 2 of this paper, we derive general formulae for the LR,

Wald, LM and asymptotic LMMP (ALMMP) tests of regression disturbances

based on the maximal invariant statistic as the observed data. We show

that this approach is equivalent to constructing these tests based on

the marginal likelihood function. The application of these tests to the

separate problems of testing for AR(p) disturbances and testing for

Hildreth-Houck (1968) random regression coefficients is considered in

section 3. Section 4 reports a Monte Carlo study designed to compare

conventional and marginal likelihood based tests for these two problems.

. Some concluding-remarks are made in the final section.

2. Theory

Consider the normal linear model with non-spherical disturbances

y = xg + u ; U N(007
2
0(0)) , (1)

where y is nxl, X is nxk, nonstochastic and of rank k < n, and Q(0) is a

symmetric matrix that is positive definite for 0 (pxl) in a subset of RP

which is of interest. Without lass of generality, it .is assumed that
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WO) = I
n
. We are interested in testing H

0 
: 0 = 0 against either H

a 
:

0 * 0 or H
a 
: 0 > 0 where, in this context, > denotes for each com-

ponent with at least one strict inequality. It is well known that this

testing problem is invariant to transformations of the form

y 
n 

+ 
OY

where no is a positive scalar and n is a kxl vector.

2.1 Preliminaries

(2)

Let m = n-k, M = I
n 
- X(X'X)

-1
X', z = My be the ordinary least

squares (OLS) residual vector from (1) and P be an mxn matrix such that

PP' = I
m 
and P'P = M. Observe that the mx1 vector Pz is a LUS residual

vector given that under H
0' 

Pz N(0,T
2
I
m
) (see King (1987a,

section 5)). The vector

= Pz (z'P'Pz)
1/2

is a maximal invariant under the group of transformations given by (2)

for our problem. The density of v under (1) can be shown to be

f(v;0)dv = s dv (3) 1 r(m/2) n
-m/2 IPC2(e)Pil-1/2 -m/2

- -- A
where s = v'(Pil(0)P') 

1 
v = 11'0(0)

1 
u i( z'z, u is the generalized least

squares (GLS) residual vector assuming covariance matrix Cr
2
(0) and dv

denotes the uniform measure on the surface of the unit m-sphere.

The principle of invariance implies that invariant tests can be

constructed by treating v as the observed data and (3) as its density

function. In our case, the restriction to invariant tests is well

accepted (see for e.g. Durbin and Watson (1971) and King (1987b)). We

can therefore treat (3) as a likelihood function for 0 and derive stand-
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ard tests such as the LR, Wald and LM tests.

This approach is equivalent to using the marginal likelihood for 0

which, from Tunnicliffe Wilson (1989), is given by

- - - -
f
m

 (01y) = In(e)1-1/2lxinCe I1/2(wow) m/21- u) (4)

As functions of 0, f(v;0) and fm(01y) are identical up to a multiplic-

ative constant and so can be treated as equivalent likelihood functions.

This is because from Verbyla (1990), we have

so that

-
1 1'0(0)1'1 1 = lxi xl

1 
In(0)11xio(e) lx1

f(v;0) f
m
(0 Y) = 1 r(m/2) it -m/2 

pcx11/2 
(ez)m/2

(5)

which is not a function of 0. When repeated evaluations of the likeli-

hood function are required, it may be preferable to use (4). This is

because often 10(0)1 is known and only the determinant of the kxk matrix

-
X'0(0)

1 
X need be evaluated numerically. In deriving the score vector

and information matrix we found it easier to work with (3).

The log likelihood function implied by (3) is

L(0) = constant - 1 logiP0(0)P1 1 - log[vi(P0(0)Piriv

The scores are

8L(0) ) p 3c2(e) ]- - iI tr(P0(0)P -1 
'   1,1ae. 2 L ae.

. (6)

_ [v,(pn(e)p,)- iv]-1 [v,(p0(0)p,)-14 ao(e) plipounpl-iv]
2 ( ae.1
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awe)] m a2(e) 1 ci / (7)- tr me) ae.2 a 2e.

where from Rao (1973, p.77)

-1 -1
Li(e) = We) -

= P1(P0(0)P')
-1
P .

a
2Lo) awe) awl 1 a2 (e)1

tr AO) - 2 tr A(0) ae.aeae.ae. 2 ae. ae.1 1 j

+u,
AO) 

8
2o(e) awe) awe) 

A(0)u}A(Ou - 2u'A(0)   A(e)
2 ae.ae.1 ae. ae.

awe) awe) fu1i(e)u1-1 + u'1(e)   me)uu'Ace)   A(e)u}
2 .ae. aej

(u1 A(0)u)
-2
.

In order to derive the information matrix we need the following

result which is a special case of results given by Smith (1987, 1989).

LEMMA: Consider the linear regression model y* = x*g + u* where X*

is an nxk nonstochastic matrix and u* N(0,T
2
I
n
). Let e be the OLS

residual vector from this regression so that

= (I - X*(X*1X*) 1X*')u* = M*u* .
, n

(i) If A is any nxn symmetric matrix, then

E(e'Aeie' e) = tr (M*A)/m .

(ii) If A
1 
and A

2 
are any two nxn symmetric matrices then
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E[e'A
1 
ee'A

2 
ei(e'e)

2 
= ftr(M*A

1 
)tr(M*A

2
) + 2tr(M*A

1
M*A

2
)1 / (m

2
+2m).. 

We wish to find the expected value

u N(0,c
2
0(0)). Now

A(0)u = 
(1
2
(0)-1/2)

iM*0(0)
-1/2

u = 
(1:2(0)-1/2ye

where e is the OLS residual vector from the transformed regression

0(0)
-1/2

y = 0(0)
-1y2

xp +

in which 0(0)
-1/2

u N(0,c
2 
I
n
) and

M* = I c2 ( ) 1/2x ( ) x) 1 x,

Also observe that u'1(0)u = e'e . Therefore

/ 
3L(0) } 

[A(0) 
ao  

L(e) 
(e) acne)]E- tr

ae.ae 
j 

2 ae. ae.
1

+ tr[M*0(0)
-1/2 80(0) 

Ate) 8n(e)ae. ae.
1 

(7(e) h/2)]

0(0) -1/21

1 
/tr[M*0(0)

-1/2 awe) 1,(0)-1/2) 
i]tr 
[14,12(0)-1/2 3n(e) 

30.2 ae .
1

aue) 
assumingae.ae.

(8)

+ 2 tr[M*0(0)
-1/2 ai2(0)

a(e
)-1/21

wi2(e)
-1/2 80(0) 

ae. " 
(,(0)-1/2),]1

//(m+2)ae. 
1

an(e) ac(e)1 ] 1  rA(.1 
an(e)]tr A(0) ao(01  tr[A(0) A(0)2(m+2) ae ae 2(m+2) ae ae j. . . 

(9)
In what follows, let



81.(8)s(0) = ae

denote the score vector whose i
th 

component is given by (7) and let

denote the maximum marginal likelihood estimator of 0, i.e. that value

of 0 which maximizes (6). Also, let I(0) denote the information matrix

. .
whose (1,j)

th
 element is given by (9).

2.2 The Likelihood Ratio Test

Given 8, the marginal-likelihood-based LR test of Ho against Ha : 0

* 0 rejects Ho for large values of

- logIP0(8)P1 1 - m ez) (10)

which, under H
0' 

has an asymptotic chi-squared distribution with p

degrees of freedom. The first term in (10) can be evaluated using (5).

The GLS residual vector ci is that from (1) assuming u has covariance

- - - 1-
umatrix T 2 (ö). Thus u10(0)  can be calculated as the sum of squared

OLS residuals from (8) with 0 = Ô.

2.3 The Wald Test

The Wald test based on (6) rejects Ho for large values of

P p
o'I(8)8 =  2(m+2) E E 8.8. A(m tr 6) 3i2(5) A(e) m(ö)ae. a0.i=1 j=1 1

[

- tr 
Ace) awe)

ae. 1 tri() 
80(5)1}

1 ae
i

This statistic has an asymptotic x
2
(p) distribution under H

0.

special case of 13 .= 1, (11) becomes

8
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tri(A(8,3j0(5))21`-' ae H6(
500(6)111

ae / 
(2m+4)

and the formula for the standard error of 8 is

se(o) = [1171 
tr[(A(o) an(e))2

ae j
[

- 
tr[p(o) 8o(5)

ae 12}
1-1/2

/ (2m+4)

Therefore, when p = 1, Ho can be tested using 8 / se(e) which has a

standard normal asymptotic distribution under Ho.

2.4 The Lagrange Multiplier Test

Often it is inconvenient to obtain 6. The LM test has the

aim) _ _ an(o)-1
. Thenadvantage that it does not involve O. Let A. -

1 ae. ae.
1 1

the i
th 

element of s(0) is

auo) 
s.(0) = - z1 ae. 'A.z - tr[MA.] 2

2
1

and the (i,j)
th 

element of I(0) is given by

m tr[MA.MAJ (2m+4) - tr[MA.] tr[MA.] (2m+4) .
1 1

The LM test of H
o 
against H

a 
: 0 # 0 rejects H for large values of

-
s(0)' I(0)

1
 s(0) (12)

assuming an asymptotic x
2
(p) distribution under H0.

In the special case of p = 1, (12) becomes

9
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11.1 z'Az z'z tr[MA] / 2)2

fm tr[(MA)2] - (tr[MA])21 / (2m+4)
Observe that the square root of this statistic can be written as

z'Az z'z - tr[MA] m

2fm tr[(MA)2] - (tr[MAl)21/(f(m2(m+2))1
1/2

It has an asymptotic standard normal distribution under Ho.

(13)

King and Hillier (1985) have shown that for p = 1, rejecting Ho for

large values of z'Az/z'z is the LBI test of Ho against H. It results

in the same class of critical regions as the above one-sided LM test.

Furthermore, rejecting Ho for large values of (13) assuming a N(0,1)

- distribution is identical to applying the LBI test of Ho using the two

moment normal approximation to obtain critical values. Evans and King

(1985) have found this approximation gives reasonably accurate critical

values for tests of autocorrelation and heteroscedasticity. This is in

contrast to the literature on the accuracy of the asymptotic critical

values for the standard LM test.

2.5 The LMMP Test

From King and Wu (1990), the marginal-likelihood-based LMMP test of

H
0 

against H
a 
: 0 > 0, rejects H

0 
for large values of

/i) /1. 100). 1/2

E s.(0) /
i=1 I i=1 j=1

P P 1/2
1 E 

.1
Im z'Az z'z - tr[MA)1 / 1(0)E

2
i=1 j=1 

lj

10
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which has a N(0,1) asymptotic distribution under Ho, where A = E A..
i=1

Our lemma implies that the numerator of (14) has mean zero and variance

fm tr[(MA)
2
] - (tr[MA])

2
1 / f2(m+2)1 .

This suggests that the LMMP test can be based on (13) in which

A = E A.. When an asymptotic critical value is used to apply a LMMP
i=1 1

test, we call it an asymptotic LMMP (ALMMP) test.

3. Applications to Testing for AR(p) Disturbances and

Hildreth-Houck Random Coefficients

This section is concerned with the application of the above theory

to the problems of testing for general AR(p) disturbances and testing

for Hildreth-Houck (1968) random coefficients in (1).

3.1 Testing for General AR(p) Disturbances

Consider the AR(p) disturbance process for (1),

= 0
1
u
t-1 

+ 
02ut-2 

+ + 
0put-p 

+ e
t

u
t (15)

where e
t 

IN(0,c
2
), t = 1,...,n. We will assume a stationary

disturbance process which requires the autoregressive parameters

i = 1,...,p, to be such that the roots of the characteristic equation

-02v
2 
..• - 0 v = 0

lie outside the unit circle. Our interest is in testing

H : 0 = 0
2 
= = 0 =00 1 

against the alternative that at least one Oi is nonzero, i = 1,...,p.

11



Under (15), u N(0,T
2
7(0)) where (see van der Leeuw (1992))

-1WO) = [L'L NW] ,

in which L is the nxn matrix

-0
p-1

0 -0
p

1 0

0 0 .-e . . - 1el

and N is the nxp matrix of zeros but with the top pxp block being

_0 _0
p-1 

_0
p-2 1

0 _0 _0 _0
p-1 2

0 o -e
p

(16)(16)

From (16) it is possible to deduce that the inverse of the Cholesky

decomposition of WO), which we denote by H(0) = WO)-1/2, is equal to L

but with the top left pxp block replaced by the lower triangular matrix

h
11 

0 0 0

h
21 

h
22 

0

h h
pl p2

12



The hij values can be calculated recursively in the order indicated:

h =
P,P

h . =
P,P -1

_ 02)1/2

P)

-e. -0 p_iep) / hpp , i = 1,...,p-1 .

For q = p-1,p-2,...,2 and • p-q,

q-1

i-L11341 11

q-k-1 p-k

E hq,q_k 
k eiei+k E hi,c1hi'crk) 1/4 qq'

elei+k i=m+1 i=q+1

for k = 1,...,q-2, and

Finally,

h ocri - e e - h. h. ) / hq,1 .m+1 p i=c14.1 1,q 1,1 qq

h
11

= (1 p-1
r 1,2 )1/2

i=1 ' 

.02
p -i+1 1

The LR and Wald tests of H
0 

require maximum marginal likelihood

estimates of e. Based on (4) and Me), this involves maximizing

1logf
m
(01y) = log( n h..) - 2100-,x-1 - pogwe),i=1 iii

I

 )

where X* = H(G)X and e is the OLS residual vector from the regression

H(0)y = H(G)X + H(0)u . (18)

Letbdenotethevalueofewhichmaxlinizes(rnandletii..and R.lj
denote h.. and X*, respectively, evaluated at 0 = 8. Furthermore, let ;ij

denote the OLS residuals from (18) with 0 = 8.

13



A convenient form of the marginal-likelihood-based LR test is to

reject Ho for large values of

P A
loglX1 X1 2log( n h..) - logist*,R*1 - miog(;,;/z,z) (19)i=1 iii

i=1

 under H
0' 

has an asymptotic x
2 
(p) distribution.

In order to construct the Wald test, first observe that

awe)
-1

an(e) 
- -We) 0(0)

ae. ae.

and from (16)

= (13.(e) + 13:(e)) - (C.(e) + C'.(0))1 1 1

where B.(0) is the nxn matrix
1

B.(e) =

0. 0
i+1 . .p

0 0 
i 

0
p-1 

0
pi-1 

e . .0 
1 

e
2 p -14-1

1

0 _1

0 0 0

0 0

(20)

-1 0
1 

0

0 -1 0 0

and C.(0) is the nxn matrix of zeros whose top left ixp block is

14



•

0. e. 0 0 01 ei+1 . . p

0. e.1-1 1 p-1 p

02 3

e
21

-1
Define D.(0) = 

awe)  0(0) so thatae.

30(0) 
AO)

30. -M(0)*D.(0)
1

where M(0)* = I
n 
- 0(0) 1X(X10(0)

-1
X)
-1
X . The Wald test statistic

given by (11) simplifies to

P P A A
e'I(o)o = 

1 

E E"4"rim(e)*""")*1")]2(111+2) i=1 j=1 1 J

- tr[14(5)*D.Ced tr[M(e)*D.(8)li .

The LM test requires

A. ae.

(21)

which from (20) implies Ai is a matrix of zeros with two off-diagonals

of ones which begin at the (i+1,1)
th 

and (1,i+1)
th 

elements. Thus

and

n-i
2 E tfi1 e=1 '

n-j n-i
tr[MA MA.] = 4 E Em mi j 

q=1 t=1 q't cl+i't+1

15



where m.. is the (i,j)
th 

element of M. Furthermore,
lj

n-i
z'A.z = 2 E ztzt+i so that the LM test statistic is of the form of1

t=1

(12) where

n-i
2E E 

n-i

t=1 tsi(0) = m ztzt+i / — Ez
t=1 t=1

and the (i,j)
th 

element of I(0) is

(22)

n-j n-i n-i n-j
2mEEmm

q=1 t=i q't cl+j,t+i /
(m+2) - 2 

1 E me,t+i) E mt /(m+2).
t=1 t=i

(23)

3.2 Testing for Hildreth-Houck Random Coefficients

The Hildreth-Houck model assumes the regression coefficients at

2
time t are generated as gt = g + e

t 
where e

it 
IN(0,T.), i = 1, k,

and et is independent of e
s
, t * s. Also, assuming xlt = 1, the error

term ut is now part of Cit. Thus

y
t 

= x'g + 
xt'et 

= xj3 + w
t

where x
t 
is the kxl vector of regressors at time t. Therefore we have a

regression model whose error term is wt with E(wt) = 0 and

k 2 2
var(wt) = •E xit

i=1

= c
2
(1 + 1-'0)

2 22 ( 2 2 2)'
where 

T1 

2
, 0 = T. C , r

t = 
x
2t' 

x
3
 
t' 

x
kt 

andi-1

e = le e
2' 

ek-1) • The testing problem becomes one of testing

0 
: 0 = 0 against Ha : 0 > 0 in the context of (1) where

16



WO) = diag(1 + r10, . ., 1 + r'0) . (24)

ThealternativehypothesisisHa becausee.i= 1, ..., k-1, are ratios

of variances which must be nonnegative.

One could use the LR or Wald test based on ML estimates of 0 which

take account of the constraint 0 0. There is also Gourieroux, Holly

and Monfort' (1980) Kuhn-Tucker test. Unfortunately, the asymptotic

distributions of these test statistics under H
0 

are probability mixtures

of chi-squared distributions, making them extremely difficult to use if

k is large. We therefore shall not consider these tests.

Breusch and Pagan's (1979) LM test ignores the one-sided nature of

the problem and is based on rejecting Ho for large values of

- - -
f'X(X'X) X'f (25)

in which R is X with all elements replaced by their squares, and

f
t 
= z

t 
- 1 where c = z'z/n. An asymptotic test can be based on

(25) having a x2(k-1) distribution under H
0' 

although a number of inde-

pendent Monte Carlo studies report that this test rejects less frequent-

ly than it should under Ho. There are two directions in which the

small-sample performance of this asymptotic test might be improved. The

first is to construct an LM test using the marginal likelihood. The

Evans and King (1985) study suggests that, at least for k = 2, this

asymptotic test should be reasonably accurate in terms of its size. We

can also take account of the one-sided nature of the testing problem,

and apply King and Wu's (1990) ALMMP test. A third possibility involves

combining both suggestions and deriving an ALMMP test from the. marginal

likelihood.
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and

For our problem

A. 
1 

= diaglx1+1,1, xi+1,n) ,
2 2

Etr[MA ] = m 
2 

tt xi +1,tt=1

n 2 
2 2

tr[MA.MA.] = E xi+1,t L xi+1,q mtq 'j
t=1 q=1

i,j = 1,..,k -1.

Thus the marginal-likelihood-based LM test rejects Ho for large values

of (12), where

1 2 2 -2
s.(0) = E xi+1,t (zt / mtt)

t=1

and the (i,j)
th 

element of 1(0) is

n
x, 2 

n
r 2

m 1., x 1., xi+1,c1 44 /(2m+4)

{t 
j+1,t

=1 q=1

22
E mtt xi+1,t

- E mtt xi+1,4t=1

in which 
-2
c = z'z/m.

(26)

(2m+4) (27)

The ALMMP test derived from the standard likelihood

function is based on rejecting Ho for large values of

n 11/2
fl* i(t{2 E p* - - E x*

t n t=1 tj
t=1

(28)

assuming an N(0,1) asymptotic distribution under H
0' 

where R* is R with

the first column of ones deleted, t is a (k-1)xl'vector of ones and

2
x* = E .

xit
i=2
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From (14), the corresponding ALMMP test derived from the marginal like-

lihood rejects Ho for large values of

2 -2E x* (z cr - m
tt
)

t t
t=1

2 1 m [ E xZ E
t=1 q=1 x

q mtq
, 2 1

[ E mtt x 
12 

(m+2)
t=1

against an asymptotic N(0,1) distribution under Ho.

4. Monte Carlo Size and Power Comparisons

(29)

Monte Carlo simulations were conducted to compare the small-sample

size and power properties of classical and marginal-likelihood-based

tests for AR(4) disturbances and for Hildreth-Houck random coefficients

in the context of (1).

4.1 Experimental Design

For each testing problem, the first part of the study involved a

comparison of estimated sizes using asymptotic critical values. The

second part involved the use of the Monte Carlo method to estimate

appropriate five percent critical values of each of the tests which were

then used to compare powers at approximately the same significance

level. In the case of testing for AR(4) disturbances, the tests involv-

ed were the classical LR, Wald (W) and LM tests as well as the marginal-

likelihood-based LR (MLR), Wald (MW) and LM (MLM) tests. The. test stat-

istics of the latter three tests are respectively (19), (21) and (12)

with s.(0) given by (22) and I(0) by (23). The tests of H
0 

against

Hildreth-Houck random regression coefficients are the Breusch-Pagan LM

(BPLM), MLM, ALMMP and the marginal likelihood based -(MALMMP) tests.
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The respective test statistics are (25), (12) with s (0) given by (26)

and 1(0) by (27), (28) and (29).

The following nxk X matrices, chosen to represent a range of non-

seasonal, seasonal and cross-section data, were used in the comparison:

X1 : (nx2). A constant and a linear trend.

X2 : (nx4). A constant and three quarterly seasonal dummy variables.

X3 : (nx3). A constant, the quarterly seasonally adjusted Australian

household disposable income and private consumption expenditure

series, commencing 1959(4).

X4 : (nx3). A constant, quarterly Australian private capital movements

and Government capital movements commencing 1968(1). For k = 5,

the additional regressors are these two variables lagged one

quarter.

X5 : (nx3). Australian cross-sectional data classified according to

eight categories of sex/marital status and eight categories of age.

The variables are a constant, population, and number of households

whose head belongs to the given population category for 1961. See

Williams and Sams (1981) for further details of this data set.

X6 : (nx3). A constant and two regressors of independent drawings from

the (0,20) uniform distribution and the log-normal distribution

with a coefficient of variation of one, respectively.

For testing against AR(4) disturbances, sizes and powers were

estimated for X1, X2, X3 and X4 (with k = 5) for n = 30 and 60. 1000

replications and the following parameter combinations in (15) were used:

O' = (0.3,0,0,0), (0.5,0,0,0), (0,0.3,0,0), (0,0,0,0.3), (0.3,0.2,0,0),
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(0.3,0.2,0.2,0), (0.3,0.2,0.2,0.1), (-0.3,0,0,0), (0,0,0,-0.3),

(-0.3,0.2,-0.2,0.1), (0.3,-0.2,0.2,-0.2).

For testing against Hildreth-Houck coefficients, the design

matrices X3, X4, X5 and X6 all with k = 3 and n = 20 and 60 were

employed. 2000 replications and the following parameter combinations in

(24) were used:

0
1 

= 0.0, 0.3, 0.7, 1.0, 3.0, 5.0,

0
2 

= 0.0, 0.3, 0.7, 1.0, 3.0, 9.0.

All tests are invariant to the values of g and c2. This follows

from Breusch (1980) in the case of the LR and Wald tests and because the

LM and LMMP tests are based on ratios of quadratic forms in OLS resid-

uals.consequently,withoutlossofgenerality,,,i = 1,...,k, and c
2

g 
were set equal to one in the simulations.

4.2 The Size Results

Table 1 reports the estimated sizes of the six tests against AR(4)

disturbances when asymptotic critical values at the five percent nominal

level are used. The corresponding estimated sizes of the four tests for

Hildreth-Houck random coefficients are presented in table 2. In both

tables, a star superscript denotes an estimated size significantly

different from 0.05 at the one percent level.

Table 1 reveals that all estimated sizes of the classical LR and W

tests for AR(4) disturbances are significantly below 0.05 and are almost

zero. Also, there is no clear sign of improvement as n increases from

30 to 60. In contrast, the classical LM test has acceptable sizes, at

least for the design matrices used in this study. Only in one case, for
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n = 30, is an estimated size significantly greater than 0.05. With

respect to the marginal-likelihood-based tests for AR(4) disturbances,

the estimated sizes of the MLR and MLM tests are most acceptable. In

the case of the LR test, basing inferences on the marginal likelihood

provides a vast improvement in asymptotic accuracy. On the other hand,

the estimated sizes of the MW test are generally significantly greater

than the nominal level, although there is a clear tendency for these

sizes to converge to 0.05 as n increases.

For testing against Hildreth-Houck coefficients, all but one of the

estimated sizes of the BPLM test are significantly below 0.05. This is

consistent with results reported by Breusch and Pagan (1979), Godfrey

(1978), Griffiths and Surekha (1986) and Honda (1988). The ALMMP crit-

ical values seem more accurate although there is a noticeable trend for

- estimated sizes to be significantly below 0.05 when n = 60. The estim-

ated sizes of the marginal-likelihood-based tests are generally much

closer to 0.05 than their respective conventional counterparts. This is

particularly true for the LM test. Although there appears to be a tend-

ency for the marginal-likelihood-based tests to have true sizes slightly

above 0.05, overall their sizes are reasonably acceptable, ranging from

0.050 to 0.078.

Overall, it seems clear that the use of the marginal likelihood

improves the accuracy of standard asymptotic critical values. The

improvement is stunning in the case of the LR test, less obvious for the

LM test and rather debatable for the ALMMP test. Only for the Wald test

does the use of the marginal likelihood result in unacceptable sizes. A

number of studies have found the Wald test can have rather inaccurate

asymptotic critical values (see for example Lafontaine and White (1986)
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and Breusch and Schmidt (1988)). Our results may reflect yet a further

problem with the Wald test rather than with the marginal likelihood.

4.3 Power Results

Estimated powers of the six tests for AR(4) disturbances using

simulated critical values at the five percent level are presented in

tables 3 and 24. , .A.striking feature _of_ these results is the erratic

behaviour of the classical LB and Wald tests. Their range of powers is

much greater than those of the other tests going from near zero to

almost 0.95. For every X matrix, some of the estimated powers of these

two tests are below the significance level, thus showing they are biased

tests and have blind spots. This occurs at 0 =

(0,0,0,-0.3)' and (-0.3,0.2,-0.2,0.1)' for most X matrices. Generally

the powers of all tests increase as the sample size increases, ceteris

- paribus. The classical LB and Wald tests again provide the only excep-

tions which occur at the above three points for some X matrices.

In terms of power, no one test dominates the others. The minimum

power of each of the classical tests is significantly lower than that of

its marginal-likelihood-based counterpart. For n = 30, the average

power of the LB test for each X matrix is slightly higher than that for

the MLR test. A similar pattern holds for the Wald test while the

reverse is the case for the LM test. For n = 60, however, the average

power of each of the marginal-likelihood-based tests is higher than that

of the respective classical test. The differences in average power are

very large for the LB and Wald tests, ranging between 0.111 and 0.164

for the LB test and 0.083 and 0.142 for the Wald test.

The question of which test has the best overall power is a
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difficult one because different power curves dominate at different

points. Marginal-likelihood-based tests seem more reliable in that they

have higher minimum powers, at least for the points we considered. The

MLM test always has the highest average power of the six tests for

n = 30 while the MLR (Xl, X2, X3) and MLM (X4) tests share that distinc-

tion when n = 60.

We now discuss the estimated powers of the tests for Hildreth-Houck

coefficients. A feature of these results is that the ALMMP and MALMMP

tests are identical when appropriate critical values are found. This is

because the two test statistics can be written as monotonic functions of

E x*z2lez
t t

t=1

and it is from this statistic that both tests derive their power.

Selected estimated powers for X3, X4, X5 and X6 are presented in tables

5, 6, 7 and 8, respectively. The high degree of variation with the

choice of design matrix is not surprising because the degree of hetero-

scedasticity induced by the random coefficients depends on the variation

in the squared regressors. With a few minor exceptions, for a given X

matrix, there is very little variation in power as 0
1 
and/or 0

2 
change.

There is a tendency for powers to increase as 0
1 

or 0
2 

increases,

ceteris paribus, although there are many exceptions.

A comparison of the BPLM and MLM tests shows that the MLM test has

better power for half the regressions, namely X3, X4, and X5 when n = 60

and X3 when n = 20. An explanation is that the MLM test has its power

curve more correctly centred at Ho. At any point under H
a 

the slopes

of the two power curves will differ. When appropriate critical values

are used for both tests, this may mean the BPLM test has higher power
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than the MLM test over about half the unrestricted parameter space. Of

course, we are only interested in the positive quadrant of this space.

For design matrices X3 and X4, the one-sided (M)ALMMP test is

always more powerful than the two-sided BPLM and MLM tests. For X6 and

particularly for X5, the dominance of the (M)ALMMP test is less clear-

cut. In the case of X6, the (M)ALMMP test is always most powerful

except on the boundary 01 = 0.0 and also occasionally when 02 = 3.0, 9.0

and 0
1 

is small. On the boundary 01 = 0.0, the (M)ALMMP test loses

power as n increases in contrast to the two LM tests. For X5, partic-

ularly when n = 20, the LM tests are more powerful than the (M)ALMMP

test for 0 = 0 and as e
1 
increases for a wider range of 0

2 
values.2

Recently Wu (1991) compared the powers of the exact LMMP invariant

(LMMPI) test with the power envelope for a range of testing problems

involving the disturbances of (1). He noted that the LMMPI test can be

viewed as a sum of locally best invariant tests for each of the para-

meters being tested. He found the test works well when these individual

statistics, in our case monotonic functions of

E 
2

z
2
/z'z

t=1

are positively correlated and poorly when they are negatively

correlated. We note that the ALMMP and MALMMP tests for Hildreth-Houck

regression coefficients work best when the squared regressors

corresponding to the coefficients under test are positively correlated.

5. Concluding Remarks

This paper presents general formulae for the LR, Wald, LM and ALMMP

tests of covariance matrices of regression disturbances based on the
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marginal likelihood function. These tests can also be derived using

standard methods by treating the maximal invariant statistic as the

observed data. Monte Carlo results reported by Corduas (1986),- Evans

and King (1985) and in this paper suggest that this approach results in

tests whose true sizes are closer to the nominal size than their conven-

tional counterparts. The Wald test in very small samples may be a poss-

ible exception to this general observation. The traditional LM, LR and

Wald tests have often been found to have inaccurate critical values for

many different econometric testing problems. The approach used in this

paper can be used with the expectation of improving accuracy in a range

of other testing situations.

Our results indicate that the use of marginal-likelihood-based

tests does not necessarily result in increased power everywhere under

the alternative hypothesis. It does appear, however, that these tests

have better centered power curves in the sense that they are less likely

to have points under the alternative hypothesis with power below the

size and near zero. This is particularly evident for the LR and Wald

tests for AR(4) disturbances. Thus in terms of both size and power, we

conclude that a marginal-likelihood based test is likely to be more

reliable than its classical counterpart.
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Table 1: Estimated sizes of the LR, W, LM, MLR, MW and MLM tests based on
asymptotic critical values at the five percent nominal level.

Design
Matrix

Classical likelihood Marginal likelihood
based tests based tests

LR W LM MLR MW MLM

X1 30 .000* .003* .059 .056 .091* .059

60 .003* .004* .052 .053 .074* .058

X2 30 .006* .018*. .076* .061 .112* .063

60 .004* .005* .063 .042 .058 .051

X3 30 .000* .003* .056 .053 .110* .058

60 .002* .003* .059 .061 .080* .062

X4 30 .002* .013* .053 .067 .193* .067

60 .002* .003* .062 .060 .091* .062

denotes significantly different from 0.05 at the one percent level.
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Table 2: Estimated sizes of the BPLM, MLM, ALMMP and HALMMP tests based on
asymptotic critical values at the five percent nominal level.

Design
Matrix

Classical likelihood Marginal likelihood
based tests based tests

BPLM ALMMP MLM MALMMP

X3 20 .028* .038 .054 .056

60 .030* .036* .056 .064*

X4 20 .036* :052 .056 .058

60 .006* .006* .064* .062
,

X5 20 .016* .041 .078* .076*

60 .030* .030* .067* .070*

X6 20 .022* .044 .050 .058

60 .040 .062 .054 .066*

denotes significantly different from 0.05 at the one percent level.
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Table 3: Estimated powers of the six tests for AR(4) disturbances
using simulated critical values at the five percent level
and design matrices X1 and X2.

n Test

0 0.3 0.5 0.0 0.0 0.3 0.3 0.3 -0.3 0.0 -0.3 0.31
0
2 

0.0 0.0 0.3 0.0 0.2 0.2 0.2 0.0 0.0 0.2 -0.2

0
3 

0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 -0.2 0.2

0
4 

0.0 0.0 0.0 0.3 0.0 0.0 0.1 0.0 -0.3 0.1 -0.2

X1

30 LR .361 .718 .102 .084 .453 .451 :419 :005 .073 .006 .311

MLR .158 .450 .166 .147 .248 .269 .246 .172 .159 .691 .251

.351 .710 .098 .088 .441 .453 .421 .006 .061 .006 .314

MW .112 .284 .134 .144 -.133 .086 .051 .199 .196 .724 .228

LM .102 .313 .171 .205 .173 .171 .151 .221 .173 .758 .136

MLM .180 .500 .240 .210 .363 .402 .369 .171 .132 .735 .162

60 LR .560 .932 .168 .136 .717 .776 .786 .000 .042 .001 .421

MLR .375 .849 .401 .381 .594 .735 .751 .408 .371 .922 .560

.545 .927 .169 .136 .698 .768 .780 .000 .038 .001 .417

MW .353 .816 .370 .341 .529 .572 .453 .420 .386 .929 .548

LM .277 .780 .350 .331 .531 .692 .691 .442 .405 .959 .296

MLM .382 .850 .439 .367 .676 .800 .795 .366 .333 .953 .302

X2

30 LR .286 .678 .128 .077 .448 .522 .535 .002 .030 .009 .188

MLR .154 .440 .138 .119 .267 .373 .415 .151 .121 .412 .180

.294 .675 .137 .083 .452 .532 .556 .002 .029 .009 .202

MW .149 .405 .115 .092 .232 .327 .322 .148 .170 .310 .199

LM .190 .488 .131 .071 .342 .432 .500 .171 .227 .474 .154

MLM .154 .465 .182 .175 .344 .486 .553 .140 .087 .530 .100

60 LR .580 .950 .239 .149 .772 .877 .898 .002 .038 .001 .424

MLR .404 .885 .399 .372 .661 .832 .874 .440..375 .856 .556

.551 ..942 .224 .145 .749 .861 .894 .002 .031 .001 .419

MW .388 .861 .360 .310 .633 .807 .852 .408 .378 .839 .539

LM .404 .864 .352 .207 .691 .853 .864 .386 .461 .865 .337

MLM .404 .862 .415 .357 .708 .865 .886 .384 .316'.891 .290
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Table 4: Estimated powers of the six tests for AR(4) disturbances
using simulated critical values at the five percent level
and design matrices X3 and X4.

n Test

'0 0.3 0.5 0.0 0.0 0.3 0.3 0.3 -0.3 0.0 -0.3 0.31
0
2 

0.0 0.0 0.3 0.0 0.2 0.2 0.2 0.0 0.0 0.2 -0.2

0
3 

0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 -0.2 0.2

0
4 

0.0 0.0 0.0 0.3 0.0 0.0 0.1 0.0 -0.3 0.1 -0.2

X3

30 LB .346 .689 .074 .066 .390 .381 .342 .006 .070 .002 .285

MLR .146 .374 .149 .131 .214 .231 .200 .151 .145 .672 .219

.356 .703 .077 .078 .414 .386 .356 .006 .069 .002 .300

MW .079 .222 .109 .125 .103 .076 .048 .160 .157 .680 .171

LM .105 .256 .178 .205 .127 .107 .088 .222 .176 .753 .143

MLM .202 .479 .238 .189 .354 .367 .327 .156 .132 .718 .170

60 LB .555 .931 .138 .118 .694 .711 .712 .001 .049 .000 .444

MLR .347 .815 .384 .359 .544 .678 .681 .387 .355 .921 .562

.545 .925 .129 .118 .687 .707 .710 .001 .047 .000 .456

MW .277 .750 .309 .306 .442 .544 .512 .388 .341 .920 .486

LM .219 .713 .313 .329 .406 .575 .556 .455 .408 .959 .304

MLM .353 .825 .406 .353 .616 .749 .722 .335 .294 .954 .284

X4

30 LB .320 .671 .093 .055 .413 .471 .486 .006 .057 .004 .253

MLR .145 .387 .137 .118 .239 .346 .375 .124 .133 .572 .175

.311 .674 .091 .053 .394 .466 .482 .005 .055 .004 .254

MW .098 .248 .098 .105 .145 .189 .186 .117 .115 .582 .142

LM .094 .296 .129 .115 .168 .292 .350 .178 .138 .599 .110

MLM .138 .406 .167 .132 .289 .444 .493 .113 .079 .568 .096

60 LB .604 .945 .146 .092 .720 .750 .780 .000 .058 .001 .472

MLR .320 .800 .330 .329 .532 .691 .747 .342 .301 .905 .485

.623 .949 .152 .092 .727 .760 .795 .000 .056 .001 .499

MW .291 .760 .313 .305 .506 .670 .733 .334 .304 .905 .444

LM .264 .742 .282 .271 .467 .671 .699 .395 .422 .941 .281

MLM .344 .811 .374 .334 .613 .795 .816 .329 .276 ..938 .257
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Table 5: Estimated powers for X3 and the BPLM, MLM and ALMMP/MALMMP tests
using simulated critical values at the five percent significance
level.

TEST 02= 0 0
2
= .3 0

2
= .7 0

2
= 1 0

2
= 3 0

2
= 9'

n=20

BPLM 0.0 .050 .070 .080 .080 .084 .084
MLM .050 .080 .087 .088 .090 .090

(M)ALMMP .050 .096 .110 .114 .122 .125

BPLM .3 .072 .081 .084 .084 ;085 .084
MLM .080 .086 .090 .090 .090 .090

(M)ALMMP .099 .109 .115 .116 .122 .125

BPLM .7 .084 .084 .084 .084 .086 .086
MLM .088 .088 .090 .090 .090 .090

(M)ALMMP .113 .115 .118 .121 .123 .124

BPLM 1.0 .085 .085 - .086 .085 .086 .086
MLM .088 .088 .090 .090 .090 ' .090

(M)ALMMP .115 .118 .120 .122 .123 .124

BPLM 3.0 .087 .088 .087 .086 .086 .086
MLM .090 .091 .092 .092 .090 .090

(M)ALMMP .124 .125 .125 .126 .125 .125

.BPLM 5.0 .088 .088 .088 .088 .088 .088
MLM .091 .092 .092 .092 .091 .090

(M)ALMMP .126 .126 .126 .126 .126 .125

n=60

BPLM 0.0 .050 .821 .869 .880 .894 .899
MLM .050 .831 .876 .890 .898 .901

(M)ALMMP .050 .874 .912 .922 .934 .938

BPLM .3 .844 .873 .885 .887 .896 .900
MLM .854 .882 .892 .896 .898 .901

(M)ALMMP .894 .917 .927 .930 .936 .938

BPLM .7 .886 .890 .895 .897 .900 .900
MLM .892 .896 .899 .900 .900 .901

(M)ALMMP .929 .932 .935 .936 .938 .939

BPLM 1.0 .894 .898 .899 .900 .901 .901
MLM .900 .900 .900 .900 .900 .902

. (M)ALMMP .938 . .938 .938 .938 .940 .940

BPLM 3.0 .906 .904 .904 .903 .904 .902
MLM .908 .906 .906 .906 .904 .903

(M)ALMMP .944 .944 .944 .944 .944 .942

BPLM 5.0 .907 .907 .907 .906 .904 .904
MLM .910 .910 .908 .908 .906 .904

(M)ALMMP .947 .946 .944 .944 .944 .944
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Table 6: Estimated powers for X4 and the BPLM, MLM and ALMMP/MALMMP tests
using simulated critical values at the five percent significance
level.

TEST 0
2
= 0 0

2
= .3 0

2
= .7 0

2
= 1

2
= 3 0

2
= 9*1

n=20

BPLM 0.0 .050 .437 .437 .437 .437 .437
MLM .050 .416 .416 .416 .416 .416

(M)ALMMP .050 .502 .502 .502 .502 .502

BPLM .3 .372 .347 .370 .379 :400 .424
MLM .356 .322 .344 .354 .387 .404

(M)ALMMP .437 .458 .474 .484 .496 .502

BPLM .7 .372 .339 .347 .354 .385 .408
MLM .356 .315 .322 .330 .364 .393

(M)ALMMP .437 .450 .458 .465 .487 .499

BPLM 1.0 .372 .339 . .344 .347 .377 .398
MLM .356 .319 .318 .322 .350 .386

(M)ALMMP .437 .446 .455 .458 .480 .494

BPLM 3.0 .372 .353 .340 .339 .347 .377
MLM .356 .334 .322 .316 .322 .350

(M)ALMMP .437 .440 .446 .447 .458 .480

.BPLM 5.0 .372 .361 .348 .342 .344 .363
MLM .356 .341 .328 .324 .318 .332

(M)ALMMP .437 .438 .440 .443 .454 .472

n=60

BPLM 0.0 .050 .982 .982 .982 .982 .982
MLM .050 .990 .990 .990 .990 .990

(M)ALMMP .050 .994 .994 .994 .994 .994

BPLM .3 .994 .990 .988 .986 .983 .982
MLM .992 .994 .993 .993 .990 .989

(M)ALMMP .998 .998 .997 .996 .994 .994

BPLM .7 .994 .994 .990 .990 .986 .984
MLM .992 .996 .994 .994 .993 .990

(M)ALMMP .998 .998 .998 .998 .995 .994

BPLM 1.0 .994 .993 .992 .990 .988 .984
MLM .992 .996 .994 .994 .993 .990

(M)ALMMP .998 .999 .998 .998 .996 .994

BPLM 3.0 .994 .993 .994 .993 .990 .988
MLM .992 .996 .996 .997 .993 .993

(M)ALMMP .998 .999 .999 .999 .998 .996

BPLM 5.0 .994 .993 .993 .993 .992 .988
MLM .992 .994 .996 .996 .995 .994

(M)ALMMP .998 .999 .999 .000 .998 .998
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Table 7: Estimated powers for X5 and the BPLM, MLM and ALMMP/MALMMP tests
using simulated critical values at the five percent significance
level.

TEST 0 
1 

0
2
= 0 0

2
= .3 0

2
= .7 0

2
= 1 0

2
= 3 0

2
= 9

n=20

BPLM 0.0 .050 .596 .752 .800 .882 .907
MLM .050 .524 .690 .745 .839 .880

(M)ALMMP .050 .630 .774 .819 .892 .916

BPLM .3 .627 .724 .786 .809 ..866 .902
MLM .606 .691 .750 .774 .839 .876

(M)ALMMP .620 .738 .800 .828 .886 .910

BPLM .7 .761 .792 .817 .830 .868 .897
MLM .752 .774 .797 .809 .844 .872

(M)ALMMP .742 .786 .819 .837 .882 .906

BPLM 1.0 .801 .818- .832 .842 .869 .897
MLM .790 .802 .818 .824 .846 .872

(M)ALMMP .776 .800 .827 .840 .880 .906

BPLM 3.0 .861 .884 .873 .874 .880 .892
MLM .856 .856 .857 .858 .867 .873

(M)ALMMP .827 .833 .838 .848 .870 .898

BPLM 5.0 .877 .879 .880 .880 .884 .892
MLM .870 .869 .871 .871 .874 .880

(M)ALMMP .835 .840 .845 .850 .869 . .891

n=60

BPLM 0.0 .050 .619 .800 .852 .956 .986
MLM .050 .642 .810 .864 .957 .987

(M)ALMMP .050 .657 .813 .872 .956 .982

BPLM .3 .903 .929 .948 .959 .980 .984
MLM .912 .936 .954 .964 .984 .987

(M)ALMMP .897 .934 .960 .968 .986 .992

BPLM .7 .975 .977 .982 .985 .990 .993
MLM .976 .981 .984 .988 .992 .994

(M)ALMMP .975 .982 .986 .988 .992 .996

BPLM 1.0 .985 .987 .988 .990 .993 .994
MLM .988 .990 .993 .993 .995 .996

(M)ALMMP .988 .990 .992 .992 .996. .997

BPLM 3.0 .998 .998 .999 .999 1.000 .998
MLM .999 1.000 1.000 1.000 1.000 .999

(M)ALMMP .998 .999 .999 1.000 1.000 1.000
-

BPLM 5.0 1.000 1.000 1.000 1.000 1.000 1.000
MLM 1.000 1.000 1.000 1.000 1,000 1.000

(M)ALMMP 1.000 1.000 1.000 1.000 1.000 1.000
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Table 8: Estimated powers for X6 and the BPLM, MLM and ALMMP/MALMMP tests
using simulated critical values at the five percent significance
level.

TEST 0
2
= 0 82= .3 0

2
= .7 0

2
= 1 0

2
= 3 e

2
= 9

n = 20

BPLM 0.0 .050 .218 .326 .366 .462 .516
MLM .050 .268 .385 .437 .536 .579

(M)ALMMP .050 .078 .102 .110 .140 .163
,

BPLM .3 .716 .710 .695 .690 .651 .596
MLM .704 .694 .684 .674 .649 .622

(M)ALMMP .816 .804. .788 .778 .706 .576

BPLM .7 .733 .730 .726 .724 .698 .651
MLM .720 .718 .714 .712 .692 .657

(M)ALMMP .831 .824 .818 .814 .782 .694

BPLM 1.0 .736 .734 .733 .730 .714 .671
MLM .721 .721 .716 .717 .704 .652

(M)ALMMP .836 .830 .825 .822 .800 .734

BPLM 3.0 .739 .738 .736 .738 .736 .724
MLM .728 .728 .728 .728 .722 .711

(M)ALMMP .842 .840 .838 .837 .828 .805

BPLM 5.0 .740 .740 .740 .738 .739 .731
MLM .729 .728 .728 .728 .726 . .720

(M)ALMMP .842 .842 .840 .840 .836 .816

n = 60

BPLM 0.0 .050 .590 .812 .871 .956 .977
MLM .050 .618 .830 .885 .960 .984

(M)ALMMP .050 .034 .034 .036 .041 .044

BPLM .3 .992 .968 .988 .983 .970 .946
MLM .990 .987 .984 .982 .970 .950

(M)ALMMP .996 .995 .993 .990 .968 .810

BPLM .7 .992 .992 .991 .990 .982 .968
MLM .992 .991 .899 .989 .982 .968

(M)ALMMP .996 .996 .996 .995 .990 .959

BPLM 1.0 .992 .992 .992 .991 .988 .974
MLM .992 .991 .990 .990 .984 .973

(M)ALMMP .997 .996 .996 .996 .993 ' .976

BPLM 3.0 .994 .994 .992 .992 .991 .988
MLM .992 .992 .991 .991 .991 .985

(M)ALMMP .997 .997 .997 .997 .996 .994

BPLM 5.0 .994 .994 .994 .992 .992 .990
MLM .992 .992 .992 .992 .991 .990

(M)ALMMP .997 .997 .997 .997 .996 .995
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