
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


TIolu

ON ASH
UNI V ER SITY

AUSTRALIA

HYPOTHESIS TESTING IN THE PRESENCE OF NUISANCE PARAMETERS

Maxwell L. King

Working Paper No. 13/93

October 1993

venADRA‘14"

DEPARTMENT OF ECONOMETRICS



ISSN 1032-3813

ISBN 0 7326 0381 1

HYPOTHESIS TESTING IN THE PRESENCE OF NUISANCE PARAMETERS

Maxwell L. King

Working Paper No. 13/93

October 1993

DEPARTMENT OF ECONOMETRICS

MONASH UNIVERSITY, CLAYTON, VICTORIA 3168, AUSTRALIA.



HYPOTHESIS TESTING IN THE PRESENCE OF NUISANCE PARAMETERS

Maxwell L. King*
Department of Econometrics

Monash University
Clayton, Victoria 3168

Australia

Abbreviated running title: Testing in the Presence of Nuisance Parameters.

Keywords and phrases: Bayesian methods; first-order autocorrelation;

linear regression; marginal likelihood; Monte Carlo simulation;

p-values.

AMS classification numbers: 62, 90.

Abstract

How to deal with nuisance parameters is an important problem in econo-

metrics because of the non-experimental nature of economic data. This paper

suggests a new approach to dealing with such parameters in the context of

hypothesis testing. It involves calculating p-values conditional on values

for key nuisance parameters and then taking a weighted average of these

values with the weights reflecting the likelihood or posterior probabilities

of these values being true. Two specific applications are discussed. These

are testing linear regression coefficients in the presence of first-order

autoregressive (AR(1)) disturbances and testing for AR(1) disturbances in the

dynamic linear regression model. For the former testing problem, a Monte

Carlo experiment demonstrates that the new procedure provides more accurate

inferences than accepted conventional procedures:
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1. Introduction

The lack of experimental data distinguishes econometrics from its

parent discipline of statistics. Non-experimental data adds unwelcome

complications to statistical modelling of economic phenomenon. For

example, typically a range of extra factors which may not directly

influence the phenomenon under study, have to be taken into account by

econometric models. When modelling economic time-series, we are faced

.with the difficult task of correctly modelling the dynamics of the

process under study. A consequence of both these complications is that,

generally, econometric models contain large numbers of parameters, many

of which are not of direct interest. Also, because of the non-

experimental nature of economics, there is much less certainty about

model specification. It is not possible, for example, to conduct

experiments that might verify the existence and form of causal

relationships. This increases the need for reliable diagnostic

specification tests, particularly in the presence of nuisance

parameters.

Typically, statistical theory is good at providing tests for simple

models with few or no parametric complications. When nuisance

parameters are involved, statistical theory is generally less helpful in

suggesting reliable diagnostic tests. The standard approach is to

replace nuisance parameters by consistent estimates and then rely on

asymptotic theory. For the rather small sample sizes econometricians

often have to work with, this approach does not inspire confidence

particularly as a multitude of Monte Carlo studies have provided cause

for concern.
1

One-sided testing of a regression coefficient provides a simple

example of the damaging effect a nuisance parameter can have. In the
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classical linear regression model with independent and identically

distributed normal disturbances, the familiar one-sided t-test is an

exact uniformly most powerful invariant (UMPI) test. When, however, the

disturbances follow a stationary Gaussian first-order autoregressive

(AR(1)) process, a number of authors have found the standard asymptotic

tests to be unreliable. For example, Nakamura and Nakamura (1978)

reported actual sizes of up to 0.35 and 0.28 for sample sizes of 30 and

50 respectively for the asymptotic test based on the Cochrane-Orcutt

iterative estimator for AR(1) errors and a five per cent nominal level

of significance. King and Giles (1984) found that the form of the

regressors has considerable effect on the true size of the asymptotic

t-tests based on Durbin's (1960) estimator or the maximum likelihood

estimator (MLE). For one regressor set with 60 observations and for a

five per cent nominal significance level, they reported actual sizes

ranging up to 0.26 and 0.21 for tests based on Durbin's estimator and

the MLE, respectively. Other authors who have reported similar findings

include Park and Michell (1980), and Griffiths and Beesley (1984).

While the non-experimental nature of econometric data is a negative

complication, recent advances in computer hardware and software have

meant that vast computations can now be undertaken quickly and cheaply.

The future would appear to be such that we can begin to ask: what kind

of testing procedure would we wish to use if computation time were not a

constraint?

In this paper, a new approach to testing in the presence of

nuisance parameters is proposed. It involves first identifying key

nuisance parameters - those which if we knew their value we could apply

a standard exact test that is possibly optimal. Then a p-value is

calculated as an average of p-values from the standard test, conditional



on the key nuisance parameters' values.

The plan of the paper is as follows. The theory of the new test

procedure is outlined in section 2. Details of its application to (i)

testing regression coefficients in the presence of AR(1) disturbances

and (ii) testing for autocorrelation in the dynamic linear regression

model are given as examples. Section 3 reports a Monte Carlo experiment

that investigates the small-sample properties of the proposed test for

example (i) and compares these properties with those of existing tests.

Some concluding remarks are made in the final section.

2. Theory

Let y be an observable nx1 vector which is known to have

probability density

f(Y; w4,0)

where w, 0 and 0 are qx1, rxl and sx1 vectors of unknown parameters.

Suppose we wish to test

against

H
0 

0 = 0
0

H
a 

0 > 0

where 80 is a known rx1 vector.
2 

Then w and 0 are vectors of nuisance

parameters. They are written as two vectors with w being the vector of

key nuisance parameters in the sense that if we knew their value, we

would be able to apply an exact, possibly optimal, test. The aim is to

choose w such that q is as small as possible. Hence, conditional on w =

an exact p-value can be calculated. The p-value can be interpreted

as the probability of Evidence as Extreme or More Extreme as that in the

3



Data (EEMED) assuming H
0 

is true and w = w
1' 

i.e., we can calculate

PHEEMED I w = w1,y,H0) . (1)

In theory, we can calculate this p-value for any value of wl.

We could examine these p-values and if they are all below a, the

desired level of significance, we could reject Ho at the a significance

level. What should we do if some are above a and some below a?

There is information in the data. The data can tell us that some

values of w are more likely than others. Also, as the sample size

increases, the data provides more accurate information concerning likely

w values. An obvious approach is to take a Bayesian view. Using

non-informative priors, the marginal posterior distribution for w

provides a distribution of possible w values based on the information in

the data. An alternative is to take a likelihood approach. .Given the

nature of the key nuisance parameters, the concentrated or profile

likelihood for w seems worthy of consideration. Kalbfleisch and Sprott

(1970) criticised its use on the grounds that it assumes the parameter

values concentrated out are known to be equal to their maximum

likelihood estimates. No account is taken of the uncertainty due to

these parameter values being estimates. Kalbfleisch and Sprott

advocated the use of the marginal likelihood function.
3

Under 
H0' 

its

construction involves finding a .transformation of y for which the

marginal distribution of a subset of the transformed variables is

independent of 0. The marginal likelihood indicates the relative like-

lihood of different values of w occurring. It is also typically propor-

tional to the marginal posterior distribution for non-informative

priors.

4



In the case of the general linear model

u N(0,17
2
0)= X(µ)g u (2)

where y and u are nxl, X(µ) is an nxk matrix dependent on a parameter

vector µ, g is a kxl parameter vector and 2 is an nxn matrix, Bellhouse

(1978) has shown that the marginal likelihood for µ and c is

proportional to

where

L
m
(µ,Q1y) =

X' (µ)X(µ)
1/2f

yi y-y'X(µ)(X1(µ)X(µ))-1X1(µ)yl

r2
1/2

X' 400-1X(µ)
1/2 

s
n-k

s
2

= lyq2 ly -

= a'(µ,0)0

(3)

in which il(µ,Q) is the generalized least squares (GLS) residual vector

from (2) assuming covariance matrix Q and given µ. Model (2) covers a

range of linear models used in econometrics including the linear

regression model, the dynamic regression model and the reduced form of a

simultaneous equation model.

For our problem of testing Ho against Ha, let L
m
(wiy) denote the

marginal likelihood (up to a constant of proportionality). We can turn

it into a density function by taking account of the constant of

integration,

= L
m
(wly)dw , (4)

where R is the range of w. Then define
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so that

f(w y) = L
m
(wly)/c

Pr(EEMEDly and Ho)

PHEEMEDlw = wy
'
H
0
)f(wly)dw . (5)

Provided L
m
(wly) is known and (1) can be computed, (4) and (5) can be

calculated using standard numerical integration algorithms such as those

In IMSL. (5) can be used as a p-value for a test of Ho and is

essentially a weighted average of p-values conditional on different

values of w with the weights determined by the likelihood of different1

w values as indicated by the data.
1

Although the general linear model (2) covers a wide range of models

of practical interest, it should be noted that marginal likelihoods

cannot be constructed in all situations. Alternatives that might be

used to replace Lm(wly) in -1-4) and (5) in such cases include modified

profile likelihoods (see Barndorff-Nielsen (1986)) and conditional

profile likelihoods (see Cox and Reid (1987)). We shall now illustrate

the new approach by considering its application to two important econo-

metric testing problems.

2.1 Testing regression coefficients in the presence of AR(1)

disturbances

Consider the linear regression model

y
t 

= x'g + u
t 
, t = 1,...,n (6)

where yt is the dependent variable at time t, xt is a kxl vector of

nonstochastic regressors at time t, 13 is a kx1 vector of coefficients



and u
t 
is a disturbance term generated by the stationary AR(1) process

u
t 

= pu
t-1 

+ e
t 

, Ipl < 1 t = 1,...,n (7)

where e = (e
1,
...,e

n
)' N(0,T2I

n
). Suppose we wish to test

against

H
1 g
0 k

1
H
a gk

0 .
where g

k 
is a known fixed value. If p is known to be pi, say, then we

can transform (6) to

2 1/2
(1 - pi) yi ( - p

1
2
)
1/2

x'g + e
1 '1

(8)

P1Yt- 
- p

1
x
t 

+ e , .t = 2,..., n
1 -1

)'

and then apply the standard one-sided t test of '3k. The resultant test

is UMPI and exact p-values can be calculated from the Student's t

distribution with n-k degr6-6s of freedom.

Thus for this problem, p is a key nuisance parameter. Hence w = p,

= ...,g m2), and 0 =
1, k-1' gk.

Let X be the nxk matrix of

regressors, and let X* be X with the last column (the regressor

corresponding to gk) deleted. Then from (3), the marginal distribution

of p under H
1 
is proportional to

0

L
m  (ply) =

where

E(p)
-1/2 

X*'E
-1
(p)X*

-1/2 
s
-(n-k+1)

(9)



T
2
E(p) = cr

2
/ (1—p)

is the covariance matrix of u, and

1

p 1

p
2 

p 1

n-1

2 n-1
• p

1

p 1

s
2 -1 -1 -1 

= fyiE (p)y-y'E (p)X*(X*'E (p)X*)
-1

X*'E
-1
(p)yl .

The terms in the numerator of (3) have been omitted along with other

constants that do not involve p. Note that the marginal likelihood of p

under H
1 

is proportional to (9) with X* replaced by X and
a

-(n-k+1) -(n-k)
s replaced by s

In theory, the range of p values is the open interval (-1,1). For

practical purposes such as calculating (4) and (5), it must be approx-

imated by a closed interval. In the calculations reported in Section 3,

[-0.999,0.999] was used so that the constant of integration is

0.999

-0.9991"
m
(P111)4

and f(ply) = L(ply)/c. If t*(pi,y) denotes the calculated value of the

standard t-statistic for g
k 
from the transformed regression (8) and cl)(.)

denotes the cumulative distribution of the Student's t distribution with

n-k degrees of freedom, then the proposed test is based on the p-value

calculated as
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0.999 (

P(Y) = - (1)(t*(pi,y)))Lm(pily)/c dpi . (10)
-0.999

At the a level of significance, Ho is rejected if p(y) < a.

2.2 Testing for autocorrelation in the dynamic linear regression model

Consider the dynamic linear regression model

Yt = 7Yt-1 "it° ' ut t = 2,...,n (11)

where x
t 

and g are as defined in (6) and the disturbance term
' 

u
t'

follows the stationary AR(1) process (7). Suppose we wish to test

against

: p = 0

2
H
a 
: p > 0 .

Clearly, if the value of 7 was known to be 7
1 

say, then we could write

(11) as

Yt 
= xg + 

'
t = 2,..., n (12) 

71Yt-1 
i u

t 

and our testing problem becomes one of testing H
2 

against H
2
a 

in the
0

context of the static regression model (6) with yt - 7lyt_i replacing

Yt• The standard test in this situation would be to apply the

Durbin-Watson test which is approximately locally best invariant.

Obviously 7 is a key nuisance parameter so that w = 7, q5 = (I3I,c,
2
)1 and

= p.

It is assumed that data are available on yt and xt for n

observations, t = 1,2,...,n. In order to derive the marginal likelihood

function of 7, it is necessary to make further assumptions about yl and

9



u
1 

so that the distribution of y can be determined. We adopt the

approach used by Tse (1981), Nankervis and Savin (1985) and Inder (1985,

1986). This involves the following two assumptions:

(i) The mean of yt is stable at t = 1 so that E(y1) = E(yo)

(ii) The variance of yt is the same for all t = 1,...,n.

Inder (1985) shows that this is observationally equivalent to assuming

y is generated by
1

Y1 
= x'g / (1-7) + diul

1

where d
2 
= (1+7p) {(1-7p)(1-7

2
)1. Thus assuming

1

(13) can be written as

ry = xg + Du

where r is the nxn matrix

(1-7) 0 0

-7 •1 o

o -7 1

0

1 0

0 -7 1

I 7 I

(13)

< 1, (11) and

( 14)

y = (yi,...,y
n
)', X is the nxk matrix whose t

th 
row is x' and D is the

nxn diagonal matrix

= diag(d1(1-7),1,1,...,1) .

10



Equation (14) implies that

y = r-1xg + r-1Du

2
which under H

o 
is of the form of (2) with

and

1
X(µ) = r x (15)

= (16)

The marginal likelihood of 7 under H
2 

denoted L
m
(yly), therefore can be0'

computed using (3), (15) and (16) with d
1 
=

Assuming Ti is known, the Durbin-Watson statistic from (12) is

n n 2(

E z.d(71) = E 
3 Izt-zt-1) t=2 tt= 

where z = (z2,...,zn)' is the ordinary least squares (OLS) residual

vector from (12). Its p-value can be found by computing

[n-k-1
2

p*(71,Y) Pr E (v.-d(71)) i < o
i=1

using standard algorithms (see for example, King (1987)), where

"1"'"vn-k-1 
are the eigenvalues of (I - R(R150-15-V)A

1 
excluding k

zeros, R is X with its first row omitted, Al is the (n-1)x(n-1) matrix

A
1 =

1 -1 0 0

-1 2 -1

0 -1 2

2

-1 1

11



zt and IN(0,1), i = 1,...,n-k-1. Observe that z = z* where z*

and zt are (n-1)xl OLS residual vectors from the regressions of y
t 
on x

t

and y on xt, t = 2,...,n, respectively.

Typically, one might wish to assume T is restricted to the open

interval (0,1) which can be approximated by [0,0.999] say. Then the

constant of integration of Lm(71y) can be calculated numerically as

0.999
c = I L

m
(Tly)d7 .

0

The proposed test of H
2
0 

against H
2 
a 
is based on calculating

0.999

1--)(Y) =
o 

p*(71,y)Lm(T1ly) c

-
and interpreting p(y) as a p-value.

3. Monte Carlo Experiment

A Monte Carlo experiment was conducted in order to investigate the

small-sample properties of the proposed procedure in the case of testing

regression coefficients in the presence of AR(1) disturbances. The

sizes and powers of five test procedures were calculated for a range of

X matrices in the context of (6) and (7). The following test procedures

were studied:

(i) The OLS test. The OLS-based t test; i.e., ignoring the

presence of autocorrelation.

(ii) The p(y) test. The recommended procedure based on using p(y)

from (10) as a p-value. The marginal likelihood used is that

under the alternative hypothesis; i.e. (9) with X* replaced by

12



X and k-1 replaced by k.

(iii) The Durbin procedure. p in (7) is estimated using the

modification of Durbin's (1960) estimator outlined by King and

Giles (1984). Then a t test is applied to (6) after

transformation to (8) using the estimated p value as pl.

(iv) The ML test. As for the Durbin procedure except the MLE of p

based on Beach and MacKinnon's (1978) algorithm is used as pl.

in (8).

(v) The R test. The t test based on Wooldridge's (1989)

computationally simple heteroskedasticity and serial

correlation robust standard errors.

The following X matrices, each with sample sizes of n = 20 and 60,

were used in the study:

Xl: The regressors are a constant dummy, the Australian quarterly

consumers' price index commencing 1959(1) and the same index

lagged one quarter (lc = 3).

X2: X1 augmented by three quarterly seasonal dummy variables.

X3: The regressors are a constant dummy, and the quarterly

seasonally adjusted Australian household disposable income and

private consumption expenditure series commencing 1967(2)

(k = 3).

X4: X3 augmented by the income and consumption series lagged one

quarter.

X5: The regressors are the eigenvectors corresponding to the k = 3

smallest eigenvalues of the nxn A
1 

matrix..

13



X6: The regressors are al, (a
2
+a
n
)/V2,...,(ak+an_k+2)/Vf, where

a1,... ,a are the eigenvectors corresponding to the

eigenvalues of the nxn Al matrix ranked in ascending order and

k = 3.

X7: X6 with k = 5.

These X matrices were used by King and Giles (1984) in their study

because they reflect a variety of economic and statistical phenomena.

-
If E(p) is approximated by [(1-p)2In + pA

1 
1
 

then the OLS and GLS

estimators are identical for X5 and Watson (1955) has shown that within

the class of orthogonal X matrices with an intercept, OLS has minimum

efficiency relative to GLS for X6 and X7.

Our choice of the marginal likelihood under the alternative

hypothesis for use in the p(y) procedure deserves comment. While it may

be expected to result in less accurate sizes, it is more likely to

result in near optimal power in the following sense. As the sample size

increases, the marginal likelihood becomes more concentrated around the

true value of p, thus increasing the weights given to p-values based on

the true or near-true values of p. In other words the test becomes more

like the UMPI test based on the true value of p. Some preliminary

experiments confirmed that our choice of marginal likelihood works

better than does the H
1 
marginal likelihood (9).

0

The tests were conducted on the coefficient of the first

non-constant regressor at nominal levels of 10 and 5 per cent. Two

thousand replications were used in the study with the random

disturbances fetl, generated as outlined by King and Giles.

Probabilities of rejection were estimated at p 7 0.0, 0.3, 0.6, 0.9.

Where required, numerical integration was performed by the IMSL

14



subroutine DCADRE.

A selection of estimated sizes are presented in Tables 1 and 2

while corresponding estimated powers are given in Tables 3 and 4.

The proposed p(y) procedure is by far the most accurate of the five

tests in terms of having estimated sizes close to the nominal

significance levels. If confidence intervals are constructed around the

estimated sizes, the p(y) procedure is the only test whose 99 per cent

confidence intervals include the nominal size more than half the time.

In fact they bracket the nominal significance level in more than 80 per

cent of cases. The next best is the test based on Durbin's procedure

which is reasonably accurate for the larger sample size and is clearly

superior to the maximum likelihood based test. Wooldridge's simple

robust procedure is most disappointing. It is very hard to argue based

on the results of this study that the R test is better than wrongly

applying the OLS-based test. All tests have poor sizes for the

artifically generated X5 matrix although the p(y) procedure is best at

controlling the probability of a Type I error in this case.

Because the tests have different sizes, it is difficult to make

valid comparisons of powers. In most cases, the ordering of powers

reflects the ordering of the corresponding sizes. Only when one test

has both lower size and higher power than another test can a definite

conclusion be drawn. There is some evidence to suggest that when p = 0,

the OLS test has a slight power advantage over the other tests while

when p = 0.9, the p(y) procedure has a clear power advantage over the

OLS and R tests and is also slightly more powerful than those based on

the ML and modified Durbin procedures.
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Overall, the results of the Monte Carlo experiment are very

• encouraging. They certainly suggest that at least for the cases

considered in this study, the new procedure provides more accurate

inferences than accepted conventional procedures.

4. Concluding Remarks

How to successfully deal with nuisance parameters is an important

problem that econometricians are forced to face because of the non-

experimental nature of their data. This paper suggests a new approach

. to dealing with such parameters in the context of hypothesis testing.

It involves calculating p-values conditional on valUes for key nuisance

parameters and then essentially taking a weighted average of these

values with weights reflecting the marginal likelihood or posterior

probabilities of these values being true. In the case of testing a

linear regression coefficient in the presence of autocorrelation, our

Monte Carlo experiment demonstrates that the new procedure provides more

accurate inferences than accepted conventional procedures.

The idea of taking weighted averages of inferences conditional on

key nuisance parameters has also been found to work well for estimation

and forecasting in the context of the linear regression model with AR(1)

disturbances. Based on Bayesian arguments, Kennedy and Simons (1991)

proposed a weighted average of GLS estimates of g in (6) and (7)

conditional on p with weights determined by the marginal posterior

distribution of p. In a simulation study, they found that this

estimator had a much smaller mean squared error than conventional

empirical GLS estimators of g. Latif and King (1993) suggested the use

of forecasts from (6) and (7) constructed as weighted averages of fore-

casts conditional on p with weights proportional to the marginal like-

16



lihood of p. They reported a Monte Carlo experiment that showed this

procedure has a distinct edge over conventional procedures.

It does appear, therefore, that at least in the context of the

linear regression model, weighted averages of inferences with weights

determined by marginal likelihoods or posterior distributions have a lot

to commend them.
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Table 1: Estimated sizes of one-sided tests of H
0
: g

2 
= 1 when n = 20.

10% nominal level 5% nominal level

OLS p(y) Durbin ML R OLS p(y) Durbin ML

X1

0.0 .100 .100 .130 .127 .191 .052 .054 .070 .072 .126

0.3 .146 .106 .136 .140 .222 .088 .054 .082 .083 .162

0.6 .198 .114 .144 .132 .250 .130 .063 .082 .080 .200

0.9 .221 .104 .132 .094 .276 .166 .052 .074 .052 .220

X2

0.0 .094 .094 .124 .119 .203 .050 .048 .068 .066 .136

0.3 .146 .101 .132 .136 .234 .086 .053 .076 .078 .174

0.6 .197 .112 .139 .128 .277 .138 .059 .086 .082 .216

0.9 .226 .112 .134 .091 .290 .168 .057 .076 .060 .239

X3

0.0 .104 .116 .127 .117 .150 .052 .060 .076 .069 .092

0.3 .104 .114 .124 .116 .154 .052 .058 .065 .062 .097

0.6 .097 .108 .110 .088 .153 .046 .054 .055 .034 .099

0.9 .072 .089 .084 .051 .138 .031 .042 .044 .020 .080

X4

0.0 .108 .115 .129 .122 .154 .055 .060 .071 .062 .100

0.3 .098 .109 .115 .110 .156 .044 .058 .060 .056 .096

0.6 .084 .104 .100 .092 .144 .036 .052 .053 .038 .082

0.9 .051 .094 .091 .061 .115 .024 .048 .046 .022 .060

X5

0.0 .106 .065 .148 .130 .184 .049 .028 .083 .075 .119

0.3 .180 .064 .184 .164 .225 .116 .030 .118 .106 .163

0.6 .278 .100 .245 .216 .294 .220 .043 .182 .156 .239

0.9 .393 .225 .344 .324 .390 .356 .158 .309 .282 .354

X6

0.0 .102 .106 .110 .134 .157 .049 .054 .056 .082 .096

0.3 .123 .106 .116 .132 .180 .062 .050 .062 .077 .116

0.6 .196 .102 .135 .109 .248 .127 .052 .081 .062 .182

0.9 .316 .098 .184 .090 .338 .266 .048 .114 .056 .288

X7

0.0 .102 .101 .121 .162 .174 .050 .053 .065 .102 .120

0.3 .126 .104 .133 .169 .204 .064 .052. .074 .114 .136

0.6 .200 .105 .166 .164 .262 .134 .057 .113 .121 .198

0.9 .320 .103 .252 .190 .352 .268 .054 .186 .158 .307
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Table 2: Estimated sizes of one-sided tests of H
0. 
• 132 = 1 when n = 60.

10% nominal level 5% nominal level

OLS p(y) Durbin ML R OLS p(y) Durbin ML

X1

0.0 .099 .102 .114 .108 .130 .050 .050 .056 .058 .084

0.3 .148 .102 .110 .106 .154 .086 .052 .056 .053 .111

0.6 .178 .098 .108 .074 .178 .121 .051 .055 .032 .124

0.9 .256 .100 .100 .024 .242 .198 .049 .050 .008 .175

X2

0.0 .098 .101 .108 .107 .134 .049 .052 .058 .058 .084

0.3 .147 .092 .105 .099 .163 .084 .052 .054 .053 .109

0.6 .176 .097 .103 .069 .183 .119 .052 .052 .035 .126

0.9 .258 .098 .100 .012 .244 .200 .048 .052 .010 .171

X3

0.0 .092 .091 .104 .101 .120 .051 .047 .060 .060 .076

0.3 .152 .088 .104 .099 .150 .094 .048 .063 .056 .102

0.6 .232 .088 .112 .082 .204 .175 .046 .066 .046 .146

0.9 .351 .095 .125 .040 .325 .320 .048 .072 .018 .285

X4

0.0 .094 .091 .094 .096 .112 .043 .044 .057 .046 .064

0.3 .097 .090 .095 .088 .122 .047 .040 .054 .038 .070

0.6 .123 .083 .094 .064 .141 .056 .041 .057 .026 .080

0.9 .178 .094 .115 .032 .205 .116 .044 .070 .014 .142

X5

0.0 .092 .084 .108 .101 .115 .042 .040 .054 .051 .065

0.3 .174 .082 .126 .111 .156 .108 .040 .066 .060 .098

0.6 .270 .074 .160 .115 .220 .210 .036 .098 .066 .156

0.9 .388 .138 .286 .184 .354 .362 .068 .241 .136 .321

X6

0.0 .078 .083 .090 .094 • .092 .042 .042 .044 .050 .050

0.3 .102 .086 .088 .084 .116 .050 .040 .046 .040 .064

0.6 .188 .092 .095 .058 .184 .126 .046 .045 .024 .120

0.9 .340 .103 .108 .017 .332 .308 .056 .057 .004 .294

X7

0.0 .078 .086 .084 .098 .102 .040 .044 .046 .054 .054

0.3 .104 .086 .088 .091 .123 .052 .041 .044 .040 .068

0.6 .194 .094 .097 .062 .195 .130 .044 .050 .026 .134

0.9 .346 .108 .146 .022 .338 .314 .054 .085 .006 .305
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Table 3: Estimated powers of one-sided tests of Ho: 132 = 1 when n = 20.

10% nominal level 5% nominal level

OLS p(y) Durbin ML R OLS p(y) Durbin ML

xi g2/(7. = 100.0

0.0 .638 .604 .686 .680 .774 .486 .457 .570 .548 .678

0.3 .627 .566 .624 .606 .712 .502 .418 .496 .482 .627

0.6 .580 .545 .578 .536 .644 .484 .403 .457 .408 .575

0.9 .540 .556 .574 .459 .594 .455 .417 .440 .316 .522

X2 gza. = 100.0

0.0 .600 .564 .644 .630 .762 .434 .397 .507 •489 .658

0.3 .578 .499 .566 .544 .697 .458 .345 .432 .416 .610

0.6 .539 .466 .503 .457 .624 .443 .338 .391 .334 .549

0.9 .506 .468 .490 .360 .578 .416 .326 .358 .246 .520

X3 = 15.0

0.0 .660 .659 .674 .658 .720 .513 .522 .544 .526 .601

0.3 .655 .681 .684 .669 .726 .506 .545 .546 .532 .608

0.6 .624 .753 .782 .682 .714 .467 .593 .579 .522 .596

0.9 .568 .823 .800 .686 .682 .402 .673 .656 .496 .563

X4 g2/0. = 15.0

0.0 .608 .606 .623 .608 .683 .457 .468 .478 .45.6 .572

0.3 .620 .640 .640 .622 .704 .458 .493 .496 .476 .590

0.6 .584 .684 .676 .630 .698 .434 .534 .528 .473 .566

0.9 .539 .754 .741 .622 .670 .358 .593 .586 .461 .542

X5 g2/0. = 2.0

0.0 .972 .876 .978 .976 .986 .926 .682 .947 .938 .968

0.3 .918 .673 .904 .892 .938 .860 .430 .837 .814 .890

0.6 .806 .522 .758 .732 .808 .750 .314 .692 .652 .758

0.9 .661 .484 .618 .590 .660 .630 .356 .566 .532 .626

X6 gza. = 1.6

0.0 .727 .694 .716 .709 '.796 .581 .556 .590 .584 .698

0.3 .708 .706 .720 .723 .772 .574 .570 .583 .587 .673

0.6 .628 .740 .699 .730 .678 .532 .608 .580 .589 .600

0.9 .544 .800 .652 .702 .567 .504 .662 .568 .532 .524

X7 132/0. = 1.6

0.0 .728 .690 .729 .715 .823 .580 .555 .590 .595 .738

0.3 .706 .691 .722 .714 .796 .570 .557 .584 .596 .714

0.6 .631 .686 .668 .714 .696 .538 .549 .560 .596 .628

0.9 .550 .680 .588 .668 .577 .509 .552 .518 .545 .540
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Table 4: Estimated powers of one-sided tests of H
0
: 132 

= 1 when n = 60.

10% nominal level 5% nominal level

OLS p(y) Durbin ML R OLS p(y) Durbin ML

X1 g2/cr = 50.0

0.0 .886 .876 .889 .885 .918 .802 .788 .814 .810 .860

0.3 .828 .800 .816 .804 .840 .744 .683 .716 .688 .764

0.6 .726 .766 .776 .694 .719 .631 .638 .656 .536 .631

0.9 .554 .788 .782 .480 .531 .482 .659 .660 .276 .451

X2 1732/0. = 50.0

0.0 .878 .864 .878 .874 .908 .787 .772 .794 .786 .852

0.3 .814 .778 .716 .775 .829 .733 .664 .692 .665 .756

0.6 .710 .729 .744 .654 .709 .614 .600 .618 .484 .617

0.9 .544 .747 .746 .416 .522 .469 .612 .615 .230 .440

X3 132/c = 7.5

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 , 1.000 1.000

0.3 1.000 1.000 1.000 1.000 1.000 .999 .998 1.000 1.000 1.000

0.6 .988 .994 .996 .992 .982 .974 .980 .988 .973 .960

0.9 .785 .982 .972 .910 .754 .751 .964 .951 .767 .716

X4 (32/47 = 7.5

0.0 .982 .978 .978 .978 .985 .950 .946 .950 .947 .958

0.3 .970 .985 .985 .984- -.974 .934 .950 .956 .946 .943

0.6 .925 .986 .986 .974 .934 .866 .958 .965 .928 .883 -

0.9 .740 .984 .977 .896 .765 .640 .958 .950 .754 .682

X5 132/0. = 2.0

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.3 .998 .987 .997 .995 .998 , .996 .959 .988 .983 .995

0.6 .947 .739 .892 .823 .930 .932 .534 .822 .730 .890

0.9 .666 .326 .550 .403 .630 .646 .191 .486 .324 .590

X6 g2/0. = 1.6

0.0 .976 .972 .974 .970 .980 .946 .933 .942 .939 .953

0.3 .952 .978 .974 .979 .958 .910 .948 .946 .947 .914

0.6 .830 .992 .981 .988 .829 .768 .980 .956 .962 .759

0.9 .574 .998 .961 .972 .560 .529 .996 .936 .894 .507

X7 (32/m = 1.6

0.0 .976 .970 .972 .970 .982 .947 .932 .942 .934 .958

0.3 .950 .976 .970 .977 .958 .909 .946 ,944 .946 .924

0.6 .833 .992 .966 .988 .834 .773 .980 .930 .964 .777

0.9 .584 .998 .884 .980 .573 .540 .996 .845 .918 .530
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FOOTNOTES

1. See for example Bewley (1986, section 3.3), King (1987), King and

McAleer (1987), Moulton and Randolph (1989), Chesher and Austin

(1991).

2. If a and b are vectors of the same dimension then a > b denotes

a1 b1 for every i with at least one strict inequality.

3. Others to have proposed the use of the marginal likelihood

function, particularly in the context of estimation, include

Levenbach (1972, 1973), Patterson and Thompson (1975), Cooper and

Thompson (1977) and Tunnicliffe Wilson (1989). The main theme of

this literature is that the use of the marginal likelihood helps

reduce bias in maximum_likelihood estimation.
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