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1. Introduction

Monte Carlo experiments have become essential in econometrics to analyse the
behaviour of procedures that analytically cannot (at least easily) be treated. Because
we rely heavily on these simulation methods we must fully understand what we do.
Sometimes, unfortunately, we do not realize that there may be important differences
in the way the data is (artificially) generated and this may have a strong effect on
the outcome of an experiment. The purpose of this paper is to compare three very
similar and widely used approaches of Monte Carlo data generation and show how
the dissimilarities can influence the results.

We focus on the question how the exogenous variables of a model in a Monte
Carlo experiment are generated. In practice three different approaches are used:1

1. Pure Monte Carlo Data Generation:
The exogenous variables are considered as random and are generated using an
autoregressive process. In its basic form: the variable xt is generated in the
experiment as xt = 7xt_i + et, where 7 is a known parameter, st is a random
variable with known distribution and the starting point of the process xo is a

1 A quick review for the period 1985-1993 of the Journal of Econometrics, the Interna-
tional Economic Review, and Economics Letters shows that about 40% of the papers
using Monte Carlo methods (with exogenous variables) applied Pure, 25% Mixed and
25% Randomized data generation, while for about 10% there is not enough information
for the identification of the method.
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simple random variable (say, for example, with N(0,1) distribution). Then for
each Monte Carlo run the xt observations are generated again and again. This
approach takes into account the real life fact that in practice these variables are
likely to be observed with measurement error(s) and cannot be considered as
fixed. (Good examples of this type of experiments can be found in Verbee.k. and
Nijman [1993] and Inder [1993].)

9. Randomized Monte Carlo Data Generation:
The exogenous variables are real variables, they are not generated. In the
hypothesis testing literature (see, for example, Giles and Scott [1992] or Silvapulle
and King [1993]) the Durbin and Watson [1951] data on spirit consumption, spirit
prices, etc. in the U.K. is frequently used. We call this randomization because
the random disturbances are the only variables of the model generated artificially
in the experiment. The big advantage of this approach is that the results of
different studies can easily be compared. The disadvantage is that the results
are conditioned on the real data, therefore the researcher does not control all
parameters of the experiment, which can be considered as scientifically peculiar.

3. Mixed Data Generation:
The exogenous variables are generated as in the case of a pure data generation
(1.) but only once, then they are considered as fixed, so the same observations
are used again and again in the Monte Carlo runs as in the case of the randomized
data generation (2.). In this approach the experiment is fully under control, but
the outcome of the analysis depends on (is conditioned on) a single realization
vector of a (pseudo) random number generator. (See, for example, Veall and
Zimmermann [1992] for this type of Monte Carlo study.) Moreover, both in cases
2. and 3. the elements of the observation vector of the exogenous variables will
change as the sample size in the experiment changes. Therefore it can be very
difficult to separate the effects due to the change in the sample size from those
due to the change in the elements of that observation vector.

In this paper, using the three different ways of generating the exogenous variables,
we compare the results obtained by Monte Carlo analysis for two well known problems:
a) The small sample bias of the OLS estimator in a linear dynamic regression model
and the small and large sample bias of the OLS and GLS estimators in the same
model but with autocorrelated residuals;
b) The empirical critical values of the Durbin—Watson test (for a given size) for the
above two models.
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We used the models:

and

2. Framework of the experiment

Yt = aYt-i 13(1)x(t1) $(2)x(t2) ut

y t = ayt_i 0(i) x 1) #(2)A2) + et

1

(2)

where et = pEt—i vt and the disturbance terms ut and Et are assumed to be white
noise in a first round and then in a second round ut and Et are considered to be
lognormal (1, 1). Model (1) is estimated by OLS and model (2) by OLS and FGLS
and the bias of these estimators is analysed. In addition the Durbin-Watson test
statistic is calculated for both models using the OLS residuals and the empirical
critical values are determined for a test size of 5%. (About the legitimacy of using
the DW test in dynamic models, see Inder [1984], [1984)

The exogenous variables were generated in the following way:

— Pure Monte Carlo experiment:

(i) )0(0 (0 ( *(i) •xo= Eo X = 7xt-1 + Et i =

Scenarios:

— et*(i) N(0,1), -y = 0.5 t = 0...T, i = 1,2.

- st*(i) exponential distribution, with parameter = 1,
-y = 0.5 t = 0...T, i = 1, 2.

— Randomized Monte Carlo experiment:

The exogenous variables x(1) and x(2) are not generated, they are the annual
consumption of spirit (1870-1938) and the log relative price of spirits in the U.K.
drawn from Durbin and Watson [1951].

— Mixed Monte Carlo experiment:

The exogenous variables x(1) and x(2) are generated as in the Pure case but only
once and then they are kept fixed.
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3. Results of the Monte Carlo analysis

The simulation results are summarized in Tables 1-4. The first striking result is that
the use of a given data set (here the Durbin-Watson data) leads to biases (and partly
DW critical values) completely different from those obtained by the Pure and Mixed
methods for both models (1) and (2) regardless the distribution of the residual terms.
How to interpret this contradictory outcome? Does this mean that the randomized
experiment is worthless because the biases are unrealistically large? Or just the
other way round: does this mean that the Pure and Mixed experiments are worthless
because the biases are unrealistically small? Or should we conclude that the Monte
Carlo experiment, as it is, is completely useless to estimate the magnitude of the
bias for the analysed estimators? The obvious answer to all these questions would
be that the results are conditioned on the set up of the experiment and therefore
their validity is limited. Fine, but is all this relevant from a practical point of view?
When one estimates a model, in general, the distribution (the DGP) of the exogenous
variables is unknown. Is it fair to say that it is likely that the bias is, going to be
around the values shown by the Pure and Mixed methods but in some cases it may
be much larger? (When?) Are these results due to the distribution of the DGP for
the Durbin-Watson data, or just to the given (atypical) realization of the process?
(Graphs 1-2 show that it is not very likely that the DGP in the Durbin-Watson data
can be well represented by any usual uni-modal distribution.) Unfortunately we do
not know the answer(s) to most of these questions, but at least we must be aware of
them.

It seems (in our framework) that there is not too much difference between the
Pure and Mixed methods, at least in large samples when the residuals are white noise.
In small samples, however, important differences can occur. When the residuals
have an asymmetric (lognormal) distribution it can be a non negligible difference
between these two methods. We must emphasize that according to our results the
Mixed method is not a midway approach between the Pure and the Randomized data
generation but it seems to be closer to the Pure generation process.

The introduction of lognormal residuals has increased substantially the bias of
the estimators in model (1) while this seems to have little effect for model (2).

The DW test critical values turned out to be less sensitive to the changes in the
design of the experiment (as far as the normality of the residual terms is maintained),
which confirms the well known robust behaviour of this test, especially when the
exogenous variables are artificially generated. However, a small change in these critical
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values (or the size of the test) can make the difference between a correct and an
incorrect decision, so the seemingly minor changes can be very important.

4. A further method

As .far as we are aware, the above three methods cover econometric practice of how
to generate the exogenous variables of a model in a Monte Carlo study. However,
there is at least one other approach worth considering in this context. It is possible
to combine the Pure and the Mixed procedures by introducing an extra loop into
the data generation process. First a Mixed Monte Carlo experiment is carried out.
Then in the next step the exogenous variables are re-generated again, but only once,
and the Mixed experiment is re-run. We proceed like this as many times as we
wish. This procedure is similar to the Pure data generation, but unlike there, the
exogenous variables here are generated in an additional external loop. This method
is able to combine some the advantages of the Pure and the Mixed approach: while
the exogenous variables are kept fixed we do not have to rely on a single realization
vector of a random process.

From the point of view of our analysis the Combined simulation is able to answer
two questions: a) whether the fact that only a single realization of a random vector
was used has important effect on the Mixed method: and b) is the Combined method
an improvement vis-a-vis the Mixed method. It can be seen from Tables 5 and 6
that the average biases are nearly the same as in Tables 1-4, therefore it seems that
this is not performing better than the Mixed method. However the magnitudes of
the maximum biases are a warning to us that in the Mixed approach the range of
the biases obtained is quite large. This means that the use of a single realization of
the exogenous variables may lead to quite unstable results. Therefore the Combined
should be preferred to the Mixed method, because the range of the results gives
us valuable information about the reliability of the simulation (of course within the
framework of the setup).



5. Conclusion

In this paper we investigated how different ways to generate data in a Monte Carlo
experiment can influence the outcome of an analysis. The results teach us to be very
careful not only with the interpretation of Monte Carlo simulations, but also with
their use as benchmarks for empirical studies. The results obtained are very sensitive
to the setup of the experiment(s) and the way the exogenous variables are generated
so the extrapolation of the results to real life problems seems to be less than obvious.
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Table 1. Simulation results for Model (1)

(normal residuals)

Normal exogenous OLS*
Variables bias

"Pure" MC a 132gl
T = 10 0.254 0.343 0.333

T = 25 0.118 0.165 0.162

T = 60 0.071 0.096 0.097

"Mixed" MC

T = 10 0.267 0.249 0.289

T = 25 0.114 0.157 0.130

T = 60 0.065 0.068 0.073

Exponential exogenous

variables

DW**
Critical Value

2.869

2.466

2.305

2.599

2.490

2.322

"Pure" MC

T = 10 0.194 0.342 0.356 2.947

T = 25 0.096 0.160 0.156 2.584

T = 60 0.059 0.091 0.088 2.369

"Mixed" MC

T = 10 0.154 0.227 0.244 2.943

T = 25 0.081 0.179 0.131 2.576

T = 60 0.057 0.095 0.080 2.334

Fixed exogenous

variables

T = 10

T = 25

T = 60

0.184

0.137

0.092

14.48

7.30

0.96

* *

n -131

i=1
, where n = number of replications

13.58

6.87

0.89

Critical value of the DW test for - a size of 5%

3.114

2.47

2.19



Normal exogenous
variables:

Table 2. Simulation results for Model (2)
(normal residuals)

OLS* FGLS*
bias bias

DW**
Critical Value

"Pure" MC a g1 g2 
a g2g1

T = 10 0.250 0.361 0.384 0.285 0.345 0.345 2.512

T = 25 0.191 0.196 0.197 0.182 0.190 0.183 1.966

T = 60 0.200 0.125 0.127 0.168 0.108 0.114 1.777

"Mixed" MC

T = 10 0.298 0.260 0.337 0.274 0.245 0.320 2.324

T = 25 0.181 0.166 0.175 0.173 0.156 0.164 1.977

T = 60 0.187 0.113 0.143 0.179 0.100 0.111 1.814

Exponential exogenous

variables

"Pure" MC

T = 10 0.186 0.364 0.393 0.240 0.398 0.439 2.744

T = 25 0.130 0.198 0.198 0.220 0.188 0.194 2.00

T = 60 0.144 0.147 0.153 0.239 0.105 0.114 1.746

"Mixed" MC

T = 10 0.134 0.641 0.293 0.141 0.733 0.290 2.778

T = 25 0.100 0.205 0.164 0.164 0.207 0.160 1.998

T = 60 0.126 0.148 0.118 0.216 0.108 0.096 1.737

Fixed exogenous

variables

T = 10 0.248 20.90 19.53 0.486 24.60 22.16 2.921

T = 25 0.147 10.19 9.601 0.333 13.47 12.90 2.054

T = 60 0.212 1.096 1.027 0.354 3.162 2.677 1.825

n
* r  

i=1

* *

, where n = number of replications

Critical value of the DW test for a size of 5%.
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Normal exogenous
Variables

Table 3. Simulation results for Model (1)

(lognormal residuals)

OLS*
bias

DW**
Critical Value

"Pure" MC a g2gl
T = 10 0.306 0.405 0.406 2.879

T = 25 0.284 0.206 0.204 2.460

T = 60 0.303 0.136 0.139 2.341

"Mixed" MC

T = 10 0.553 0.349 0.254 2.383

T = 25 0.325 0.178 0.208 2.239

T = 60 0.304 0.093 0.195 2.624

Exponential exogenous

variables

"Pure" MC

T = 10 0.037 0.231 0.244 2.796

T = 25 0.101 0.209 0.146 2.593

T = 60 0.092 0.140 0.103 2.400

"Mixed" MC

T = 10 0.144 0.402 0.406 2.985

T = 25 0.094 0.199 0.209 2.601

T = 60 0.102 0.122 0.121 2.431

Fixed exogenous

variables

T = 10

T = 25

T = 60

0.134

0.097

0.094

12.42

6.724

1.073

nE
  , where n = number of replications

i=1

11.50

6.336

0.850

** Critical value of the DW test for a size of 5%
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Normal exogenous
variables:

Table 4. Simulation results for Model (2)
(lognormal residuals)

OLS* FGLS*
bias bias

DW**
Critical Value

"Pure" MC a g1 g2 
a g2gl

T = 10 0.243 0.391 0.383 0.274 0.387 0.376 2.509

T = 25 0.193 0.199 0.195 0.181 0.193 0.178 2.001

T = 60 0.199 0.127 0.129 0.178 0.110 0.109 1.788

"Mixed" MC

T = 10 0.304 0.280 0.342 0.267 0.248 0.324 2.346

T = 25 0.181 0.169 0.175 0.170 0.156 0.165 1.950

T = 60 0.187 0.110 0.144 0.178 0.100 0.111 1.813

Exponential exogenous

variables

"Pure" MC

T = 10 0.188 0.398 0.407 0.245 0.413 0.409 2.748

T = 25 0.127 0.197 0.207 0.226 0.181 0.191 1.986

T = 60 0.138 0.149 0.152 0.241 0.111 0.114 1.705

"Mixed" MC

T = 10 0.138 0.671 0.299 0.148 0.720 0.286 2.759

T = 25 0.097 0.200 0.165 0.171 0.208 0.160 1.970

T = 60 0.124 0.144 0.120 0.221 0.108 0.097 1.724

Fixed exogenous

variables

T = 10 0.298 23.08 21.45 0.501 23.82 21.96 2.779

T = 25 0.161 9.890 9.304 0.382 13.48 13.12 2.023

T = 60 0.181 1.219 1.137 0.337 3.217 2.775 1.769

* *

n -131

1=1
, where r = number of replications

Critical value of the DW test for a size of 5%.
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Table 5. Combined MC results for model (1)

Normal residuals

- Normal exogenous
variables

T = 10
T = 25
T = 60

- Exponential
exogenous
variables

T = 10
T = 25
T = 60

Lognormal residuals

- Normal exogenous
variables

T = 10
T = 25
T = 60

- Exponential
exogenous
variables

T = 10
T = 25
T = 60

OLS

bias max bias

0.242
0.120
0.069

0.136
0.097
0.058

0.303
0.289
0.298

0.144
0.097
0.101

0.359
0.162
0.098

0.356
0.158
0.090

0.417
0.224
0.137

0.420
0.185
0.122

11

0.319
0.163
0.095

0.331
0.157
0.092

0.410
0.233
0.141

0.409
0.195
0.115

a

0.338
0.148
0.079

0.376
0.142
0.069

0.536
0.403
0.348

0.327
0.163
0.132

Pi

0.986
0.405
0.134

1.096
0.267
0.138

1.209
0.586
0.300

1.151
0.322
0.131

132

0.700
0.248
0.130

0.907
0.284
0.133

1.047
0.615
0.369

1.051
0.530
0.211



Table 6. Combined MC results for model (2)

Normal residuals

- Normal exogenous
variables

T = 10

T = 25

T = 60

- Exponential
variable

T = 10

T=25

T = 60

Lognormal residuals

- Normal exogenous
variable

T = 10

T = 25

T = 60

- Exponential
exogenous
variables

T = 10

T = 25

T = 60

OLS FGLS
bias bias

(max bias) (max bias)

a 
131

a 13 1 132

0.258 0.373 0.374 0.268 0.383 0.370
(0.328) (0.741) (0.735) (0.347) (0.881) (0.696)
0.189 0.196 0.204 0.181 0.184 0.195
(0.238) (0.277) (0.297) (0.223) (0.269) (0.301)
0.159 0.125 0.124 0.172 0.109 0.110
(0.236) (0.160) (0.162) (0.204) (0.135) (0.138)

0.194 0.347 0.394 0.239 0.407 0.424
(0.307) (0.785) (1.666) (0.356) (1.207) (1.831)
0.130 0.200 0.199 0.213 0.189 0.186
(0.192) (0.348) (0.397) (0.279) (0.410) (0.353)
0.144 0.152 0.151 0.236 0.113 0.110
(0.179) (0.221) (0.253) (0.290) (0.171) (0.168)

0.260 0.404 0.399 0.275 0.403 0.408
(0.342) (0.988) (1.130) (0.395) (1.044) (1.033)
0.190 0.199 0.196 0.180 0.186 0.186
(0.252) (0.343) (0.285) (0.213) (0.328) (0.268)
0.197 0.126 0.126 0.174 0.109 0.109
(0.239) (0.165) (0.172) (0.210) (0.140) (0.150)

0.195 0.412 0.425 0.240 0.409 0.436
(0.306) (1.384) (1.107) (0.390) (1.392) (1.179)
0.127 0.202 0.207 0.219 0.187 0.198
(0.185) (0.385) (0.331) (0.290) (0.327) (0.458)
0.139 0.150 0.149 0.239 0.115 0.114

(0.183) (0.237) (0.234) (0.277) (0.195) (0.182)
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Graph 1. Histogram for the Durbin-Watson data



Graph 2. Histogram for the Durbin-Watson data
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