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1. Introduction.

The econometric literature provides a number of models for the analysis of

discrete choice behavior (for a survey see inter alia Fry et al (1993), McFadden

(1985)). This paper concerns the testing of a behavioral assumption implied by the

most popular model for polychotomous (or multinomial) choice situations, the Logit

model. The Logit model embodies the independence of irrelevant alternatives (IIA)

property, which implies that the choice between two alternatives in a given choice

set depends only upon the attributes of the alternatives being compared and not on

the attributes, or the existence, of any other alternatives in the choice set.

Whilst this property may be an advantage, it does imply strong restrictions on

choice behavior. In particular, it implies a uniform pattern of response to

changes in the attributes of one alternative, which is inconsistent with the

heterogeneous patterns often encountered in economic data. Thus it is important to

see if the data are consistent with this property. That is to test for the

existence of the IIA property.

Several tests have been proposed in the literature. They fall into two categories.

Those based upon partitioning the choice set and those based upon comparing the

Logit model with a particular alternative model specification which does not

embody the IIA property. There appears to be little agreement in the literature as

to which procedure is the best. Furthermore, the existing tests all rely on

asymptotic results and as a result not much is known about their performance in

finite samples. This paper examines the finite sample properties of six (four

choice set partitioning and two alternative model) tests of the IIA property using

a Monte Carlo simulation study.

The plan of the rest of the paper is as follows. In the next section we discuss

the specification of Logit models for discrete choice behavior and the associated
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IIA property. In section 3 we describe the six tests for the IIA property that we

consider in this paper. Section 4 contains the details of our Monte ,Carlo

simulation study and a discussion of our results. Finally section 5 contains some

concluding remarks.

2. Logit Models- and -Independence of Irrelevant Alternatives.

In this section we discuss the specification of Logit models of discrete choice

behavior and the associated IIA property. As is common in the literature (see, for

example, Fry et al (1993)) we will consider a random utility maximization model

with (indirect) utility function given by:

Ujj = Xi) 4. Eii, i = 1, • • • , n; j = 1, •••, J, (1)

where LA is the utility individual i derives from choosing alternative j which

comprises of two components Vii and eii. V, is a deterministic component which

depends upon characteristics of the individual Xi and variables which vary across

both individuals and alternatives, Z. eii is a random component which represents

unobservable factors. Typically the Vii function is assumed to be linear. Thus,

= fiiCC + X;i3i + eii, i = 1, n; j = 1, J,

and often the ; and J Xi vectors are combined into IN to yield:

with 8 = 13;, PT.

Ii,
i = 1, j = 1, J,

(2)

(3)

In the random utility maximization model individuals are assumed to make

selections that maximize their utility. Hence the probability that individual

chooses alternative 1 is given by:

1311 = P(U11>li12 and U>U ... and liii>Uij)

with similar expressions for the other selection probabilities. If we assume that
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the eIJ. are independent and identically distributed as Extreme Value then we

obtain a Logit model for the selection probabilities with:

exp(Vii)
Pij = j 

exp(Vik)

k=1

i = 1, n; j = 1, • • • , J. (4)

Under the usual assumption of a linear form for Niq (equation (2)) we should

distinguish between three forms of the Logit model. If a = 0 the model is termed a

multinomial Logit (MNL), when 13i = 0 V j the model is the conditional Logit and

when a # 0 and pj # 0 V j the model is a mixed Logit. Typically the use of one

variant of the Logit model rather than another variant is a matter of data

availability. In this paper we concentrate upon the MNL variant of the Logit model

which is consistent with modeling with survey data on choices and individual

characteristics Xi (e.g. Crichton and Fry (1992)).

A particularly important, and potentially restrictive, property of the Logit model

is that of independence of irrelevant alternatives (for further details see Fry et

al (1993)). This property states that the odds of choosing alternative j over

alternative k (k # j) Pii/Pik are independent of all other alternatives and the

number of alternatives in the choice set. For a Logit model,

P.IJ-

Pik

exp(Vii)

exp(Vi)

which using the form for the N./4's given in equation (2) above will satisfy the

definition of IIA. If a model incorporating IIA provides an appropriate

representation of discrete choice behavior then considerable advantages are gained

in model specification, estimation and in forecasting. Thus it is important• to

test for the IIA property and the next section discusses six tests for IIA.



3. Tests for Independence of Irrelevant Alternatives.

Tests for the IIA property fall into two categories. Those based upon choice set

partitioning and those based upon comparing the Logit model with an alternative

model specification which does not embody the IIA property. Although there is

little agreement in the literature as to which procedure is best, it does appear

that, particularly in applied work, choice set partitioning tests dominate. In

this section we describe four choice set partitioning tests and two tests based

upon an alternative model specification (the DOGIT model of Gaudry and Dagenais

(1979)) for the IIA property.

3.1 Choice Set Partitioning Tests.

The idea behind choice set partitioning tests is simple: if the IIA property is

valid then the model structure and parameters are unchanged when choice is

analyzed conditional on a restricted subset of the full choice set. Therefore,

such tests are based upon seeing whether the estimated parameters or maximized

log-likelihoods from the full choice set C (= {1, ..., J}) and a proper subset D

of the full choice set are significantly different from each other. The choice set

partitioning tests we consider are the Hausman-McFadden (HM) test (Hausman and

McFadden (1984)), the McFadden-Train-Tye (MU) test (McFadden, Train and Tye

(1981)), the Horowitz (H) test (Horowitz (1981)) and the Small-Hsiao (SH) test

(Small and Hsiao (1985)). The first of these, HM, is a Hausman specification test

and the other three, MU, H and SH, are variants of a likelihood ratio test.

Probably the most widely applied test for IIA is the HM test. The HM test

statistic is based upon the fact that if IIA holds the model structure will be

invariant to whether the parameter estimates are obtained from the full choice set

C or from a restricted subset, D, of this choice set. That is consistent estimates

of 5 in (3) are obtained by maximizing the log-likelihood of the Logit model



either over the full choice set C, yielding 5c, or over the subset D, yielding SD.

The test is a Hausman test (see Hausman (1978)) with two estimators being

employed. One of these op is both consistent and efficient under the null

hypothesis of IIA but inconsistent under the alternative that IIA does not hold.

The other estimator 8c is consistent under both the null and alternative but

inefficient under the alternative. The HM. test -statistic is given by:

HM = C8D - icyC2-05D - = (5)

where if is the generalized inverse of the asymptotic covariance matrix of q.

Asymptotically the test follows a chi-squared distribution with degrees of freedom

equal to the rank of fl.

Hausman and McFadden show that LY is equivalent to (OD - ac)-, the generalized

inverse of the difference of the asymptotic covariance matrices of SD and 5c

respectively. Three problems arise with this test statistic. Firstly, that HM is

not bounded to be positive in finite samples (Hausman and McFadden (1984) footnote

4 suggests negative values support the null). Secondly, not all elements of 8 are

identified over the subset D - thus the test statistic must be calculated for the

identifiable component of 5 and thirdly it is not clear how we are to choose the

alternatives in C to include in the restricted subset D . We should note that the

second and third problems are not unique to the HM test but will arise with all

choice set partitioning tests.

Our other three choice set partitioning tests (MU, H and SH) are variants of a

likelihood ratio test. Again the basic idea is that, if IIA holds, the structure

of the model and hence the maximized log-likelihood does not change if we analyze

data on choice set C or data conditional on the restricted subset D. If this is

true then we can base a test upon the difference between the maximized log-

likelihood of the model for the restricted subset D evaluated at the maximum
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likelihood estimates obtained over the full choice set C and those obtained over

the subset D.

The MIT test consists of estimating the Logit model by maximum likelihood on the
A

full choice set C to obtain Et. The Logit model is then estimated using data over

the subset D to obtain 5D. The • log=likelihood for -this 'restricted' estimation is
A

labelled log L.1 and its maximized value is log Li(8D). The MIT test then compares

log L1(50) with with log L1 evaluated at the full choice set estimates oc (i.e.

with log Li(oc)). Thus the MIT test statistic is given by:

M1-1. = -2(log L1(ö) - log Li(SD)). (6)

McFadden, Tye and Train (1981) show that this test statistic has an asymptotic

chi-squared distribution with degrees of freedom equal to the dimension of SD

(i.e. the identifiable component of 8).

Horowitz (1981) noted that as Se and SD are estimated from overlapping samples the

MIT test statistic is asymptotically biased towards accepting the null hypothesis

of IIA. His suggestion is to randomly divide the sample into two asymptotically

equal parts A and B with sample sizes nA and nB and to use these two samples to

avoid the overlap problem. The construction of the Horowitz (H) test statistic is

as follows. Firstly, the Logit model is estimated by maximum likelihood for data

over the full choice set C in the sub-sample of nA observations. This yields the
A

estimates ScA. The sub-sample A is now discarded and the Logit model estimated by

maximum likelihood using data over the subset D in the sub-sample of nB

observations This estimation yields Esig and the maximized likelihood log L1(8g).
The H test statistic is then calculated as:

H = -2(log LA') - log L1(E)). (7)

This test statistic follows an asymptotic chi-squared distribution with degrees of

freedom equal to the dimension of 811:,' (i.e. the identifiable component of 5).
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Since it is based upon independent samples the H test avoids the overlapping

samples problem of the MU test. Small and Hsiao (1985) prove the aforementioned

bias of the MIT test but their result also shows that by using strictly

independent samples the H test will be asymptotically too large. Hence the H test

is biased towards rejecting the null hypothesis of IIA. In their paper they

propose a test (SH) that combines the MTI" and H test procedures and is free of any

asymptotic bias. The SH test procedure involves randomly dividing the sample into

two asymptotically equal parts A and B with sample sizes nA and nB. The Logit

model is then estimated by maximum likelihood in each sub-sample over the data for

- Athe full choice set C. These estimations yield estimates Sand og which are then
combined in a weighted average:

AB 
= (1/V2)4 + (1 - 1/V2)8g.

The first sub-sample A is then discarded and the Logit model is estimated by

maximum likelihood in sub-sample B for data over the subset D. This yields 8g. and
the maximized likelihood log L1(5DB). The SH test statistic is calculated as:

SH = -2(log L1(ö) - log L1(511)). (8)

Again this test statistic follows an asymptotic chi-squared distribution with

degrees of freedom equal to the dimension of ö (i.e. the identifiable component

of 8).

3.2 Tests Against the DOGIT Model.

Another class of tests for the IIA property involves the specification of an

alternative model which does not embody IIA. Typically such models are

generalizations of the Logit model and IIA is tested using conventional tests for

parameter restrictions. Such a generalization is the DOGIT model of Gaudry and

Dagenais (1979). The selection probabilities for the DOGIT model are given by:
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Pu

eXp(Vij) + Oi eXp(Viij

k=1

with O. > 0 j.
—

J I J

Ok eXp(Vitj

k=1 k=1

i = 1, n; j = 1, J,

A key feature of the DOGIT model is that it does not a priori impose the IIA

property on all pairs of alternatives. The odds ratio Pi/Pik for

j # k = 1, J in the DOG IT model is:

eXp(Vii) + Oj exp(vis)
s=1

eXID(Vik) + Ok exp(/is)
s.,

and since this ratio clearly depends upon all of the alternatives in the choice

set the DOG1T model does not exhibit the IIA property.

The DOG IT model is convenient in that if = 0 V j = 1, J the model

collapses the the Logit model, which embodies the IIA property. Furthermore, if

some, but not all, of the O's are non-zero then IIA will hold between certain

pairs of alternatives but not between other pairs of alternatives. As the Logit

model is nested within the DOG IT model then a test for the Logit and hence for IIA

can be carried out by testing the appropriate parameter restriction using a Wald,

likelihood ratio or Lagrange multiplier (score) test procedure.

The most appealing test procedure to use is the score test as it only involves

estimation under the null hypothesis of the Logit model (or equivalently the null

hypothesis that IIA holds). Tse (1987) derives the score (LM) test of the IIA
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property using the DOGIT model as his alternative (non-IIA) specification. Using

the parameterization of V1 given in (3) above Tse partitions the parameter vector

(I) for the DOGIT model into two parts (i.e. 4 = 9I). The score vector and

information matrix are also partitioned in this way. The score test statistic

tests the null of 0 = 0 against the alternative hypothesis that 0 # 0. The

quadratic form - for this-test-statistic requires-the-component of score vector with

respect the the 0 parameters and the inverse of its asymptotic covariance matrix

and is given by:

LM = s(9)'V(0)-1s(0). (9)

Detailed expressions for s(0) and V(0) can be found in Tse (1987, p.284). This

expression is evaluated at the parameter estimates obtained under the null

hypothesis (i.e. under the Logit model estimates (1) = 0I) and the statistic

LM has an asymptotic chi-squared distribution with J degrees of freedom under the

null hypothesis.

The LM statistic ignores the inherent one-sided nature of the hypothesis test in

this case. In other words, under the alternative DOGIT model 0 > 0. King and Wu

(1993) extend the locally most mean powerful (LMMP) test procedure of SenGupta and

Vermeire (1986) to such one-sided testing situations. The LMMP test statistic

turns out to be nothing more than a standardized sum of scores (see King and Wu

(1993)). Thus the LMMP test statistic for testing the null of IIA (0 = 0) against

the DOGIT model is given by:

LMMP =  t's(0) 

.17/07
(10)

where 1. is a J x 1 vector of ones. Again this statistic is evaluated at the

estimates obtained under the null Logit model. The LMMP statistic has an

asymptotic standard normal distribution under the null and tests are one-tailed

tests.
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In the following section of this paper we will consider the performance of the six

tests (HM, MU, H, SH, LM and LMMP) for IIA discussed above using Monte Carlo

simulation -methods.

4. A Monte Carlo Study.

An integral part of any Monte Carlo study is the design of the experiment(s) as

the results obtained are conditional upon the design used. In all our experiments

the number of alternatives J is, for simplicity, set to three. The variant of the

Logit model considered is the MNL and the vector of explanatory variables Xi

comprises of a constant and two independent drawings from the standard normal

distribution. Once generated, however, the Xi vector was then fixed for the

duration of the simulation experiments. In all experiments three sample sizes n

are considered (250, 500, 1000), which range for small to moderate for cross

section data, and N = 1000 replications are performed. All computations are

undertaken using GAUSS and the add-in QUANTAL RESPONSE unit.

Our first set of simulations are designed to investigate the size properties of

the six IIA tests. In these experiments the underlying generating process for the

observed data is assumed to be the random utility maximization model given in (2)

above with a = 0 and the errors, Eii, being drawings from independent, identically

distributed, Extreme Value distributions. The choice of the pi (j = 1,2,3) vectors

is as follows: f3 = (y 1 f32 = (7 -1 1)' and f33 = (0 0 0)% where y is

Euler's constant 0.577216). These coefficients yield an expected split across

the three alternatives of 45:40:15. That is the third alternative is chosen

relatively infrequently. Furthermore, not only did these coefficients yield an

acceptable split but they are attractive in their simplicity. Note also that 133 is

normalized to zero to identify the MNL model.
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For each replication in our size experiment drawings from independent identically

distributed Extreme Value distributions (the eii's) are added to the known Vii's

to obtain The observable variable, yi, is then coded as 1,2, or 3 depending

upon which value of U, (j = 1,2,3) is the maximum. A MNL model is then estimated

and the six IIA tests are carried out. The tests are conducted at three

significance levels 1%, 5% and 10%. The results of the size experiment can be

found in Table 1. We should note that for the choice set partitioning tests there

are three possible choices for the subset D. These are obtained by deleting

alternative 1, 2 and 3 respectively. The corresponding test statistics for the

Hausman-McFadden test are labelled HM1, HM2 and HM3. The same nomenclature is

adopted for the other tests (M-17, SH and H).

Table 1 shows that the HM test has erratic size properties but tends to be

oversized at the 1% and 5% levels and for HM3, where the less frequently chosen

alternative is deleted. The results for MU, H and SH are consistent with the

underlying asymptotic theory. Namely that for all sample sizes MU is biased

towards the null and the H tests over-rejects the null. The SH test is correctly

sized (lying between MIT and H) especially as the sample size n increases. The

results for the LM and LMMP tests against a DOG1T specification suggest that for

all sample sizes these tests are severely undersized.

Since most of our tests are incorrectly sized when we evaluate their power

properties we 'size correct' by using empirical critical values from our size

experiment. That is we use as a critical value in our power Monte Carlo

experiments the value of the test statistic above which 5% of calculated values in

our 1000 replications lie. This ensures that all of the tests start from a level

playing field An that their differing size properties do not shroud conclusions

about their power properties.
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To ascertain empirical power properties it is necessary to generate the observable

data yi under the alternative hypothesis that IIA does not hold. We conduct two

sets of power Monte Carlo experiments and in both use size corrected critical

values at the 5% size. The two alternative non-IIA specifications which we

consider are the DOGIT model and a multinomial probit (MNP) model. The pi vectors

remain at the values fixed in the size simulations.

A problem which we face when attempting to generate data consistent with a DOGIT

model is the choice of suitable values for the Oi (j = 1,2,3) parameters. The

DOGIT model has not found much use in empirical work - indeed to our knowledge

only two applications have appeared (Gaudry and Wills (1979) and Gaudry (1980)).

These applications are for two alternatives and suggest that for cross section

data values close to 0 (e.g. 0.04) might be expected for the els. In order to

obtain further information on the possible range of plausible 0 values it is

useful to consider the generation of the DOGIT model from a sequential choice

process (see Hensher and Johnson (1981) and Bordley (1990)).

Suppose that an individual is either 'captive' to one of the J alternatives or

chooses freely from the full choice set C. In the first stage of the choice

process we determine whether an individual is captive or exercises free choice.

This can be represented as a random utility maximization model with J+1

alternatives {1, ..., J+1} (=(1 , J, C)) and utilities given by:

ul;) = + eri), i = 1, n; j = 1, ..., J+1.

Under the assumptions that el; ) are independent identically distributed Extreme

Value, that VIP = log(0j), j = 1, J and V1P+1 = 0 the probability of
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.7J

individual i being captive to alternative j is equal to:

=ii
Oi

For individual i exercising free choice the probability Pili+)1 = IV is given by:

13(1 ) =
1

J

1 + ek

k=1

If an individual exercises free choice then in the second stage of the choice

process they will make selections according the the random utility maximization

model in (2) with independent and identically distributed Extreme Value eij's (i.e

according to a Logit model). If, on the other hand, they are captive to an

alternative then then selection probability is determined in the first stage. The

final probabilities will be given by:

Pij =
x jexp(vo

exp(vo
k=1

which is the DOGIT form given in section 3 above.

In our empirical power study we choose values of ek which yield approximately

10% 'captive' choosers Ok = 0.1) and 50% 'captive' choosers ek = 1). The

individual Oi's are chosen to move the split across alternatives away from the

null of 45:40:15. Tables 2, 3 and 4 contain the results of these simulations2.

From these we can see that typically the choice set partitioning tests have no

2The split across alternatives for one configuration of 0 values and n=250 was
such that for the choice set partitioning tests the sample sizes in sample B over
choice set D was too small to estimate the model and hence the test statistics
could not be computed.
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power (power a, size) against the DOG IT alternative. The exception is the MTT3 test

againsta DOGIT modelwith 01 = 2 = 0, 03 # Owhich hasgoodpowerpropertiesfor

n = 500 and n = 1000. This DOGIT model exhibits IIA between alternatives 1 and 2

but not between 1 and 3 or 1 and 2. By comparing estimates from C = {1,2,3} and

D {1,2} the WTI' does seem to pick up the departure from the null hypothesis. We

should also note that HM3, SH3 and H3 also appear to be able to detect the

departure when 01 = 2 = 0, 03 = 1 and n = 1000.

The tests designed againstthe DOGIT model (LM, LMMP) do best when Ok = 0.1 and

Oj # 0, V j = 1,2,3. They do not seem to have good power when only one 0i is non-

zero. These results also suggest that the one-sided LMMP test improves on the two-

sided LM test in the cases in which the DOGIT based tests have power. Furthermore,

in such cases the DOGIT based tests perform better than the choice set

, partitioning tests. It is interesting to note that these cases when Ok = 0.1

correspond to the range of values of Ers found in the limited empirical work with

cross section data quoted earlier.

One final point to note about the empirical powers for the DOGIT alternatives is

that the two stage choice process described above also shows us that the Oi's are

not unconstrained as the proportion choosing alternative j in a sample must be

greater than or equal to the proportion given by the 'captive' probability 11).

This places an upper bound on the admissible ej values. The final column in Tables

2, 3 and 4 corresponds to a situation in which we are close to the upper bound and

here the LM and LMMP tests have poor power properties.

Our second choice of alternative, non-IIA, specification is the multinomial probit

(MNP) model. In this model the eii's in the random utility model given in (2)

follow a multivariate normal distribution with mean 0 and covariance matrix S2. In
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our study we choose:

[1 p 0
= p 1 01,

0 0 1

which is consistent with the MNP model used to find empirical rejection

probabilities in Tse (1987). The results of this Monte Carlo experiment are found

in Table 5 and we see that only -MTT3 in-the case-of- positive correlation has any

power against the MNP alternative. These MNP results suggest that the six tests

for IIA we have considered are unlikely to pick up the departure from the null

suggested by the MNP model.

5. Conclusions.

In this paper we have taken six tests for the independence of irrelevant

alternatives (IIA) property of Logit models for polychotomous choice situations

and compared their size and power properties in small to moderate sample sizes

using a set of Monte Carlo experiments. The six tests fall into two categories:

choice set partitioning and tests against an alternative, nn-IIA, model - the

DOGIT model.

We find that the most popular test, the Hausman-McFadden test has poor size and

power properties and is sensitive to the alternative dropped to form the subset

D. Of the other choice set partitioning tests the Small-Hsiao test has good size,

but poor power, properties. The McFadden-Train-Tye test, when size corrected and

the least popular alternative is dropped to form D (i.e. MTT3), has reasonable

power properties against some variants of the DOGIT model and the multinomial

probit model with positive correlation. The Horowitz test performs poorly in terms

of both size and power.

3The poor performance of the HM test is partly explained by the high proportion of
negative values calculated in our experiments. Further details are available on
request from the authors.
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Two tests against an ad-hoc generalization of the Logit model, the DOGIT, are

considered. The DOGIT model is an attractive generalization as it potentially

allows for IIA to hold for some, but not all, pairs of alternatives in the choice

set. As the Logit model is nested within the DOGIT it also allows a test for IIA

to be carried outusing a-score(LM) test-and-a -one-sided-variant- of .the score

test (the LMMP test). We find that both these tests are severely undersized but

have reasonable, size corrected, power, against certain parameterizations of the

DOGIT model. As the DOGIT models against which the LM and LMMP tests have power

are those which may be encountered in practice we recommend that researchers

consider their use.

Finally, as with any set of Monte Carlo experiments, the results we obtained and

the conclusions we draw are dependent upon the design of the experiments. It is

possible that with a different experimental design different results might arise.

Areas for future work should include the use of mixed Logit models and the

consideration of the performance of a likelihood ratio test against a DOGIT

specification. It would also be of interest to see the DOGIT model applied to

economic data, which would give a better view of the likely values of 0 to use in

future simulation studies.
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Table 1: Empirical Test Sizes for a Nominal Size of a.

or,=0.01 a=0.05 a=0.10

Test n=250 n=500 n=1000 n=250 n=500 n=1000 n=250 n=500 n=1000

HMI 0.022 0.038 0.053 0.030 0.055* 0.077 0.040 0.066 0.096*
HM2 0.016* 0.044 0.055 0.038 0.059* 0.081 0.051 0.079 0.103*
HM3 0.073 0.073 0.052 0.101 0.102 0.090 0.119 0.134 0.114*

MTT1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MTT2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MTT3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SH1 0.027 0.017 0.013* 0.075 0.063* 0.049* 0.141 0.122 0.100*
SH2 0.023 0.023 0.012* 0.076 0.053* 0.059* 0.129 0.110* 0.106*
SH3 0.029 0.016* 0.016* 0.068 0.063* 0.055* 0.115* 0.119* 0.102*

H1 0.156 0.150 0.124 0.303 0.279 0.265 0.378 0.375 0.363
H2 0.145 0.142 0.126 0.284 0.285 0.262 0.398 0.375 0.367
H3 0.132 0.123 0.114 0.258 0.251 0.267 0.354 0.360 0.372

LM 0.004 0.006* 0.003 0.006 0.007 0.006 0.010 0.008 0.010
LMMP 0.003 0.003 0.002 0.005 0.006 0.005 0.006 0.013 0.008

* indicates that 95% confidence interval for estimated size contains nominal size.
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Table 2: Size Corrected Power for n = 250 against the DOGIT Model.

Test

91=0.06

02=0.03

03=0.01

01=0.0 01=0.00

02=0.0 02=0.00

03=0.0 03=0.10

01=0.60

02=0.30

03=0.10

01=0.3

02=0.3

03=0.3

01=0.00

02=0.00

03=1.00

HMI 0.043 0.064 0.093 0.014 0.014
HM2 0.056 ' O.055'0.072 0.010 0.010
HM3 0.049 0.051 0.012 0.007 0.019 c

a
MTT1 0.178 0.072 0.051 0.088 0.019 n
M112 0.039 0.059 0.038 0.000 0.003 n
MTT3 0.015 0.038 0.387 0.000 0.000 o

t
SH1 0.051 0.057 0.053 0.040 0.047
SH2 0.048 0.043 - 0.057 0.033 0.043 c
SH3 0.071 0.060 0.038 0.055 0.060 o

m
H1 0.045 0.059 0.048 0.038 0.049 p
H2 0.041 0.039 0.048 0.036 0.045 u
H3 0.075 0.063 0.038 0.067 0.062 t

e
LM 0.303 0.245 0.166 0.002 0.006
LMMP 0.425 0.363 0.075 0.025 0.082

..

Table 3: Size Corrected Power for n = 500 against the DOG1T Model.

Test

01=0.06

02=0.03

03=0.01

01=0.0

92=0.0

03=0.0

01=0.00

02=0.00

03=0.10

,

01=0.60

02=0.30

03=0.10

01=0.3

132=0.3

03=0.3

01=0.00

02=0.00

03=1.00

HM1 0.032 0.048 0.111 0.013 0.010 0.039
HM2 0.059 0.038 0.108 0.012 0.017 0.040
HM3 0.112 0.059 0.001 0.011 0.035 0.002

NATT1 0.229 0.087 0.122 0.092 0.015 0.000
MTT2 0.092 0.094 0.166 0.001 0.010 0.002
MTT3 0.031 0.036 0.617 0.000 0.000 0.999

S H1 0.047 0.056 0.061 0.050 0.046 0.049
SH2 0.073 0.067 0.069 0.046 0.052 0.066
SH3 0.062 0.061 0.045 0.057 0.055 0.352

H-1 0.046 0.056 0.056 0.046 0.051 0.049
H2 0.070 0.064 0.070 0.053 0.054 0.070
H3 0.061 0.057 0.032 0.061 0.066 0.130

LM 0.510 0.456 0.430 0.000 0.011 0.032
LMMP 0.603 0.578 0.079 0.021 0.244 0.000
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Table 4: Size Corrected Power for n = 1000 against the DOGIT Model.

Test

01=0.06

02=0.03

03=0.01

01.0.03

92=0.0

03=0.0

01=0.00

02=0.00

03=0.10

01.0.60

02=0.30

03=0.10

131=0.3

02=0.3

03=0.3

,

01=0.00

02=0.00

03=1.00

HM1 0.021 0.032 0.176 0.002 0.010
,

0.050
HM2 0.037 - 0.041 0.153 0.025 0.018 0.089
HM3 0.218 0.103 0.042 0.044 0.102 0.939

MTT1 0.268 0.090 0.266 0.092 0.007 0.018
MTT2 0.099 0.084 0.258 0.001 0.011 0.028
MTT3 0.074 0.039 0.833 0.000 0.004 1.000

S H1 0.058 0.063 0.081 0.057 0.045 0.070
SH2 0.059 0.054 - 0.060 0.039 0.050 0.053
SH3 0.084 0.066 0.094 0.059 0.063 0.640

H1 0.054 0.066 0.079 0.058 0.047 0.070
H2 0.055 0.052 0.051 0.041 0.052 0.053
H3 0.087 0.069 0.058 0.070 0.075 0.327

LM 0.631 0.505 0.546 0.000 0.002 0.025
LMMP 0.748 0.695 0.061 0.002 0.160 0.000

Table 5: Size Corrected Rejection Probabilities against Multinomial Probit.

p=0.50 p=-0.50
Test n=250 n=500 n=1000 n=250 n=500 n=1000

HM1 0.066 0.084 0.125 0.054 0.038 0.027
HM2 0.058 0.067 0.121 0.061 0.039 0.044
HM3 0.020 0.008 0.004 0.041 0.072 0.123

MTT1 0.049 0.097 0.180 0.081 0.086 0.090
MTT2 0.039 0.101 0.197 0.065 0.090 0.090
MTT3 0.318 0.515 0.714 0.020 0.016 0.024

SH1 0.071 0.050 0.066 0.043 0.040 0.065
SH2 0.049 0.067 0.063 0.039 0.052 0.047
5H3 0.043 0.045 0.058 0.041 0.038 0.050

H1 0.059 0.051 0.061 0.041 0.038 0.061
H2 0.048 0.070 0.055 0.040 0.051 0.046
H3 0.038 0.031 0.044 0.047 0.040 0.057

LM 0.032 0.039 0.057 0.006 0.008 0.008
LMMP 0.000 0.000 0.000 0.008 0.006 0.006
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