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Abstract

In this paper we provide a comprehensive survey of a class of plant

location problems. We cover both heuristic and exact procedures that

have appeared in the literature. The survey also covers three decades

of work on the capacitated plant location problem.



1. Introduction

. There are many problems in Operations Management and Operations

Research that require grouping parts to be processed by the same

machine or clients to be serviced by the same service center.

For example, a basic scheduling problem occurs when severalmachines

can be set-up to perform a given operation. The parts requiring this

operation must be partitioned into groups assigned to different

machines. The problem is to find the minimum number of machines that

must be set-up for the given operation in order to process all the

parts before a desired completion time. If the machines are not

identical, it must be decided which subset of the machines should be

set-up.

Equipment replacement problems involve the selection of machines from a

set of several possible alternative machines with different capacities

and costs of purchase and operation. In addition to the type of

machine, the selection also involves the replacement time. The

objective is to minimize the total purchase and fixed cost of operating

the machines (less its salvage value) and the total variable cost of

production. We have to satisfy the demand constraints for each time

period and the capacity cQnstraints for each machine. Part of the

decision problem is to identify the quantity produced by each machine

in each time period.

The Star-Star Concentrator Location Problem (SSCLP) is a computer

communication network design problem that involves connecting several

remote terminal sites to a central site. Each terminal site is

connected to the central site either directly or through a

concentrator. A concentrator site is connected to the central site via
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high-speed lines. The concentrator sites are usually a subset of,

terminal sites and the capacity of a concentrator is defined in the

problem. Each terminal must be connected, via low-speed lines, to a

unique site, which is either a concentrator or the central site. . The

fixed cost of installing a concentrator site and connecting it to the

central site is given. The cost of connecting each terminal to a

concentrator site is also given. The problem is to find a network that

will minimize the total cost.

The Generalized Bin Packing Problem (GBPP). can be described as follows.

We have a number of items with weights that have to be put in the bins,

each item going into only one bin. We have a number of bins, each with

a capacity and fixed cost, that can be used. The problem is to

identify a subset of the bins to minimize the total fixed cost such

that all the items can be assigned to the bins without exceeding their

capacities.

All the decision problems that we have described above belong to the

same category in the following sense. In all these cases the decision

involves two stages. In the first stage we make* a choice of the subset

of machines (or trucks or concentrators or bins). In the second stage

we assign the parts (or clients or terminals or items) to the chosen

subset of machines (or trucks or concentrators or bins).

The Capacitated Plant Location Problem (CPLP) also belongs to the above

category in terms of the underlying decision problem. Here, we have a

set of potential locations for plants with fixed costs and capacities,

and a set of potential locations for plants with fixed costs and

capacities, and a set of customers, with demands for goods supplied

from these plants. The transportation cost per unit for goods supplied
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from the plants to all the customers is given. The problem is to find

the subset of plants that will minimize the total fixed and

transportation costs such that demand of all the customers can be

satisfied without violating the capacity constraints of the plants. As

described above, we can identify the two stages in the decision process

for CPLP. In the first stage we make a choice of the subset of the

plants to be opened and in the second stage we make the assignment of

the customers to these plants.

When we make an additional restriction on CPLP that each customer be

served only from a single plant we get the Capacitated Plant Location

Problem with Single Source constraints (CPLPSS). It is immediate to

see that CPLPSS also belongs to the category described above in terms

\
of the underlying decision problem.

In this paper we will study the Capacitated Plant Location Problem and

the Capacitated Plant Location Problem with Single Source constraints.

We can show that all the other problems described above are either

special cases of CPLP and CPLPSS or closely related to these two

problems.

2. The Capacitated Plant ,Location Problem

The location of plants. such as warehouses or factories, is an

inevitable strategic decision for most organizations as it has a direct

bearing on the cost of supplying commodities to customers.

Transportation costs often form a major portion of the price (or cost)

of goods. Equally important to the organizations are the fixed costs

involved in opening and operating a plant at any given location. Such

. location problems have been widely studied in the literature under the

names of plant, warehouse, or facility location problems. When each
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potential plant has a capacity, that is, an upper bound, on the amount

of demand that it can service, the* problem is known as the capacitated

plant location problem (CPLP). When the capacity assumption is not

made, the problem is known as the simple or uncapacitated plant

location problem (SPLP). For a survey of the SPLP the reader is

referred to Cornuejols, Nemhauser, and Wolsey [9], Krarup and Pruzan

[39], and Thizy, Van Wassenhove and Khumawala [64].

The capacitated plant location problem, with n potential plants and m

customers, can be formulated as a mixed integer program

m n n
(P) Z = min

i=1 j=1 i=1

and

subject to

I: 1, i=1, ..., m;
i.1

m
E d.x. < s.y , j = 1, ..., n;

1 ij J ij=1

0 Is )c.
j 

y. 1, i = 1, .
i 

y = {OM j = 1.,.

E s .Y E d.
j=1 i=1 /

n;

(1.2)

(1.3)

m; j = 1, n;

(1.4)

•

(1.5)

(1.6)

where c.
j 

= the total cost of transportation from plant j to
i 

serve customer i;

d. = the demand of customer i;
1

s. = the capacity of plant j;

f. = the fixed cost associated with plant j;
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= the fraction of the demand of customer i supplied

from plant j;

= 0 or 1, depending on whether plant j is closed or

open;

= {1, ..., ml : set of customers;

= fl, nl : set of potential locations.

The dataconsistsof and ereasx..and.are the
1J 1 J 1J Yj

variables.

The constraints (1.2) guarantee that the demand of every client is

satisfied, and constraints (1.3) guarantee that each open plant does

not supply more than its capacity, and that the clients are supplied

only from open plants.

Here, the Y .'s are the strategic variables, since once the y.'s arej

fixed, the problem reduces to a transportation problem with capacities.

s. and demands d..
1

The constraint (1.6) specifies that the total capacity of open plants

should be at least as large as the total demand of the customers. This

constraint is actually derived by summing (1.3) over all the plants and

using the equalities (1.2). and hence is a surrogate constraint. It is

redundant in the original formulation, but it strengthens some of the

relaxations.Also,theconstraintsx.are redundant in the
y.13 
 are

original formulation, but are very useful in relaxations. To see that

X:. =5 :y can be derived from the other constraints, note that (1.2)
lj i

and x.
j 

->-- 0 imply that x.. --5- 1 and using (1.3) and (1.5) we get the
i 1J

constraint x.. Ls y••
13 J
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Several variations of CPLP have been studied in the literature. One

such variation requires that each customer is served from only one

plant. In practice, this may allow the plants to keep a closer tab on

supplies and demands. This problem is known as the 'single source

problem and is discussed by several authors, see for example Nagelhout

[46], Mulvey and Beck [45], Klincewicz and Luss [37], Barcelo and

Casanovas [3], Neebe and Rao [51], DeMaio and Roveda [12] and

Srinivasan and Thompson [62].

When one considers intermediate distribution facilities between.plants

and customers we get the multistage plant location problem. A cost

operator method to solve the multistage problem is given in Nagelhout

and Thompson [48]. If several commodities are produced at these

plants, we have the multicommodity multistage location-allocation

problem. Geoffrion and Graves [22] provide a solution technique based

on the Benders decomposition method for this problem.

The problems we have described so far are all single period models.

When the location decisions occur over time, the problem becomes a

multiperiod location-allocation one. This problem has been studied by

Eschenbach and Carlson [17], Elshaieb [14], and Van Roy and Erlenkotter

[66].

Dearing and Newruck [11] introduced another variation-of the problem

which they called the bottleneck facility location problem (BFLP).

BFLP has the same constraint set 1.2 to 1.5 above, but 1.1 is replaced

by

Min [Max {c..x..} 4. a E f.Y-]lj lj 
J.1

6
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The objective 1.1a is to minimize the bottleneck cost plus some

. fraction a (0 :5 a 1), of the fixed costs.

Another related work in this area ia that of Jandy [29] on the fixed

charge CPU'.

The capacitated plant location problem arises as a subproblem in

several important applications, such as network design problems. For

example, in their paper, Kochman and McCallum [38] propose facility

location models for the problem of determining how to optimally serve

the requirements for communication circuits between the United States

and various European and Middle Eastern countries. Given a projection

of future requirements, the problem is to plan for the economic growth

of a communications network to satisfy these requirements. Both

satellite and submarine facilities can be used. The objective is to

find an optimal placement of cables (type, location, and timing) and

the routing of individual circuits between demand points (over both

satellites and cables) such that the total discounted cost over a

T-period horizon is minimized. This problem was formulated as a

multiperiod, capacitated facility location problem.

We will restrict our attention in this - thesis to problems with linear

economies of scale. For problems with nonlinear economies of scale the

reader is referred to Kelly and Khumawala [33], Khumawala and Kelly

[34], and Soland [59].

In the following sections we will survey the various approaches used in

the literature to solve the problems CPLP and CPLPSS.
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3. Preview of Solution Methods for CPLP

The literature on CPLP is very rich; see Magnanti and Wong [42],

Francis and Goldstein [21], Salkin [57], and Wong [70] for

bibliographies on CPLP. Researchers have worked on both heuristic

solution methods and exact algorithms to solve CPLP. While the exact

algorithms can solve medium-sized problems, say 50 plants and 50

customers, within reasonable computer effort, one needs heuristics to

solve problems with several hundred plants and customers.

The heuristics for CPLP are basically extensions of the heuristics used

for the Simple Plant Location Problem (SPLP). One of the widely known

heuristics for SPLP is the ADD procedure due to Kuehn and Hamburger

[40]. Feldmand, Lehrer and Ray [18] propose a heuristic for SPLP

called the DROP procedure. Both ADD and DROP procedures are greedy

heuristics. For CPLP, ADD and DROP heuristics were tested by Khumawala

[35], Jacobsen [28] and Domschke and Drexl [13] among others. We give

a detailed description of these heuristics in the following sections

and in chapter 3.

At the end of ADD or DROP procedures, one may still be able to improve

the solution by making some perturbation. A typical example of such a

method is the bump and shift routine of Kuehn and Hamburger [40] for

SPLP. Methods of this type are referred to as interchange heuristics

and are studied in references [28] and [35] for CPLP. Some of these

interchange heuristics will be described in the following sections.

Heuristic methods can be useful in exact algorithms that require

feasible solutions, Akinc and Khumawala [1]. When heuristics are used,

it is useful to have an upper bound on the gap between the heuristic

. and the optimal values. Corneujols, Fisher and Nemhauser [8] give

bounds for the greedy and interchange heuristics for the uncapacitated
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version of the problem. Nemhauser, Wolsey and Fisher [52] generalize

these bounds for. submodular set functions. Therefore they are also

valid for the capacitated plant location problem since its objective

function is a submodular set function defined on the set J.

A variety of papers have been written on branch and bound procedures to

obtain an optimal solution for CPLP. The earliest optimal solutions

for CPLP have been attempted by Sa [56], and Davis and Ray [10].

Subsequently many branch and bound based algorithms for CPLP have been

developed, see Akinc and Khumawala [1], Christof ides and Beasley [6],

Ellwein and Gray [15], Geoffrion and McBride [24], Nauss [49], Van Roy

[67] and Nagelhout and Thompson [48].

Typically, a relaxation of the problem is solved at each node of the

enumeration tree in a branch and bound procedure. This could be a

linear programming relaxation, see, for example, Erlenkotter [16], Van

Roy and Erlenkotter [66], Akinc and Khumawala [1], Sa [56], Davis and

Ray [10], Ellwein and Gray [15], and Geoffrion and Graves [22], or a

Lagrangian Relaxation, Geoffrion and McBride [24], Nauss [50],

Christof ides and Beasley [6], and Van Roy [65].* Geoffrion and Graves

[22] use the Benders decomposition procedure and Van Roy [65] uses the

Cross decomposition approach along with the Lagrangian relaxation. We

will look at these methods more closely in the following sections.

Nagelhout and Thompson [48] use an implicit enumeration approach that

does not use any relaxation of the problem. . Instead they use some

lower bounds obtained from the submodular property of the objective

function, together with some fathoming rules, to implicitly enumerate

the solutions to the problem P. The movement in the search tree from

one feasible solution to another is facilitated by applying cost

9



operators, (for a description of the cost operator technique refer to

Srinivasan and Thompson [60, 61], to P. The cost operators are used to

fix plants open or closed which helps in pruning the search tree.

4. Heuristics for CPLP

Heuristics can normally handle large problems (with serveral hundred

plants) and in many instances the solutions can be expected to be

fairly close to the optimum value, the heuristics for CPLP are based

primarily on the ones for SPLP and can be clasified under two basic

approaches: the greedy and interchange heuristics.

4.1 The Greedy Heuristics

There are two different greedy heuristics for CPLP, namely, the ADD

procedures and the DROP procedures. We will look at these two

procedures in this section. For ease of presentation we will denote by

YjJO:thesubsetofJforwhich.=0 

yjJo :thesubsetofJforwhich.is yet undecided 

J2 : the !subset of J for which Y . = 1.j

4.1.1 ADD procedures

The ADD procedure for the location problem was initially developed by

Kuehn and Hamburger [40] to solve the uncapacitated version of the

problem. The extension of this procedure to the capacitated version

is given in Jacobsen [28]. Here we give a formal description of the

ADD procedure. Let T*(J,I) represent the optimal value of the

transportation problem with source set J, and sink set I and data as in

problem (1.1) to (1.5).
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Start with no plants open. That is, all plants arein the set J.

1. For each j E Jo, compute the savings

cr. = T*(J1,I) - T*(J1 U I) - f..

2. Now identify the plant j* that gives the maximum savings c from,
J*

ci* = max. . { cr. }.
J E JO J

3. If the savings is positive, that is, cr. > 0, transfer j* to J1
J*

and go back to step 1. If cr.* .15. 0, terminate the procedure with

the set J1 of open plants, since no more savings can be made by

adding another plant.

The above procedure requires the solution of I JO I transportation

problems at each iteration. However, Khumawala [35], and Jacobsen [28]

suggest procedures that avoid the need to solve so many transportation

problems. Instead, they solve a continuous knapsack problem to obtain

a bound on the savings. The bound computed by Khumawala [35] (also see

Akinc and Khumawala [1] is a lower bound on the savings, LBS, and is

given below.

Then,

For j e JO, let {max (c. - c., 0)}.
K = minij keJlUJO,k *j lk lj

LBS. = max E.K..7:

subject to

E.d.T. s.
1 1 1

Khumawala [351 observes that the bound LBS. is very effective.

Jacobsen [28] provides both a lower and an upper bound on the savings.

He calls the heuristic that uses the lower bound ADD-LO and the one

11



that uses the upper bound ADD-HI. Domschke.and Drexl [13] also use the

same bounds. The lower bound on the savings obtained by adding plant

j* is given by E.Z 
j1 EJi

x.. max(0,c.. - c..,), which is the savings
1J 1J 1J

obtained by redirecting some of the demands to plant j*. The upper

bound on the savings for j* is obtained when we substitute u.* for c.
1 ij

in the above expression where ui* is the dual variable for customer i

in the solution to T(.11,I). These bounds have been found to be very

useful both for solution quality and computation time.

4.1.2 Drop procedures

The DROP procedure was first used by Feldmand, Lehrer and Ray [18] for

the uncapacitated plant location problem. It starts with all the

plants in the set J1. In each step, a plant is dropped at a location

where the largest savings is obtained. We formalize the procedure as

follows:

1. For each plant j E J1, compute the sayings

T. = f. + T*(J1,I) - T*(J1\01,I).
J J

2. Find the plant j* that gives the maximum savings

T.
J*

= max. „ { T. }-.
JEJ1 j

3.IfT.>0, transfer. i* from J1 to JO and go to step 1. If
J*

T., 0, terminate the procedure with the set J1 of open plants

since we do not have positive savings by dropping any more plants.

As in the case of ADD procedures, here also we need to solve IJTI

transportation problems in each iteration. But, as before, Akinc and

Khumawala [1], and Jacobsen [28] suggest procedures that provide a

bound on the savings with much less computational effort. The bound

computed by Akinc and Khumawala [1] is as follows. Let
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v. (i = 1,...,m), and u
r
, r E J1 be the optimum dual variables

associated with the solution T*(J1\{j},I). Define,

= V. - C.
13 1 13

Then, the savings obtained by closing plant j is,

UM. = max E.w. .6.
1131

subject to

E.d.6. s., j E
1 1 1 j

14- 8. 1, i E I.
1

As for the ADD procedure, Jacobsen [28] provides both a lower bound and

an upper bound on the savings. The DROP procedure that uses a lower

bound is called DROP-LO, and the one that uses the upper bound is

called DROP-HI. For more details on the actual computation of these

bounds refer to Jacobsen [28].

4.2 Interchange Heuristics

The ADD and DROP procedures that we looked at belong to the category of

greedy heuristics where once a decision is made it is not changed.

Actually we may be able to improve on the greedy solution by making

some changes in the solution. The heuristics that attempt to make such

improvements are referred to as the Interchange Heuristics. We will

look at two different methods that belong to the interchange heuristic

category, (1) the Alternate Location Allocation (ALA), and (ii) the

Vertex Substitution Method (VSM).
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4.2.1 Alternate Location Allocation

The earlier application of this method to location problems appear in

Rapp [53], and Cooper [7]. The general outline of this method can be

described as follows.

1. Start with a set of open plants, J1. All other plants are in J.

Set JT = 0. (JT is the set of plants that have been tried

unsuccessfully in the interchange).

2. If JT = J1, stop. Else, let j E J1 - JT. Add j to JT.

3. Transfer j from J1 to JO. 'Reoptimize' using an ADD iteration.,

If the cost of the new solution is smaller than at the beginning

of step 3, then let J1 be defined by this new solution,

JO = J - J1, JO = 0. Set JT = 0 and go to step 2. Otherwise, set

J1, JO and JO back to their value at the beginning of step 3. Go

to step 2.

4.2.2 Vertex Substitution Method

Some application of VSM to SPLP can be found in Teitz and Bart [63],

and Cornuejols, Fisher and Nemhauser [8]. This procedure can be

described as follows.

1. Start with a feasible solution. List JO, the set of closed

plants. Set JT = 0.

2. If JT = J1, stop. Else, let j E J1 - JT. Add j to JT.

3. Transfer j from JO to J1. Teoptimize' by one DROP iteration. If

the cost of the new solution is smaller than at the beginning of

Step 3, then let J1 be defined by this new solution, JO = J - J1.

Set JT = 0 and go tO Step 2. Otherwise, set J1 and JO back to

what they were at the beginning of Step 3. Go to Step 2.

14



Some computational results for solving CPLP using ALA and VSM are given

in Jacobsen [28].

5. Exact Methods for CPLP

An exact solution for CPLP can be obtained by using an enumerational

tree. When the relaxed problem meets the constraints of P. we have

solved P, otherwise we obtain a lower bound for P. Various

relaxations that have used for CPLP are described in this section.

There are many papers that use a branch and bound algorithm for CPLP,

see, for instance, Sa [56], Davis and Ray [10], Ellwein and Gray [15],

Akinc and Khumawala [1], Geoffrion and McBride [24], Nauss [50],

Christof ides and Beasley [6], and Van Roy [68]. For CPLP, some

examples of branching rules will be (i) to choose a node with the least

lower bound, or (ii) to choose a node with least number of free

variables. An Yj exampleofseparationwillbetofixsome.variables 

thatarefractional(whentherelaxationsT.are LPs) to 0 or 1. In
J.

the branch and bound procedure we need to solve a relaxation of the

problem P at each node n of the enumeration tree. Two such

relaxations of CPLP are (i) linear programming relaxations, and (ii)

lagrangian relaxations. We will look at these relaxations now.

.5.1 Linear Programming Relaxation

Davis and Ray [10], Sa [56], Ellwein and Gray [15], and Akinc and

Khumawala [1] use an LP relaxation of CPLP in their branch and bound

Yjalgorithms.Theyrelaxtheintegerconstraintsonthe.variables to 

reduce the problem to an LP and then use some branching rules to fix

the y. variables at 0 or 1. Sa [56], Ellwein and Gray [15], and Akincj

and Khumawala [1] work with the so called Weak Linear Programming

relaxation (WLP). The WLP does not have the explicit constraints

15



x. y. On the other hand, Davis and Ray [10] use the Strong Linear

Programming relaxa6tion (SLP), that is, problem (1.1) - (1.5) with the

integer constraints relaxed, in their procedure. As we will see in the

next chapter the lower bound obtained from SLP is usually stronger than

the one obtained from WLP. However, Akinc and Khumawala [1] claim to

obtain a lower bound better than WLP by suitably modifying the capacity

constraints of the 'free' plants available at any node of the

enumeration tree. Baker [2] also shows that the LP relaxation is

strengthened by adding the disaggregated constraints of the type

E.a. .x..
1 lj lj y
La. .e..
1 lj lj

where <a..> are arbitrary coefficients, and <0..> are optimal values of
lj

the variables x.. in the solution of the continuous knapsack problem:
ij

max {E.a.. : 0 x.. u.., E.x.. s.}
11J 1j 1j 11J

where u.. = min { d. s. 1.
lj 1, j

Baker [2] also gives some special cases where the constraints reduce to

the type already known in the literature.

5.4.2 Lagi--angian Relaxation

The Lagrangian Relation is. an approach used for solving the mixed

integer and pure integer programming problems, see Fisher [19], and
•••

Geoffrion [23] for a very nice description of this technique. We will

illustrate this approach by using the following problem as an example.

Let •

Z = min cx

s.t. Ax = b,

Dx e

x 0 and integral,

16
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where x is n x 1, b is m x 1, e is k x 1 and allother matrices have

conformable dimensions.

Let us say that the constraints of (IP) are partitioned into the two

sets Ax = b and Dx e so that the following Lagrangian problem can be

easily solved. Let

ZD(u) = min cs + u(Ax - b) (LR(u))

Dx e

0 and integral

where u = (u
1' 

u
m
) is a vector of Lagrange multipliers.

Now the Lagrangian dual ZD is defined to be

ZD = max Z_(u)
u u

(DP)

The best choice of u gives the optimal solution to the problem DP. The

value of u can be found by using different methods. The subgradient •

procedure is a very widely known procedure for updating the values of

u. Details of subgradient procedure are explained in chapters 2 and 5.

We will now present the subgradient method for updating the value of u.

Given an initial value u
o 
a sequence { u

k 
1 is obtained by the rule

u
k+1

= u
k 
+ 

tk (A)(
k 
- b)

where x
k 

is an optimal solution to LR(u
k
) and t

k 
is a positive step

size. The step size most commonly used in practice is

t
k 

A
k
(Z* - Z

D
(u
k
))/Norm

where Norm = (Ax
k 
- b)

2

and 0 < A
k 

Ls 2
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and Z* is an upper bound on ZD obtained by using a suitable heuristic

or algorithm.

For CPLP, two different Lagrangian relaxations are possible. The first

approach involves relaxing the demand constraints (1.2) and including

them in the objective function with multipliers ui. This approach was

tried by Geoffrion and McBride [24], Nauss [50], and Christof ides and

Beasley [6]. The second approach. involves relaxing the capacity

constraints (1.3) and including them in the objective function with

multipliers v., and this has been tried by Van Roy [68], and Guignard

and Kim [26].

The lower bound at any node of the enumeration tree is obtained by

solving either of the two above mentioned Lagrangian Relaxations of the

problem. It has been pointed out by Nauss [50], and Guignard and Kim

[27] that addition of constraint (1.6) to the problem greatly improves

the bound obtained in the relaxations. Christofides and Beasley [6]

also improve the bound they obtain in the relaxations by including

constraints that are weaker than (1.6). We give the relationship among

all these relaxations in the next chapter.

The Lagrangian relaxation can also be used to do a parametric analysis

of the problem. Such an analysis is possible by observing that each

time a Lagrangian calculation is made for a specific problem with a

given capacity vector, an optimal solution is obtained for a related

problem with a suitably adjusted capacity vector. Bitran et al [5]

provide such an analysis for CPLP.

We now present some methods that can be used either alone or in

conjunction with a branch and bound algorithm.
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6. Dual Ascent Method

Erlenkotter [16] proposed the dual ascent method for solving the SPLP.

This method was also developed independently, around the same time, by

Bilde and Krarup [4]. Erlenkotter [16] adds another procedure called

the dual adjustment procedure to do some fine. tuning. Computationally

this method is excellent for SPLP. This method can be adopted for CPLP

with some minor modifications, see Guignard and Spielberg [26].

We will describe the dual ascent procedure for CPLP in this section.

Consider the LP relaxation of CPLP and its dual as given below.

min E.E.c..x.. + E.f.y. (1.10)
1313 13 3 3 3

subject to

E .x. . = 1 V i •
3 13

--E.d.x.. + s.y. 0 V j
1113 33

- . -1 V jYj

yJ
0 V j 

The dual of the above problem is

max E.u. - E.t. (1.11)
11 33

subject to

c.. V i,j
1 13 13

••

s.v. - t. f. V j
33 J J

v.,t. 0 V j.
J J

In the above problem we can write v and t as,

v. = max f 0, (u. - c. .)/d. 1, V j
1 13 1

v. = f(u. - c. .)/d.} + V j
1 13 1
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and

t. s.v. - f. V j
J 33 J

t.= (s.v. - f.)+ V j
33 J

t. = [(s./d.)(u. - - f. V j
j 1 1 13

With the above expressions for v. and t . we can write the dual problem

in the condensed form as

nmc Esti. A(s./c1.)(11 (1.12)
u 1 3 3 1 13

u. unrestricted V i
1

.IfEHs./c1J(11. - c..)4.-- f.ff >0,therlsorrieu.can be decreased
j j 1 1 13 J 1

without decreasing the objective function (1.12). Also,ifu.<rIlin
1 j

c.. then some u. can be increased without decreasing the objective
13 1

function (1.12). These results provide another condensed dual

max E.i.
u ii

(s./d.)(u. --c..
3 1 1 13

U. min. c.. V i
1 3 13

- f. 0 V j

The dual ascent method develops a set of feasible fu1
t
1 that is optimal

or near optimal for the condensed dual formulation (1.13) - (1.15).

Theprocedurebeginswithanydual-feasiblesolutionftLtl, say

t = mm c..tu. i , and repeatedly cycles through the demand points i one
1 13

at a timetoincreaseu.to the next higher value of Every time
13

t 
some u1 is increased, the corresponding slack variables for

1

constraints(1.14)aredecreaseduntillLt is blocked from increasing
1

by one or more slack variables with values zero. Each increase of u
1
.
t
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•

increases the value of the dual objective function (1.13). This

procedure terminates when no u.t can be increased further.

The dual ascent procedure has performed very effectively for SPLP, and

an extension of this method to the capacitated version is provided in

Guignard and Spielberg [26].

7. Benders Decomposition

Benders decomposition is described fully in Magnanti and Wong [43].

The method can be viewed as follows. Consider the mixed integer

programming problem (P)

(P) Min CX
XES

Ax b

where S = {x = (xi,x2) : xl 2.. 0, x2 integer}

Benders decomposition will successively solve the subproblem (SP), or

rather its dual, for different values of x,:

(SP) c
2
x
2 
+ Min

1
a.- 0 )1c1

b - A
•2 
x
2

At each iteration, a new set of x
2 

values is determined by an integer
•

program called the Benders master problem. The constraints of this

master problem are generated from the solutions of the dual of (SP)

found in the previous iterations. This iterative procedure is repeated

until optimality is verified. Geoffrion and Graves [22] use the

Benders decomposition method to solve the multicommodity distribution

design problem which is a generalization of CPLP with single source

constraints.

21



8. Cross Decomposition

Two methods are used for solving mixed integer programs one based on

primal decomposition which yields a Benders decomposition algorithm,

and the other based on dual decomposition which yields the Lagrangian

relaxation method. Each of these methods has its own advantages to

exploit the structure of primal or dual problems. The cross

decomposition approach proposed by Van Roy [65, 67, 691 exploits

simultaneously the structure of both the primal and dual problems.

The basic idea underlying cross decomposition, as given by Van Roy [67,

69] is to use both the subproblems in one single decomposition

procedure. The procedure is as follows, Van Roy [67]. Consider

Min CX
XES

Ax b,

where S = { x = (x
1' 

x
2
)
T 
: x

1 
0, x

2 
0 and integer

We define the primal subproblem (SP) to be

2 . 1
cx

2 
+ min c x

1 -

A1x
1 

b - A
2
x
2

X1 2:0

And we define the dual subproblem (SD) to be

min cx + 
u2(b2 

- A
2
x)

XES

(MI?)

(SD)

Aix bi.

where u
2 

are the Lagrange multipliers for the constraints of variables

x2. We now give the procedure.

Step 1: Initialize. Select initial values u(2) for the Lagrangian

multipliers and set up the corresponding dual subproblem.
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• Step 2: Solve the dual subproblem •(SD). Either stop, or go to

step 4, or set up the primal subproblem corresponding to the

optimal solution of the current (SD) and go to step 3.

• Step 3: Solve the primal subproblem (SP). Either stop, or go to

step 4, or set up the dual subproblem corresponding to the optimal

dual solution of the current (SP) and go to step 2.

• Step 4: Master Problem. Find new values either for the Lagrange

multipliers or the primal variables that are held fixed in (SD) or

(SP). Set up the corresponding subproblem and go respectively to

step 2 or 3.

Cross decomposition is very fast and also gives better bounds than the

earlier reported results. Guignard-Spielberg and Kim [27] use the

approach of Van Roy for the formulation of CPLP strengthened by (1.6).

If we do not obtain the optimal solution after applying the cross

decomposition method to the problem, then the optimal solution can be

found by using a branch and bound algorithm.

9. Reduction Tests

In this section, we give some reduction tests that have been used in

the literature to fix plants as either open or closed. The following

two tests are for fixing a free plant open.

1. Let T(J1) represent the optimal value of the transportation

. problem with the set J1 of open plants. The plants that do not

belong to set J1 are assumed to be closed. Then we set

Yj. := 1, j E JO if 

T[J - JO - fjl] - 'NJ - JO] f..
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That is, if the increase in the transportation costs by not

including the plant j is greater than or equal to its fixed cost

then we fix plant j open.

2. Another reduction test that is computationally less expensive than

the one given above is as follows

define A.. =
13 minkEJO-J0-{j} (cik)

that is, A.. is the minimum transportation cost of customer i
13

served by plants other than j. Let

max E. (A.. - c. .
1 lj lj lj

subject to

E.d.x.. S.
11•13

0 x.. 1, for all i.
lj

If Z. ?- f then Y
J J 

j

We now give the following two tests for fixing plants closed.

1. 1.1e setY 0 for j E JO ifj

T(J1) - T(J12 U {j}

That is, if the savings obtained in the transportation costs by

including j is less than or equal to its fixed cost then we fix
•••

plant j closed.

2. Another reduction test that is computationally less expensive is

as follows

define 11. • •lj 1 lj

where u.'s are the dual variables associated with the demand
1

constraints. Let
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mZ. = ax E. A..x..
1 1J 1J

subject to

E.d. x. . S.
1 1 1J

0 x. .1, for all i.
1

If Z. f then
J J 

Yj

10. The CPLP with Single Source Constraints

The single source constraints specify that each customer is served from

a single plant. This problem has exactly the same formulation as CPLP

except for the integrality constraints on the x.. variables. The
ij

single source problem was first formulated by Nagelhout and Thompson

[47]. This problem can be formulated as follows.

(CPLPSS)

Z = min E.E.c..x. + E.f .y.
J ij ij JJJ

• subject to

E.x. . = 1, for all i
J 1J

E.d.x. s
1 1 ij 

.y., for all j

x.., y. E {0,1}, for all i,j
ij J.

Unlike CPLP, this problem has not been studied very extensively in the

literature. CPLPSS is also referred to as the fixed-charge assigning

users to sources problem, see Neebe and Rao [51].

There are many well known problems that are actually simplifications of

CPLPSS. If, for example, c.. = 0 for all i.j, then we get the
ij

Generalized Bin Packing Problem (GBPP). Lewis and Parker [41] provide

an algorithm to solve GBPP. Further, if we set f = 1 and s = s for
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all j along with c.. = 0 in CPLPSS then we get the Bin Packing Problemij

(BPP). BPP has, been studied by Gilmore and Gomory [25], Johnson [30,

31], Yao [71], Karmarkar and Karp [32] among others. When we set all

in CPLPSS, we have the problem of assigning sources to uses.

This problem has been studied by Sandi [58], DeMaio and Revada [12],

Srinivasan and Thompson [62], and Fisk [20]. Yet another variation of

CPLPSS is to set all f. =0 and replace d. by d
i 
.. giving rise to the
j

Generalized Assignment Problem (GAP). GAP has been studied very

widely, and some references are Klastorin [36], Ross and Soland [54],

and Ross and Zoltners [55].

When we take d. = 1, for all i, and s = k, for all j, and include a

plant y
0 

with capacity m, we get the Star-Star Concentrator Location

Problem (SSCLP). Mirzain [44] provides an approximate algorithm based

on a Lagrangian relaxation for SSCLP.

A model for the Capacitated Clustering Problem (CCP) can also be

obtained from CPLPSS by setting f. = 0 for 'all j. When we want p

mutually exclusive and collectively exhaustive clusters then the

constraint E.y. = p is added to the formulation of CCP. This problem
J J

has been formulated and solved by Mulvey and Beck [45].

•
There are both exact and heuristic methods to solve CPLPSS in the

literature. Klincewicz and Luss [37] and Barcelo and Casanovas [3]

propose Lagrangian heuristics for the problem. Klincewicz and Luss

[37] consider a Lagrangian relaxation where they dualize the capacity

constraints while Barcelo and Casanovas [3] consider a relaxation where

they dualize the demand constraints. We will describe briefly these

two heuristics and the branch and bound method due to Neebe and Rao

[51] in the following paragraphs.
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Klincewicz and Luss [37] include the capacity constraints in the

objective function by the use of Lagrange multipliers thereby obtaining

an uncapacitated plant location problem as a subproblem. They solve

these subproblems using the dual ascent algorithm of Erlenkotter [16].

They obtain an initial solution by an add heuristic and they also use a

final adjustment heuristic to improve the soltuion after the Lagrangian

iterations are completed. A brief description of the three phases of

their heuristic, the initial add heuristic, the Lagrangian phase, and

the final adjustment heuristic is given below.

The initial add heuristic has two stages. In the first stage plants

are added one at a time to a set of open plants (this set is empty to

start with). The plant to be added next is identified as the one that

provides the maximum savings, the savings being a bound on the

reduction in the transportation cost minus the fixed cost. An

adjustment is made to reflect the capacity restriction. When the total

capacity of the open plants exceeds the total demand the second stage

is invoked wherein the customers are assigned to plants.

In stage two, for .each customer, they compute the cost differential

between its best and second best assignment in the set of open plants.

Then the customers are ordered in decreasing cost differential. Then

for each customer in order, they assign the open plant with minimum

assignment cost among those with sufficient remaining capacity. If

there is no feasible assignment, then they go back to stage one to open

more plants. The procedure stops when all the customers are assigned

to plants.

The Lagrangian phase computes a lower bound for the problem. At each

iteration of the procedure a simple plant location problem is solved.
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The Lagrange multipliers are updated using the subgradient procedure.

The upper bound is initialized by the add heuristic value and whenever

the simple plant location problem is feasible for CPLPSS the upper

bound is updated, if necessary. The procedure stops if (i) the number

of iterations has exceeded a prespecified limit, or (ii) the upper

bound is less than or equal to 1.001 times the lower bound.

Phase three, the final adjustment heuristic, is invoked only when the

Lagrangian phase provides a better upper bound. In this phase, for

each customer the cost differential between the best and the second

best assignment in the set of open plants is computed. Then the

customers are ordered on decreasing cost differential. Then for each

customer in order, alternate plant assignments are examined. If a

customer can be feasibly moved to another open plant with a lower

assignment, then they go back to stage one to open more plants. The

procedure stops when all the customers are assigned to plants.

The Lagrangian phase computes a lower bound for the problem. At each

iteration of the procedure a simple plant location problem is solved.

The Lagrange multipliers are updated using the subgradient procedure.

The upper bound is initialized by the add heuristic value and whenever

the simple plant location ,problem is feasible for CPLPSS the upper

bound is updated, if necessary. The procedure stops if (i) the number

of iterations has exceeded a prespecified limit, or (ii) the upper

bound is less. than or equal to 1.001 times the lower bound.

Phase three, the final adjustment heuristic, is invoked only when the

Lagrangian phase provides a better upper bound. In this phase, for

each customer the cost differential between the best and the second

best assignment in the set of open plants is computed. Then the
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customers are ordered on decreasing cost differential. Then for each

customer in order, alternate plant assignments are examined. If a

customer can be feasibly moved to another open plant with a lower

assignment cost then a reassignment is made. This phase is repeated

until no reassignments are possible.

Barcelo and Casanovas [3] propose a Lagrangian relaxation heuristic

where they dualize the demand constraints. Their heuristic consists of

two stages (i) plant selection, and (ii) assignment. These two stages

are described below.

The plant jk to be selected into the set of open plants in iteration k

is found such that p 4 (u
k+1
) satisfies

Jk

p (u
k+1
) = min. Tifp.(u

k+1

k 
jEJ-_, j

where u
k1 

are the Lagrange multipliers of (1.16) in iteration k+1 and

Ju
k+1
) = (u

k+1 
- u

k
), V j E J.Pj iEI

The Lagrange multipliers ui's are initialized as

1
1.1.=max. {c.. + d.f./s.},ViEI
1 jEJ lj 1 j j

and u.
k+1

in iteration k+1 is computed as

k+1
u. 

k
/V 1 

. 
E I.u.k + min {10, c.. d/S. la. 

1 1 lj'k1j
k

The plants are added onto the set J1 until the condition

E S E. d. is satisfied. Then either an interchange procedure
jEJ1 j lEI 1

is used to select an improved list of open plants or the assignment

stage is started.
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The interchange procedure requires the computation of the.reduced cost

for each plant; if a plant in J1 has negative reduced cost, then that

plant will be replaced by a plant from J - J1 such that the total

capacity of this new set of plants is greater than or equal to the

total demand. If more than one plant in J1 has a negative reduced cost

then the plant with the lowest reduced cost is chosen as the one to be

replaced.

The Lagrange multipliers u.
k 

are updated as given above and this

procedureisrepeateduntil(i)VjEJ1,thereducedcostw.?=0, or

(ii) J - J1 = 0 or (iii) no feasible interchange exists. The reduced

cost w. is computed to be

where

w. = f.-s.p.VjEJ
J J J

pi = max. f(u - c. .)/d.} V j E J.
1E1 i 1J 1

The assignment stage is very similar to the one used by Klincewicz and

Luss [37]. Here also a regret heuristic as described previously is

used to assign the customers to the plants.

Neebe and Rao [51].propose,a branch and bound method for this problem.

They formulate CPLPSS as a set partitioning problem (SPP) and then

consider the linear programming relaxation of the SPP at each node of

the enumeration tree to obtain bounds. The CPLPSS is reformulated as

an SPP as follows. First, for each plant j they define an activity to

be any assignment of customers to that plant such that the capacity of

that plant is not exceeded. Let m be the number of activities

corresponding to plant j and let M = {1, . m.1, and also let the

k
th
activity of plant j be denoted by a

k
,kEM..
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Then activity a.1( = a . 
k
) is represented by a 0-1 vectoril , .., 

a1M

i E I, where

and

1 
1 if customer i is assigned to plant j

0 otherwise

E. yd.a.,
k 
s S.

1E1 1 lj

The cost of non-null activity a.k equals

c:
k 

= Z. ,c..a.,
k 
+ f.

lEi lj lj

(1.19)

and the costs of null activities are zero. Finally, they define the

decisionvariablesx.k uch that

k .
1 if activity a. is active

x.
0 otherwise

Then CPLPSS can be formulated as

- k k
min Z 

= IjEJ/kEM.cj xj

subject to

k k
E a. x = 1ViEIE. 
kEM ij j

x
k 
s 1VjEJ

jkEM. 

X .1( = 0, 1, V j E J, k E M.

This is a set partitioning problem with a side constraint (1.21)

specifying that at most one activity from any plant is utilized.
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The relaxation of the program (1.20) - (1.22) is obtained when we relax

(1.22) to

k
x. - 0 V jE J, kE M..

J
(1.23)

The formulation (1.20) - (1.22) of CPLPSS will have an enormous number

of columns even for a moderate-size problem. This is overcome by the

authors by the use of column generating procedures such as the one used

by Gilmore and Gomory [25] for the cutting stock problem.

If X solves the LP relaxation of (1.20) - (1.22) then the solution of

CPLPSS is obtained as

x. .* = E a .
k
x.
k
V E I, 3 E J.lj kEM.ij j

If X is all integer, than x* is also all integer and therefore optimal

for CPLPSS.

If X is not all integer, then a branch and bound procedure that fixes

the fractional values in x to 0 or 1 is used to find the optimal

solution for CPLPSS.

Neebe and Rao [51] observe that the LP relaxation (1.20, (1.21) and

(1.23) has a high probability of terminating all integer and hence the

branch and bound tree to solve CPLPSS is not too large.

Geoffrion and Graves [22] give a solution procedure based on Benders

decomposition for a generalized version of. CPLPSS which considers

multiple commodities and multiple stages in distribution.
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11. Conclusion

In this paper we surveyed both the heuristic and exact solution methods

for capacitated plant location problems. As was shown in the

introduction a number of decision problems can be obtained as special

cases of CPLP and CPLPSS and hence can be solved using the techniques

described in this survey.
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