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1. Introduction.

Economists are often interested in estimating a system o
f equations

which relate to shares of a total. Examples of this are
 the shares of

individual demands in total expenditure and the shares of inp
uts in the

cost of production. In such modelling situations the shares should

naturally be restricted to lie between zero and one and the s
um of all

the shares should equal one. Much attention is paid in e
conomics to

specifying the deterministic part of such share models. This 
paper,

however, considers a new approach to the appropriate incor
poration of

the stochastic part in such models and the resultant estima
tion of the

model.

Typically, share equations are estimated assuming that the distur
bances

(and thus the shares) follow a multivariate normal distribution.

Obviously, since actual shares will necessarily fall, in the 
zero-one

interval, this choice of distribution does not impose the restrict
ion

that each share must lie between zero and unity. Even if we model

shares using a 'regular' deterministic specification (such as Cooper

and McLaren's (1992)* Modified PIGLOG (MPIGLOG)), which restricts th
e

deterministic component to lie between zero and unity (the monotonicit
y

of the cost function, together with the budget constraint, gives this

restriction), we are still confronted with the possibility of shares

outside the unit interval, by virtue of the nature of the stochastic

specification.

Extreme drawings from the multivariate normal distribution may force

the share, which contains the deterministic component and the

(additive) stochastic component, outside the zero-one interval.

Therefore, use of the multivariate normal distribution will result in a
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non-zero probability of budget shares outside the zero-one int
erval.

Although widely used, the multivariate normal distribution would th
us

seem to be an inappropriate choice when modelling shares.

Given this theoretical problem with the use of the multivariate 
normal

distribution it is perhaps surprising that there have been few attem
pts

to investigate the use of other multivariate distributions for the

stochastic specification of systems of share equations. One paper whic
h

does consider this topic is Woodland (1979). In the context of

estimating systems of demand share equations, Woodland recognises the

problems associated with assuming that the disturbances (and thus
 the

budget shares) follow a multivariate normal distribution. He argues

that "the stochastic specification should respect the fact that sh
ares

cannot be negative, nor can they exceed unity" (p.362). Use of th
e

normal distribution implies a positive probability that shares will no
t

respect this constraint and that the covariance matrix for each

observation is the same and the distribution of shares is symmetric

about the mean. Since the mean will generally be different for each

observation and since the shares must lie between zero and unity, it is

highly unlikely that the true density functions for all observations

are symmetric with a common covariance matrix. This reasoning suggests

that we may argue that the normal distribution is invalid as a

stochastic specification in the context of estimating share equations.

However, Woodland argues that if the lack of symmetry is foregone, the

normal distribution may provide an adequate description of the true

density function if the elements of the covariance matrix are small and

the means are not near zero or unity. In such a case, the density

outside the zero-one interval would be negligible. Although the normal

distribution may be regarded as inappropriate from an economic theory

2



perspective, it may still be useful if it is deemed to 
be 'robust'.

This was an issue which Woodland undertook to investig
ate.

A comparison was made of the theoretical implicatio
ns of assuming a

normal and a Dirichlet distribution for shares in 
Woodland's paper.

Both distributions assume that the expected shares a
re equal to the

deterministic shares. However, differences arise in terms o
f symmetry,

restrictions on the range of shares and the covariance matri
x for the

shares. The normal distribution implies that the dis
tribution for a

particular share is symmetric about the mean, the range of 
shares is

not restricted to the zero-one interval and the covarian
ce matrix for

the shares is constant and does not depend on the expected sha
res. The

Dirichlet distribution results in the distribution for a 
particular

share being asymmetric, except in the case where the mean 
is 0.5. The

distribution restricts the shares to lie between zero and 
unity with

probability one and the covariance matrix for the shares depe
nds on the

expected shares. For these reasons, Woodland considered the
 Dirichlet

distribution to be an attractive alternative to the normal

distribution.

The two stochastic specifications were used in three applications:

estimating a production function, modelling utility (work - leisure

choice) and modelling consumer preferences for meat. The first

application was to a time series containing little variability in
 the

explanatory variables. The second and third applications were to 
cross

section data containing rather large variations in the explanatory

variables. Woodland found that, although the economic application
s and

degree of variability in the data were different, the models based on

the normal and Dirichlet distributions have similar estimates for th
e

parameters in each of the three applications. He considered
 that this
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provided "some empirical justification for the use of the normal

(distribution) even though it may not be a strictly appropriate

specification for a system of share equations" (p. 380
).

In this paper we consider the use of .a modelling approach,

compositional data analysis - hereafter CODA (Aitchison (1986a)) -

which takes account of all restrictions on shares. U
sing data on budget

shares we compare it with the traditional economists'
 approach of using

multivariate normality. We find that the CODA approach shows up an

independence assumption in the use of the Dirichlet wh
ich goes some way

to explaining the findings in Woodland (1979).

The plan of the rest of this paper is as follows:
 section two describes

the CODA approach to specifying and estimating models for data on

shares. Section three compares the 'traditional' and
 CODA approaches to

estimating systems of equations for share data. Secti
on four contains

the results of applying the two approaches to tw
o demand systems for

budget shares (the Almost Ideal Demand System - AIDS
 - and the Indirect

Addilog - IA) using Australian data. Finally, s
ection five contains

some concluding remarks.

2. Compositional Data Analysis.

The restriction that shares must lie between zero a
nd unity and that

they sum to unity applies not only to shares in economics.

Statisticians in other disciplines (e.g. geology, 
medicine, biology)

also use share data which must obey the same two res
trictions. Such

data is termed 'compositional data' and is analysed
 using methods of

compositional data analysis. In this section we gi
ve a brief overview

of the methods of compositional data analysis (a more detailed
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exposition may be found in Aitchison (1986a)). We begin with some

definitions.

A composition is a matrix of proportions (i.e. shares)
, denoted by W

which is of dimension T x N where T denotes the number of rows

(observational units) and N denotes the number of columns (number
 of

parts or shares in the composition). Therefore, compositional data

consists of a set of proportions. From this definition of a

composition, two constraints are obvious. Firstly, each proportion 
must

lie between zero and unity. Secondly, as the proportions are '
parts of

a whole', they must sum to unity.

A basisX isaTxNmatrix of positive components each of
 which is

recorded on the same measurement scale. For example, in the con
sumer

demand context x , (= x , the t
th

x row of X) represent
ti tN

expenditure in dollars on each of N goods by consumer t. This is

usually the form of data gathered for use in estimation of demand

equations. By rescaling the rows of X such that they sum to unity, 
we

form the composition. In our example, we take the expenditure on good i

(x1) by a consumer and divid
e by total expenditure on all goods (mt

)

by a consumer to find the proportional expenditure on good i (w1) by

the consumer. This "constraining operation" therefore takes us from N

dimensional positive real space (the positive orthant of RN) to a

restricted part of n (= N 1) dimensional real space, YTI, which is

termed the 'n dimensional unit simplex'.

Since a simplex is simply a restricted part of real space, the

distinction must be made in terms of the "length" of the simplex of

interest. In compositional data analysis, the length of the simplex

must be unity from the restriction that the components of a composition
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sum to unity. We therefore refer to such (length restricted) real space

as the unit simplex to distinguish it from a restricted (not

necessarily unit length) part of real space. Thus the unit simplex

corresponds to the zero-one interval to which economic theory says

shares should be restricted.

Three operations used in CODA are of interest: subcomposition,

amalgamation and partition. If we were interested in focussing on a

subset of components of the composition, we could form a subcomposition

by rescaling the components of interest such that they sum to unity in

the subcomposition. Forming a subcomposition is useful both in reducing

the dimension of the problem and in that it also preserves the ratio

relationships. That is, the ratio of any two components of a

subcomposition is the same as the ratio of the corresponding two

components in the full composition. The subcomposition is actually

formed by linear projection in the unit simplex.

Amalgamations are essentially compositions in which various components

are aggregated to form new components. That is, an N part composition

is separated into C (Is N) mutually exclusive and exhaustive subsets and

the components within each subset are added together to form a C part

composition (i.e. an amalgamation). The amalgamation operation

transforms the problem from Yn to .rc (where c = C - 1) and is thus

another useful dimension reducing operation. It would be particularly

important in analysing, say, budget shares, as there is a potentially

enormous number of goods among which the consumer's budget is allocated

and this would result in the large dimensions of the problem precluding

meaningful analysis. By amalgamating expenditure on certain goods we

reduce the dimensions of the problem to a manageable size
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We may form a partition by combining the operations of amalgamatio
n and

forming subcompositions. This may be useful when we are interested
 in

applying both operations, for example combining expenditure into gro
ups

and focussing on components of such groups and again has th
e added

advantage of reducing the dimension of the problem.

Aitchison (1986a) points out that the major barrier to statistical

analysis of compositional data is that the constraints such dat
a must

satisfy lead to the lack of an interpretable (covariance) str
ucture. He

therefore suggests the use of several transformations to overc
ome this

problem. Thus underlying the . CODA approach is the idea that by

transforming w we may obtain a set of new variables which are 
amenable

to analysis by traditional multivariate statistical methods.

Of particular interest to us is • the use of the logratio

transformation
1
. This leads to the logratio covariance.matrix (E) which

has typical element:

= covflog(w /w ), log(w j
/w )) (i, j = 1, ..., n). (1)

N  N

This covariance matrix allows us to analyse the variability betwee
n any

two components in the composition relative to a third component which

is always the same (wN). E is non-negative definite and is specified a
s

a traditional variance-covariance matrix for log(wi/wN) where

i = 1, n. While the parts of the composition are treated

asymmetrically, since in each ratio the denominator is the same (w
N),

it is important to note that re-ordering the components and chang
ing

the component used as the denominator in the logratios makes no

difference to statistical procedures involving the logratio covariance

1
Wherever possible in the remainder of this paper the observational

subscript t (=.1, T) will be suppressed.
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matrix E. Thus all statistical proce
dures are invariant to the choice

of component used as the denominator 
for the logratios (for details and

proofs, see Aitchison (1986a, Ch. 5))
. Note also that this invariance

property is similar to that in the 'traditional' approach where

statistical procedures are invariant to the choice of equation to

delete.

By using the logratio transformatio
n, we have defined a .set of new

variables for analysis (y) which will 
have mean g and covariance matrix

•

E. To complete the framework for sta
tistical analysis it is necessary

to make some distributional assumptions. An obvious candidate

distribution for our new logratio v
ariables is the multivariate normal

distribution. To discover the imp
lication of this assumption on the

distribution of the composition w,
 we note that we move from Rn to Yr'

by applying a particular one-to-one transformation (the additive

logistic transformation). This is de
fined by:

WI = exp(y )/{exp(y ) + + exp(y ) + 11 (i = 1, .

w = 1 - w1 
- . • . - w = 1/{exp(y1) + • + exp(y ) + 11.

, n). (2)

(3)

The inverse transformation (Yn to
 Rn) is the logratio transformation

and defines the yi's as:

y = log(w /w ) (1 = 1, . n) (4)
N

(n) , ) . -1

with Jacobian: 
jac(yw

l 
(w

1 
. 

w (5)

Thus if the logratio composition y has an n dimensional normal

distribution (Nn(g,E)) then the 
composition w will have an additive

logistic normal distribution (2n(
g,Z)) where g is the the mean of the

logratios and E denotes the logra
tio covariance matrix. It can be shown

that if y Nn(g,E) and w 2n(g,E) then the basis x will follo
w a
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multivariate lognormal distribution. Finally, any subcomposition,

amalgamation or partition will also follow an additive logistic normal

distribution.

In contrast to the additive logistic normal, the Dirichlet distribution

for w can only arise from a basis x which follows a Gamma distribution

where the components of the basis (the marginal distributions) are

independent and equally scaled. The imposition of independence in the

Dirichlet distribution is a strong assumption which will make the

Dirichlet distribution of little use if we believe that a composition

contains even weak forms of _dependence among the components. This

independence assumption will thus render the Dirichlet distribution

inadequate for describing or modelling the observed patterns of

variability in many compositional data sets.

Woodland's (1979) approach to modelling shares with a Dirichlet

distribution is therefore particularly restrictive as it relies on the

assumption that expenditure on each good is Gamma distributed and

independent of expenditure on other goods. Given that consumers

allocate expenditure on goods subject to a budget constraint and that

various goods are substitutes for, or complements to, other goods, the

assumption of independence would seem to be unrealistic in the context

of budget share analysis.

The additive logistic normal distribution has several advantages over

the Dirichlet distribution. It is better able to describe actual

patterns of • variability in a composition as it can accommodate

dependent and independent covariance structures. Thus we are able to

test for independence using parametric hypothesis tests and could fit a

model to describe compositional dependence if any is found to exist.

9



The additive logistic normal distribution also allows for relatively

simple estimation, modelling and hypothesis testing of the parameters

(II and E) and for validation tests regarding the distributional

assumption.

Finally in this section we consider how we can apply one particular

form of statistical analysis (regression modelling) to compositional

data. Essentially, the task is to model the conditional distribution or

density function for the composition w. Earlier we discovered that the

'trick' was to apply a transformation and work with the logratio

composition y in Rn instead of using the composition w in Yn. Thus the

model is specified as: Y= ZB + U, where Y is a Txn matrix of

logratios, Z is the Txk full rank covariate matrix, B is a kxn

matrix of parameters andUisaTxnmatrix of errors where the rows

of U, u, are distributed as
 N

n
 (0, E) and are independent across t.

_t

Maximum Likelihood estimation of the logratio linear model gives the

estimator Of B as: B = (VZ)-1VY. Thus we can see that this is a

standard multivariate regression and the usual techniques of estimation

and hypothesis testing apply. Further, should we wish to test the

validity of the assumption that w - additive logistic normal then as

the mappings are one-to-one we may test the validity of the assumption

that y multivariate normal.

3. Application to Budget Share Modelling.

In this section we give an overview of the 'traditional' approach to

specifying and estimating systems of demand share models. We then

describe how the statistical, CODA, approach may be combined with the

economic specification of the deterministic component of such models to
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yield specifications which constrain both observed and implied shares

to the unit simplex.

Under the 'traditional' approach, we would specify a general model for

the demand shares as:

w
1 
= W

1
(Z,) + U (i = 1, , N) (6)

where w is the budget share for good 1, W i 
(Z, ft) is the deterministic

—

component and is expressed as a function of exogenous variables (Z),

which are typically the prices of all N goods and total expenditure,

and the unknown parameters (g); u1 is the additive stochastic

component. To impose normality, we assume that u = Cu 1, , u) follows

an n-variate normal distribution with a mean of 0 and an n x n positive

definite covariance matrix Q. Since,

Ew = 1 = Ew (z, 0)
1=1 1=1

(7)

it follows that u = - I: u and u also follows a normal distribution.

1=1

Thus we can write the log-likelihood for a sample of T observations as:

T(log(27r) + 1) Tlogl2

2 2

where f2 is the sample covariance matrix with i ,jth element:

E u u
ti ti

t=1

(8)

and u is the t
th 

observation on u . Finally, it should be noted that
ti 1

the estimates obtained by maximising this function are invariant to the

equation which is deleted (Barten (1969)).

We have seen in section two that the CODA approach involves modelling

the logratios of the shares. We note that in formulating a logratio

model we may 'merge' the statistical, CODA, approach with the
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traditional approach to modelling systems of budget share equations.

The CODA approach restricts the linear combination of deterministic and

stochastic components for each share to lie between zero and unity.

That this corresponds to the aggregation restrictions from economic

theory is coincidental, as the statistical approach does not

impose/recognise the restrictions arising from economic theory (for

example, homogeneity and symmetry). We therefore refer to the

'combined' approach as producing models in which the deterministic

specification is derived from economic theory and the stochastic

specification is derived from the statistical analysis of compositional

data.

The combined approach involves the use of the additive logratio

transformation of the observed shares

y = log (w /w ). (9)
I N

Application of this transformation allows us to model the logratio

shares as multivariate normal, with a conditional mean of p.1(Z,13). The

requirement that the pi be consistent with economic theory naturally

suggests the specification:

pi(z,g) = log
Wil(Z,E))

This gives the following general functional form for estimation:

(10)

(Z,I3)1

y = log [--1-1 = log   + U (i = 1, . , n) (11)
wN(z,g)

where w is the observed share, W (z, g) is the functional form for the

shares derived from economic theory and ul is an additive stochastic

component which is distributed as multivariate normal with mean 0 and

variance-covariance matrix E. This implies that the observed shares,

w , are distributed as additive logistic normal.
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Thus, by applying the additive logratio transformation to the

_deterministic equations as specified under the traditional approach,

adding a multivariate normal disturbance term and subsequently applying

traditional multivariate regression techniques, we are able to model

systems of demand equations whilst ensuring that individual shares

implied by the model cannot lie outside the unit simplex. If necessary,

the implied shares (composition) can be recovered from the lograti
o

composition by applying the additive logistic transformation discussed

earlier.

In summary, we have outlined a method of reformulating the traditional

approach to modelling systems of share equations such that we constrain

the budget shares to lie within the unit simplex. By applying the

additive logratio transformation to the model and assuming multivariate

normality of the disturbances, we can apply conventional multivariate

regression techniques. Further, it should be noted that within the

'combined' approach, we are not constrained to specifying the

deterministic component in the model to be linear in its logarithms.

Just as the estimation and hypothesis testing procedures relating to a

linear regression model may be extended to cover non-linear regression

models, so too can the 'combined' approach to estimating and testing in

the context of systems of demand share equations be extended to cover a

non-linear deterministic specification in the logratio model.

Before proceeding to an empirical comparison of the two approaches, we

now consider one class of demand systems (Addilog systems) which,

although not originally formulated as such, represent an application of

the 'combined' approach in economics. The particular example we

consider is that of Bewley (1982b) who, in effect, models expenditure

on commodities using the Australian Household Expenditure Survey data
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by specifying budget shares as having an additive logistic normal

distribution. In adopting such a specification, he was working with

what he terms the Generalised Addilog Demand System (GADS). The GADS

specification has its foundations in both the Addilog model (Houthakker

(1960)) and the Multinomial Logit model (Then (1969)), but maintains

the essential characteristics of the Addilog model. For further details

of the derivation of this specification, see inter alia Bewley (1982a,

1982b, 1986).

For convenience in estimation, the budget shares in the GADS model are

converted to centred logratio form by applying a logratio

INO

transformation of the form yi = log(wil w) where w is the geometric

mean of the shares. This transformation results in multivariate

normality of the disturbance term in the model for the centred

logratios. However, since the dependent variable log(wti/ wt) uses the

geometric mean of the shares, the covariance matrix for the disturbance

terms will not be E but r - the centred logratio covariance matrix (see

Aitchison (1986a)). One complication involved in using this

specification is that r is singular. Statisticians using a CODA

approach would solve. this by using the generalised inverse of F. Bewley

models log(wl/ W) which may also be written as

• -• •
(log wi ((l/N)jEllog wj)), or E(w w ) where w1 = log 141. Since

• -*
- w ) = 0, the centred logratios add to zero, illustrating the

singularity of F. Bewley (1982b) adopts the usual procedure of deleting

one of the equations and estimating the remaining n equations. The

matrix r is then n x ,n instead of N x N and no longer singular. Once

again, the results are invariant to the choice of equation to delete.

Thus Bewley (1982b) has, in effect, adopted a 'combined' approach to

modelling budget shares which will impose the restrictions that the

14



shares sum to unity and are each constrained to lie between zero and

unity. • This particular deterministic specification does not

automatically impose any other restrictions arising from economic

theory (for example, homogeneity and symmetry).

The assumption of additive logistic normality and the use of the

centred logratio form of transformation in Bewley's work arise

naturally from the specific functional form used for the budget share

equations (GADS). We would argue that such a specification in fact

arises naturally from an appropriate stochastic specification.

4. Empirical Comparison.

Thus far, we have a theoretical difference between the two approaches:

the 'combined' approach restricts the stochastic shares to the unit

simplex, the 'traditional' approach does not. Whether the imposition of

the restriction that 'shares lie between zero and unity makes any

difference to the results is an empirical question, the answer to which

is not obvious a priori.

In the empirical comparison of the two approaches quarterly Australian

National Accounts data for the period 1969:3 to 1992:3 is used.

Australian total expenditure is divided into four categories: food (F),

cigarettes and tobacco (T), alcoholic drinks (A) and 'other

expenditure' (0). The last category is a residual, containing

expenditure on all other goods and services. The budget shares for each

category (wF, WT 
, w, w) are constructed as expenditure for the

A 0

category as a proportion of total expenditure. The price series for

each category (pF, pT, pA, pc)) is derived as an 'implicit price

deflator' by taking the ratio of current to constant ($m1984/85)
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expenditure. Total per capita expenditure (m) is measured in (current)

millions of dollars per thousand persons.

In this application we have tried to follow what appears to be a

standard classification system of expenditure (food, tobacco/alcohol,

clothing/footwear, other) fairly closely. The main difference is in

amalgamating the clothing/footwear and other categories and dividing

the tobacco/alcohol categories into two separate categories. The

amalgamation is useful in reducing the dimension of the problem, while

the division of tobacco/alcohol into two separate categories is carried

out primarily in search of two categories with mean budget shares

"close" to zero. In the light of Woodland's (1979) findings it is

thought that if any major differences are to arise in terms of implied

budget shares outside the unit simplex, they will do so in categories

with mean shares "close" to zero (or unity).

In terms of the empirical comparison, two models are used: the Almost

Ideal .Demand System (A.I.D.S.) and the Indirect Addilog (IA) Demand

System. Under both the 'traditional' and 'combined' approaches the

estimating equations have an additive error which is distributed as

multivariate normal. Note, however, that although both of these

multivariate normal distributions have mean 0 they have different

covariance matrices; 7 for the 'traditional' and Z for the 'combined'.

Under the 'traditional' approach the A.I.D.S. specification would

result in the folldwing demand share equation for the ith share:

w
i 
= (a

i 
+ 7 

IF 
lo

F 
gp + 7 

I
logp + 7 

I
logp + 7 10logp

oT T A A 

+ gi(logm - (wFlogpF + wTlogpT + wAlogp + w0logp0)))

+6 D +6 D +6 D +u (12)
122 133 144
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where E a =1
I

E 7 =0
.3 I

E =
1r

*=rij Tit

(I,J = F, T., A, 0; r = 2, 3, 4).

For simplicity, we have adopted the usual approach of using the Stone's

price index as a deflator. It should be noted that D 
2 
, D

3 
and D

4

represent the seasonal dummy variables for the second, third and fourth

quarters in each year. As a general rule, seasonal dummies have been

appended to the deterministic component of the deterministic equation

for the share. In these estimating equations the error terms ul are

assumed to follow a multivariate normal distribution and estimation is

carried out by maximising the log-likelihood given earlier in section

three of this paper.

The 'combined' approach to estimating the share equations with an

A.I.D.S. specification would yield estimating forms of the demand share

equations as:

log

y =  =
1o [41]

o

(1): + 7
IF
logp + 7 

I
logp + 7 

I
logp + 7 10logp

o1 T A A 

+ gi(logm - (wFlogpF + wTlogpT + wAlogpA + wologpo))

+ 8 D + 8 D + D
12 2 13 3 14 4

O 
+ 7 logp + 7 logp + 7 logp + r logp

oOF OT OA A 00

+ g
o
(logm - (w logp + w logp + w logP + w 

0
logp

o
))

A A 

+ D + 6 D + 8 D )
02 2 03 3 04 4

17

+u

(13)



where E a =1 Zg =0
ii ii

E 7 =0
J jk

T
jk 
= 

rkj

E 7 =0
k jk

E6 =0
J jr

Ci = F, T, A; j,k = F, T, A, 0; r = 2, 3, 4).

In the 'combined' approach the shares have been assumed to be

distributed as additive logistic normal and thus the logratios (and the

errors) are distributed as multivariate normal. The model estimated

here is therefore a three equation non-linear multivariate regression

model and estimation is carried out in the usual manner.

The Indirect Addilog model is unusual in that in the economics

literature it is traditionally estimated using what we refer to as the

combined approach. This is usually done purely for convenience, as the

resulting equations are log-linear. However, for completeness, we have

included the estimation of the' Indirect Addilog model as it would be

estimated under the 'traditional' approach. For the ith share, we have

the following equation specification:

W =

(a
1 
7

i 
(p

1

71 

/M) )

(pA 00 
/m)

7A
)+(a 7 (p

0 
/m)

To
)
)

F F F T T T A A 

+6 D +6 D +6 D +
14
D +u'(14)

11 1 12 2 13 3

where E 8 = 0, E 8 = 0 (i = F, T, A, 0; r = 1, 2, 3, 4). We
1 1r r 1r:

should note that D , D , D and D represent the seasonal dummy
1 2 3 4

variables for each of the four quarters' in each year. In the indirect

addilog model, however, we require four such dummy variables as we do

not have an intercept term. Again the error terms are assumed to follow
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a multivariate normal distribution and estimation is by the maximum

likelihood method outlined in section three.

When we use the 'combined' approach to specifying and estimating the

Indirect Addilog model we find that the denominators cancel out and we

are left with the following specification for the estimating equation:

y = log(w /w )o

where

= log
[ /m) 

71
(0c1
71
(p1

 ) + 3 D + 3 D + 3 D + 314
D
411 1 122 133 

+ 3 D + 3D + 3 D + 3 D
o o o 01 022 • 1 033 044

E6 =0, E6 =0
j Jr r jr

( 1 = F, T, A; j = F, T, A, 0; r = 1, 2, 3, 4).

+ u (15)

Note that for identification, we require the product moTo to be

normalised, and a normalisation of unity is chosen. This normalisation

is imposed under both the 'traditional' and 'combined' approaches, a
s

"the (m's) are only determined up to a scale factor" (Varian (1984,

p.184)).

Before proceeding, we should, note that the problem of shares outside

the unit simplex in the 'traditional' approach is exacerbated when we

have a system of demand share equations in which the deterministic

component is not 'regular'. In such cases, this will increase the

probability of shares that violate the unit interval. In terms of the

specifications we have chosen to use, A.I.D.S. would pose the greatest

problem, since it is well known that the deterministic component of

this specification is not globally regular. However, it can be shown

(see inter alia Bewley (1982b)) that under certain conditions the

Indirect Addil.og will be globally regular.
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Furthermore, this 'irregularity' of A.I.D.S. poses a similar problem

for the 'combined' approach to estimation. Under this approach, the

shares implied by the model are constrained to lie between zero and

unity. If the deterministic component of the model does not restrict

the shares to the unit simplex then the consequences of using the

'combined', approach to estimation are not clear. Indeed, should the

irregularity lead to a negative share, the model specification under

the combined approach would not even be defined. Thus, use of the

'combined' approach to estimating systems of demand share equations

that are not globally regular may be viewed either to cause further

problems or solve this weakness of the demand system specification.

Aitchison (1986b) has developed a software package (called CODA)

specifically for applying the compositional data analysis approach to

estimating and testing share equations. 'However, this package has the

major disadvantage that it is unable to cope with logratio equations

that are complex and non-linear. As a result, each of the models is

estimated under both the 'traditional' and 'combined' approaches by

Full Information Maximum Likelihood (F.I.M.L.) using the LSQ option in

TSP (see Hall et al (1991)). Under the 'combined' approach, the

deterministic component is specified as the logarithm of the ratio of

the relevant deterministic components in the 'traditional' approach.

This means that we are able to maintain the same interpretation for the

parameters under either approach and directly compare them.

Tables 1 through 4 contain the results of our estimation of the models

under both approaches for the A.I.D.S. (symmetry and homogeneity

constrained) and Indirect Addilog models, respectively. The four tables

taken together show little if any difference between parameter

estimates in the 'traditional' and 'combined' approaches. It should
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also be noted that in these models there is no systematic pattern in

the parameter estimates as between the two approaches. That is, gi
ven

the small differences between the estimates under the two approach
es,

the 'combined' approach does not tend to systematically over or under

estimate parameter values, compared with the 'traditional' approach.

The R
2 

values for the 'traditional' and 'combined' approaches are not

comparable since under the 'traditional' approach they relate to

variations in the shares, whereas under the 'combined' approac
h they

relate to variations in the logratio shares. A similar caveat appli
es

to the Durbin-Watson statistics and system log-likelihood values.

The estimation of each model under the traditional and combined

approaches does not yield many startling differences: there appe
ar to

be little if any differences in the parameter estimates. This sugge
sts

that, in using the traditional approach to estimating systems of dem
and

share equations, parameter estimates may be only marginally diffe
rent.

Thus we require another way of comparing the two approaches. The met
hod

that we use is to test the validity of the two different distribut
ional

assumptions made regarding the shares.

Under the 'traditional' approach, the maintained hypothesis is that the

shares are distributed as multivariate normal (and thus each share has

a marginal distribution that is univariate normal). The 'combined'

approach, however, assumes that the logratio shares follow a

multivariate normal distribution and thus the shares themselves have an

additive logistic normal distribution.

Although a multivariate normal distribution implies that the marginal

distributions are all univariate normal, the reverse is not necessarily

true (for further discussion, see inter alia Seber (1977, 1984), Pierce
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and Dykstra (1969), Hogg and Craig (1965) and Anderson (1958)). This

means that for us to test the validity of the normal/additive logistic

normal distributional assumptions, we are unable to use tests for

univariate normality, such as the Jarque-Bera test (see Jarque and Bera

(1987) for further details) as they are not strictly appropriate.

However, the literature provides us with "an embarrassingly large

battery (of tests for multivariate normality, with) varying claims to

appropriateness" (Aitchison (1986a, p.143)). We have thus relied on

Aitchison's (1986a) choice of the Anderson-Darling form of empirical

distribution function test. For further details regarding this test,

see inter alia Anderson and Darling (1954), Stephens (1974) and

Aitchison (1986a).

Thus, we are able to test both the assumption of normality of the

shares (directly) and the assumption of additive logistic normality of

the shares (by testing for normality of the log-ratio shares). This is

achieved by testing for normality of the estimation residuals under

each of the two approaches using the radius test (Aitchison (1986a,

p.146)). To calculate the test statistic, we first compute the radii

as:

^
A
t ut 

0
-1 

= u
t 

t = 1, ... T (16)

where u
t 
is a 1 x n (= 3) vector of estimation residuals for the three

estimated equations at time t, is the estimated variance-covariance

matrix of the residuals (0 is labelled 0 in the traditional approach

and E in the combined approach).

The next step is to evaluate the
2

3) 
distribution at A

t(

(t = 1, ..., T). This provides upper tail areas corresponding to the T

(= 93) different arguments. Arranging these upper tail areas in
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ascending order, we refer to these statistics as et (t = 1, . , T).

To test for significant departures from multivariate normalit
y under

the two approaches, we compare the et's to the order statistic
s of a

uniform distribution on (0,1). This is achieved by calculat
ing the

Anderson-Darling test statistic and comparing it with tabulated

critical values (see Aitchison (1986a, p. 146)). The test stat
istic is

defined as:

Q = -(1/T) E (2t - 1){log e + log(1 - eT+1-tA 
)} - T. (17)

t=1 t

The five percent asymptotic critical value is 2.492 and we reject

multivariate normality for large values of QA, since this implies 
that

the departure from multivariate normality is statistically signif
icant.

Although this is a large sample test, "empirical study su
ggests that

the asymptotic (critical) value is reached very rapidly, and i
t appears

safe to use the asymptotic value for a sample size as l
arge as 40"

(Anderson and Darling (1954, p.766)). Thus, with our sample of 93

observations, we should be able to use the asymptotic crit
ical values

for the Anderson-Darling test for multivariate normality. The
 results

of this test are given in Table 5. In all cases, the Anderson-D
arling

test is unable to reject the null hypothesis of normality un
der the

'traditional' approach or of additive logistic normality under the

'combined' approach. This implies that the test is unable to

discriminate between the two distributions, as they are almost the

same.

•

One final area we address is that of hypothesis testing. As outlined 
in

section 2 of this paper, the logratio transformation still allows u
s .to

use the conventional hypothesis testing techniques. As an example,
 we

choose to test the symmetry restrictions in the A.I.D.S. model under
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each of the two approaches. In the context of the 'traditional'

approach, testing of the symmetry restrictions involves 
the estimation

of the A.I.D.S. model in both its restricted and unrestric
ted forms and

performing a likelihood ratio test. Similarly, testing the symmetry

restrictions under the 'combined' approach to estimation
 involves the

same form of likelihood ratio test: we compare the restricted and

unrestricted log-likelihood values. Using the results sh
own previously

in Tables 1 and 2 (symmetry constrained) and below in Tables
 6 and 7

(symmetry unconstrained), we see that under both the 'tra
ditional' and

'combined' approaches symmetry is rejected.

This rejection of symmetry is not, of itself, the most 
important part

of these results. The most important point to note is that the

calculated values for the likelihood ratio tests under the

'traditional' and 'combined' approaches are not the sa
me (calculated

values of 25.49 and 24.009, respectively, as against a c
ritical value

of 12.5916). In this case, although different, the test sta
tistics lead

to the same outcome for the test: a rejection of symmetry.
 However, it

is plausible that there may be cases in which we marginal
ly reject an

hypothesis under one approach and yet fail to reject it under the

other. This would distinguish the two' approaches, since, 
although they

both give virtually the same parameter estimates, hypothesis tests

using the log-likelihood values (for example, Likelihood Ratio,

Lagrange Multiplier and Wald tests) may result in very different

conclusions being drawn. If this is the case, then this s
hould provide

sufficient incentive for applied researchers to adopt the 
'combined'

approach in their investigations.
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5. Conclusions.

In this paper we have discussed an alternative stochastic specification

to use in estimating systems of share equations. The approach is based

upon combining the economic specification of the deterministic

component of the model with modelling the stochastic component using

the compositional data analysis approach used by statisticians in other

disciplines. The new 'combined' approach solves the theoretical problem

with the 'traditional' approach used in economics, namely, the non-zero

probability of obtaining a share outside the unit simplex.

Furthermore our use of the 'combined' approach based upon the

stochastic assumption of additive logistic normality of the shares

turns out to be less restrictive than previous attempts (Woodland

(1979)) to bind shares using the Dirichlet distribution. This is

because the Dirichlet turns out to be based upon a particularly

restrictive independence assumption which is unlikely to be appropriate

for the data encountered in economics and because the Dirichlet is not

as flexible as the class of additive logistic normal distributions

used.

The efficacy of using the 'combined' approach in practice is

investigated in an empirical example using Australian data. We find

that the new approach is easy to fit in an existing econometrics

package but for the data and deterministic (AIDS and Indirect Addilog)

specifications used there appears to be no large differences in the

parameter estimates. This finding is in common with Woodland (1979) who

finds no apparent difference between the 'traditional' use of

multivariate normality and the use of the Dirichlet distribution.
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An implication of our findings is that there is little to choose

between the 'combined' and 'traditional' approaches. This is confi
rmed

by our results of tests of additive logistic normality of shares in 
the

'combined' approach and of multivariate normality of shares in the

'traditional' approach. In both cases we are unable to reject the

distributional assumption which underlies the approach. Thu
s for this

data and these demand systems the two approaches are similar
. However,

this is unlikely to always be the case. It is not suffic
ient to use

multivariate normality as an approximation to additive logistic

normality, as it is theoretically inappropriate. We therefore
 recommend

that future empirical studies adopt a 'combined' approach.

It is possible that a reason for the apparent similarity in t
he results

is due to the high level of aggregation and high signal to noi
se ratio

in the data used. Thus in investigations using micro-level or

disaggregated data where we are likely to find observations 
which are

sufficiently "close" to zero or one to lead to a difference
 between the

approaches we would argue that the 'combined' approach is more

suitable. Although the use of this type of data may well 
reveal any

differences between the two approaches, the 'combined' approach, as

outlined and used in this paper, is unable to cope with zero

observations. Bacon-Shone (1991) and Aitchison (1986a) propos
e ad hoc

modifications which can be made to the CODA approach to handle
 zeros.

However, even if we adopt their suggestions to cope with zeros in
 our

'combined' approach, the task still remains to modify the 'tr
aditional'

approach to solve, in,effect, the same problem (see Helen and 
Wessells

(1990) for one such attempt). Such extensions are the subject of a

future paper.
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Table 1: Maximum Likelihood Estimates for A.I.D.S.

(Traditional Approach, Symmetry Constrained).

Food Tobacco Alcohol Other

•1

T
IT

T
IA

7
10

a
I.

g 1

a
12

6
13

a
14

0.0920.092
(0.008)

-0.006
(0.002)

-0.002
(0.004)

-0.083
(0.007)

0.190
(0.001)

-0.066
(0.003)

-0.002
(0.001)

-0.002
(0.001)

0.004
(0.001)

.

0.014
(0.001)

-0.015
(0.001)

0.007
(0.002)

0.027
(0.0002)

-0.040
(0.001)

0.001
(0.0002)

0.001
(0.0002)

0.003
(0.0002)

m

.

• .

-0.006
(0.004)

0.023
(0.004)

0.065
(0.0005)

-0.052
(0.002)

-0.003
(0.0004)

-0.003
(0.0004)

0.005
(0.0004)

.

.

.

.

: 0.053
(0.009)

0.718
(0.001)

0.159
(0.004)

0.005
(0.001)

0.004
(0.001)

-0.013
(0.001)

R
2

D.W.

0.942

0.643

0.958

1.052

0.973

1.159

0.981

0.850

L (system) = 1455.79

(Note: Standard Errors in parentheses.)
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Table 2: Maximum Likelihood Estimates for A.I.D.S.

(Combined Approach, Symmetry Constrained).

Food Tobacco Alcohol Other

r
IF

r
IT

r
IA

7
10

mi

01

5
12

5
13

5
14

0.092
(0.008)

-0.006
(0.002)

-0.002
(0.004)

-0.083
(0.007)

0.190
(0.001)

-0.067
(0.004)

-0.002
(0.001)

-0.002
(0.001)

.0.004
(0.001)

.

0.014
(0.001)

-0.016
(0.001)

0.008
(0.002)

0.027
(0.0002)

-0.040
(0.001)

0.0005
(0.0002)

0.001
(0.0002)

0.003
(0.0002)

. ,

.

-0.004
(0.005)

0.023
(0.004)

0.065
(0.0005)

-0.051
(0.002)

-0.003
(0.0004)

-0.002
(0.0004)

0.005
(0.0004)

.

•

0.053
(0.009)

0.718
(0.001)

0.158
(0.004)

0.005
(0.001)

0.003
(0.001)

-0.013
(0.001)

R
2

D.W.

0.954

0.661

0.962

0.981

0.979

1.180
A

-

-

L (system) = 627.343

(Note: Standard Errors in parentheses.)
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7

Table 3: Maximum Likelihood Estimates for the Indirect Addilog Mo
del.

(Traditional Approach).

Food Tobacco Alcohol Other

r i

a 7

8
11

8
12

5
13

8
14

-0.294
(0.044)

0.256
(0.003)

-0.002
(0.001)

-0.003
(0.001)

-0.001
(0.001)

0.006
(0.001)

0.662
(0.032)

0.041
(0.0003)

-0.001
(0.0001)

-0.0005
(0.0001)

-0.0004
(0.0001)

0.002
(0.0001)

0.087
(0.038)

0.093
(0.001)

-0.0001
(0.0005)

-0.003
(0.0004)

-0.003
(0.0004)

0.006
(0.0005)

-1.286
(0.029)

1
(0)

0.003
(0.001)

0.006
(0.001)

0.004
(0.001)

-0.014
(0.001)

R
2

D.W.

0.710

0.170

0.949

0.950

0.910

0.285

0.912

0.901

L (system) = 1316.50

(Note: Standard Errors in parentheses.)
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Table 4: Maximum Likelihood Estimates for the Indirect Addilog Model.

(Combined Approach).

Food Tobacco Alcohol Other

7 1

a 7
1 1

a11

5
12

6
13

5
14

,

-0.345
(0.044)

0.254
(0.003)

-0.002
(0.001)

-0.003
(0.001)

-0.001
(0.001)

0.006
(0.001)

0.650
(0.029)

0.041
(0.0003)

-0.001
(0.0001)

-0.0005
(0.0001)

-0.0004
(0.0001)

0.002
(0.0001)

.

0.124
(0.044)

0.094
(0.001)

-0.0005
(0.0005)

-0.003
(0.0005)

-0.002
(0.0005)

0.006
(0.0005)

-1.321
(0.030)

1
(0)

0.004
(0.001)

0.006
(0.001)

0.004
(0.001)

-0.014
(0.001)

R
2

D.W.

0.769

0.184

,

0.962

1.020

0.918

• 0.251

-

-

L (system) = 484.017

(Note: Standard Errors in parentheses.)

Table 5: Results of the Anderson-Darling Test for Normality

Under the Traditional and Combined Approaches.

Model

Anderson-Darling Test Statistic

Traditional Combined

Approach Approach

A.I.D.S.

Indirect Addilog

0.782 1.055

0.309. 0.631

Critical Value (5%): 2.492
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Table 6: Maximum Likelihood Estimates for A.I.D.S.

. (Traditional Approach, Symmetry Unconstrained).

Food

,
Tobacco Alcohol Other

,

7
IF

7IT

71A

710

a
i

gi

6
12

6
13

6
14

0.093
(0.007)

-0.020
(0.003)

0.028
(0.010)

-0.102
(0.009)

0.190
(0.0009)

-0.054
(0.004)

-0.003

(0.001)

-0.002
(0.001)

0.003
(0.001)

-0.005
(0.002)

0.012
(0.001)

-0.005
(0.002)

-0.002
(0.002)

0.028

(0.0002)

-0.038
(0.001)

0.0005
(0.0002)

0.001
(0.0002)

0.003
(0.0002)

-0.002
(0.004)

-0.019
(0.002)

0.004
(0.005)

0.017
(0.004)

0.066
(0.0005)

-0.048

(0.002)

-0.003

(0.0004)

-0.003

(0.0004)

0.005

(0.0004)

-0.087
(0.007)

0.027
(0.003)

-0.027 •
(0.009)

0.087
(0.008)

0.717
(0.001)

0.139
(0.004)

0.006
(0.001)

0.004
(0.001)

-0.011
(0.001)

R
2

D.W.

0.952

0.810

0.966

1.182

,

0.975

1.208

0.987

1.240

L (system) = 1481.28

Symmetry Test: 2 (1..(6 - L
(1)
) = 25.49

5% critical value:
2 

= 12.592
(6)

(Note: Standard Errors in parentheses.)
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Table 7: Maximum Likelihood Estimates for A.I.D.S.

(Combined Approach, Symmetry Unconstrained).

Food Tobacco Alcohol Other

r
IF

7
IT

7
IA

T
10

a
i

131
,

a
12

S
i3

6
14

0.092
(0.007)

-0.019

(0.003)

0.027
(0.010)

-0.100
(0.009)

0.190
(0.001)

-0.004
(0.004)

-0.003
(0.001)

-0.002
(0.001)

0.003
(0.001)

-0.004
(0.002)

0.012
(0.001)

-0.006
(0.002)

-0.002
(0.002)

0.028
(0.0002)

-0.037
(0.001)

0.0004
(0.0002)

0.001
(0.0002)

0.003
(0.0002)

-0.002
(0.004)

-0.020
(0.002)

0.005
(0.005)

0.016
(0.005)

0.065
(0.0005)

-0.047
(0.002)

-0.003
(0.0004)

-0.002
(0.0004)

0.005
(0.0004)

-0.087
(0.007)

0.028
(0.003)

-0.026
(0.010)

0.086
(0.009)

0.717
(0.001)

0.139
(0.004)

0.005
(0.001)

0.004
(0.001)

-0.011
(0.001)

R
2'

D.W.

0.963

0.840

0.972

1.148

0.982

1.249

-

-

L (system) = 651.352

) 
Symmetry Test: 2 (LC7 - L

(2) 
= 24.009

5% critical value: x2(6) = 12.592

(Note: Standard Errors in parentheses.)
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