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1. Introduction.

Economists are often interested in estimating a systeﬁ of equations
which relate to shares of a total. Examples of this are the shares of
jndividual demands in total expenditure and the shares of inputs in the
cost of production. In such modelling situations the shares should
naturally be restricted to lie between zero and one and the sum of all
the shares should equal one. Much attention is paid in economics to
specifying the deterministic part of such share models. This paper,
however, considers a new approach to the appropriate incorporation of
the stochastic part in such moqels and the resultant estimation of the

model.

Typically, share equations are estimated assuming that the disturbénces
(and thus the shares) follow a multivariate normal distribution.
Obviously, since actual shares will necessarily fall in the zero-one
interval, this choice of distribution does not impose the restriction
that each share must lie between zero and unity. Even if we model
shares using a ‘regular’ deterministic specification (such as Cooper
and McLaren’s (1992)° Modified PIGLOG (MPIGLOG)), which restricts the

deterministic component to lie between zero and unity (the monotonicity

of the cost function, together with the budget constraint, gives this

restriction), we are still confronted with the possibility of shares
outside the unit interval, by virtue of the nature of the stochastic

specification.

Extreme drawings from the multivariate normal distribution may force
the share, which contains the deterministic component and the
(additive) stochastic component, outside the zero-one interval.
Therefore, usé of the multivariate normal distribution will result in a
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non-zero probability of budget shares outside the zero-one interval.
Although widely used, the multivariate normal distribution would thus

seem to be an inappropriate choice when modelling shares.

Given this theoretical problem with the use of the multivariate normal
distribution it is perhaps surprising that there have been few attempts
to investigate the use of other multivariate distributions for the
stochastic specification of systems of share equations. One paper which

does consider this topic is Woodland (1979). In the context of

estimating systems of demand share equations, Woodland recognises the

problems associated with assuming that the disturbances (and thus the
budget shares) follow a multivariate normal distribution. He argues
that “the stochastic specification should respect the fact that shares
cannot be negative, nor can they exceed unity” (p.362). Use of the
normal distribution implies a positive probability that shares will not
respect this constraint and that the covariance matrix for each
observation is the same and the distribution of shares 1is symmetric
about the mean. Since the mean will generally be different for each
observation and since the shares must lie between zero and unity, it is
highly unlikely that’ the true density functions for all observations
are symmetric with a common covariance matrix. This reasoning suggests
that we ﬁay argue that the normal distribution 1is invalid as a

stochastic specification in the context of estimating share equations.

However, Woodland argues that if the lack of symmetry is foregone, the
normal distribution may provide an adequate description of the true
density function if the elements of the covariance matrix are small and
the means are not near zero or unity. In such a case, the density
outside the zero-one interval would be negligible. Although the normal
distribution méy be regarded as inappropriate from an economic theory
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perspective, it may still be useful if it is deemed to be ‘robust’.

This was an issue which Woodland undertook to investigate.

A comparison was made of the theoretical implications of assuming a
normal and a Dirichlet distribution for shares in Woodland’s paper.
Both distributions assume that the expected shareé are equal to the
deterministic shares. However, differences arise in terms of symmetry,
restrictions on the range of shares and the covariance matrix for the
shares. The normal distribution implies that the distribution for a
particular share is symmetric about the mean, the range of shares is
not restricted to the»zero—one_interval and the covariance matrix for
the shares is constant and does not depend on the expected shares. The
Dirichlet distribution results in the distribution for a particular
share being asymmetric, except in the case where the mean is 0.5. The
distribution restricts the shares to lie between zero and unity with
probability one and the covariance matrix for the shares depends on the
expected shares. For these reasons, Woodland considered the Dirichlet
distribution to be an attractive alternative to the normal

distribution.

The two stochastic specifications were used in three applications:

estimating a production function, modelling utility (work - leisure
choice) and modelling consumer preferences for meat. The first
application was to a time series containing little variability in the
explanatory variables. The second and third applications were to cross
section data containing rather large variations in the explanatory
variables. Woodland found that, although the economic applications and
degree of variability in the data were different, the models based on
the normal and Dirichlet distributions have similar estimates for the
parameters in each of the three applicatioﬁs. He considered that this

3




provided “some empirical justification for the use of the normal

(distribution) even though it may not be a strictly appropriate

specification for a system of share equations” (p. 380).

In this paper we consider the use .of ‘a modelling approach,
compositional data analysis - hereafter CODA (Aitchison (1986a)) -
which takes account of all restrictions on shares. Using data on budget
shares we compare it with the traditional economists’ approach of using
multivariate normality. We find that the CODA approach shows up an
independence assumption in the use of the Dirichlet which goes some way

to explaihing the findings in Woodland (1979).

The plan of the rest of this paper is as follows: section two describes
the CODA approach to specifying and estimating models for data on
shares. Section three compares the ‘traditional’ and CODA approaches to
estimating systems of equations for share data. Section four contains
the results of applying the two approaches to two demand systems for
budget shares (the Almost Ideal Demand System - AIDS - and the Indirect
Addilog - IA) using Australian data. Finally, section five contains

some concluding remarks.

2. Compositional Data Analysis.

The restriction that shares must lie between zero and unity and that
they sum to unity applies not only to shares in economics.
Statisticians in other disciplines (e.g. geology, medicine, biology)
also use share data which must obey the same two restrictions. Such
data is termed ‘compositional data’ and is analysed using methods of
compositional data analysis. In this section we give a brief overview

of the methods of compositional data analysis (a more detailed




exposition may be found in Altchison (1986a)). We begin with some

definitions.

A composition is a matrix of proportions (i.e. shares), denoted by W
which is of dimension T x N where T denotes the number of rows
(observational units) and N denotes the number of columns (number of
partsb or shares in the composition). Therefore, compositional data
consists of a set of proportions. From this definition of a
composition, two constraints are obvious. Firstly, each proportion must
lie between zero and unity. Secondly, as the proportions are ‘parts of

a whole’, they must sum to unity.

A basis X is a T x N matrix of positive components each of which is
recorded on the same measurement scale. For example, in the consumer
demand context xtl, N xtN (= xt, tth row of X) represent
expenditure in dollars on each of N goods by consumer t. This 1is
usually the form of data gathered for use in estimation of demand
equations. By rescaling the rows of X such that they sum to unity, we

form the composition. In our example, we take the expenditure on good i

(xti) by a consumer and divide by total expenditure on all goods (mt)

by a consumer to find the proportional expenditure on good i (wt1) by

the consumer. This “constraining operation” therefore takes us from N
dimensional positive real space (the positive orthant of RN) to a
restricted part of n (= N - 1) dimensional real space, #", which is

termed the ‘n dimensional unit simplex’.

Since a simplex is simply a restricted part of real space, the
dis£inction must be made in terms of fhe “length” of the simplex of
interest. In compositional data analysis, the lengﬁh of the simplex
must be unity from the restriction that the components of a composition
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sum to unity. We therefore refer to such (length restricted) real space
as the unit simplex to distinguish it from a restricted (not
necessarily unit length) pa;t of real space. Thus the unit simplex
corresponds to the zero-one interval to which economic theory says

shares should be restricted.

Three operations used in CODA are of interest: subcomposition,
amalgamation and partition. If we were interested in focussing on a
suBset of components of the composition, we could form a subcomposition
by rescaling the components of interest such that they sum to unity in
the subcomposition. Forming a subcomposition is useful both in reducing
the dimension of the problem and in that it also preserves the ratio

relationships. That 1is, the ratio of any two components of a

suBcomposition is the same as the ratio of the corresponding two

components in the full composition. The subcomposition is actually

formed by linear projection in the unit simplex.

Amalgamations are essentially compositions in which various components
are aggregated to form new components. That is, an N part composition
is separated into C (= N) mutually exclusive and exhaustive subsets and
the components within each subset are added together to form a C part
composition (i.e. an amalgamation). The amalgamation operation
transforms the problem from ¥ to ¥° (where ¢ =C - 1) and is thus
another useful dimension reducing operation. It would be particularly
important in analysing, say, budget shares, as there is a potentially
enormous number of goods among which the consumér’s budget is allocated
and this would result in the large dimensions of the problem precluding
meaningful analysis. By amalgamating expenditure on certain goodé we

reduce the dimensions of the problem to a manageable‘size




We may form a partition by combining the operations of amalgamation and
forming subcompositions. This may be useful when we are interested in
applying both operations, for example combining expenditure into groups
and focussing on components of such groups and again has the added

advantage of reducing the dimension of the problen.

Aitchison (1986a) points out that the major barrier to statistical
analysis of compositional data 1s that the constraints such data must
satisfy lead to the lack of an interpretable (covariance) structure. He
therefore suggests the use of several transformagiohs to overcome this
problem. Thus underlying the CODA approach is the idea that by
transforming w we may obtain a set qf new variables which are amenable

to analysis by traditional multivariate statistical methods.

Of particular interest to us ijs ~ the use of the logratio
transformationl. This leads to the logratio covariance.matrix (£) which
has typical element:

011 = cov{log(wl/wn). log(wj/wN)) (i, j=1, ..., n). (1)

This covariance matrix allows us to analyse the variability between any

two components in thé composition relative to a third component which
is always the same (wN). ¥ is non-negative definite and is specified as
a traditional variance-covariance matrix for log(wx/wN) where

1, ..., n. While the parts of the composition are treated
asymmetrically, since in each ratio the denominator is the same (wN),
it is important to note that re-ordering the components and changing
the component used as the denominator in the logratios makes no

difference to statistical procedures involving the logratio covariance

1Wherever possible in the remainder of this paper the observational
subscript t (=1, ..., T) will be suppressed.




matrix Z. fhus all statistical procedures are invariant to the choice
of component used as the denominator for the logratios (for details and
proofs, see Aitchison (1986a, Ch. 5)). Note also that this invariance
property is similar to that in the ‘traditional’ approach where
statistical procedures are invariant to the choicé of equation fo

delete.

By using the logratio transformation, we have defined a set of new
variables for analysis (y) which will have mean p and covariance matrix
T. To complete the frémework for statistical analysis it is necessary
to make soﬁe distributional assumptions. An obvious candidate
distribution for our new logrétio'variables is the multivariate normal
distribution. To discover the implication of this assumption on the
distribution of the composition w, we note that we move from R" to ¥
by applying a particular one-to-one transformation (the -additive

logistic transformation). This is defined by:
exp(yl)/{exp(yl) + ...+ exp(yn) + 1} (i=1, ..., n). (2)

1 - WoT e T w o= 1/{exp(y1) + ...t exp(yn) + 1}. (3)

The inverse transformation (¥" to R") is the logratio transformation

and defines the yi’s as:
v, = log(w‘/wu)

with Jacobian: jac(ylw(")) = (W ..

Thus if the logratio compésition y has an n dimensional normal
distribution (NH(E,Z)) then the composition w will have an additive
logistic normal distribution (EP(E}Z)) where p is the the mean of the
logratios and Z denotes the logratio covariance matrix. It can be shown

that if y ~ Nn(g,z) and w ~ 2“(&,2) then the basis x will follow a




multivariate lognormal distribution. Finally, any subcomposition,
amalgamation or partition will also follow an additive logistic normal

distribution.

In contrast to the additive logistic normal, the Dirichlet distribution
for w can only arise from a basis x which follows a Gamma distribution

where the components of the basis (the marginal distributions) are

independent and equally scaled. The impbsition of independence in the

Dirichlet distribution is a strong assumption which will make the
Dirichlet distribution of little use if we believe that a composition
contains even ‘weak forms of dependence among the components. This
independence assumption will thus render the Dirichlet distribution
inadequate for describing or modelling the observed patterns of

variability in many compositional data sets.

Woodland's (1979) approach to modelling shares with a Dirichlet
distribution is therefore particularly restrictive as it relies on the
assumption' that expenditure on each good is Gamma distributed and
independent of expenditure on other goods. Given that consumers
allocate expenditure on goods subject to a budget constra&nt and that
various goods are substitutes for, or complements to, other goods, the
assumption of independence would seem to be unrealistic in the context

of budget share analysis.

The additive logistic normal distribution has several advantages over
the Dirichlet distribution. It is better able to describe actual
.pétterns of wvariability in a composition as it can accommodate
dependent and independent covariance structures. Thus we are able to
test for independence using parametric hypothesis tests and could fit a
model to describe compositional dependencé if any is found to exist.
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The additive logistic normal distribution also allows for relatively
simple eéestimation, modelling and hypothesis testing of the parameters
(0 and $) and for validation tests regarding the distributional

assumption.

Finally in this section we consider how we can abply one particular
form of statistical analysis (regression modelling) to compositional
data. Essentially, the task is to model the conditional distribution or
density function for the composition w. Earlier we discovered that the
‘trick’ was to apply a transformation and work with the logratio

composition y in R" instead of using the composition w in ¥". Thus the

model is specified as: Y = 2B + U, where Y is a T x n matrix of

logratios, Z is the T x k full rank covariate matrix, B is a k xn
matrix of parameters and U is a T x n matrix of errors where the rows

of U, Et’ are distributed as N"(0, £) and are independent across t.

Maximum Likelihood estimation of the logratio linear model gives the
estimator of B as: é = (2'2)"'2’Y. Thus we can see that this is a
standard multivariate regression and the usual techniques of estimation
and hypothesis testing apply. Further, should we wish to test the
validity of the assumption that w ~ additive logistic normal then as
the mappings are one-to-one we may test the validity of the assumption

that y ~ multivariate normal.

3. Application to Budget Share Modelling.

In this section we give an overview of the ‘traditional’ approach to
specifying and estimating systems of demand share models. We fhen
describe how the statistical, CODA, approach may be combined with the

economic specification of the deterministic component of such models to
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yield specifications which constrain both observed and implied shares

to the unit simplex.

Under the ‘traditional’ approach, we would specify a general model for
the demand shares as:

wo=W(2z, B) (i=1, ..., N) (6)

where W is the budget share for good i; W‘(Z, B) is the deterministic
component and is expressed as a function of exogenous variables (2),
which are typically the prices of all N goods and total expenditure,
and the unknown parameters (E); u is the additive stochastic
component. To impose normality. we assume that u = (ul. ceey un) follows
an n-variate normal distribution with a mean of 0 and an n x n positive

definite covariance matrix Q. Since,

N N
E‘wl =1-= zwl(z, B) (7)
1=1 1=1

n
it follows that u == Z:ul and u, also follows a normal distribution.

1=1
Thus we can write the log-likelihood for a sample of T observations as:
T(log(2m) + 1) Tloglfl

- (8)
2 2

where Q is the sample covariance matrix with i,jth element:

T

Y u.u
t1 ty

t=1

T
and u,, is the t*® observation on u . Finally, it should be noted that
the estimates obtained by maximising this function are invariant to the

equation which is deleted (Barten (1969)).

We have seen in section two that the CODA approach involves modelling
the logratios of the shares. We note that in formulating a logratio

model we may ‘merge’ the statistical, CODA, approach with the
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traditional approach to modelling systems of budget share equations.
The CODA approach restricts th? line§r combination of deterministic and
stochastic components for each share to lie between zero and unity.
That this corresponds to the aggregation restrictions from economic
theory 1is coincidental, as the statistical approach does not
impose/recognise the restrictions arising from economic theory (for
example, homogeneity and symmetry). We therefore refer to the.
‘combined’ approach as producing models in which the deterministic
specification is derived from economic theory and the stochastic
specification is derived from the statistical analysis of compositional

data.

The combined approach involves the use of the additive logratio
transformation of the observed shares

y, = log (wl/wN). (9).
Application of this transformation allows us to model the logratio

shares as multivariate normal, with a conditional mean of pl(Z,E). The

requirement that the H, be consistent with economic theory naturally

suggests the specification:

W, (2,B)
u, (2,8) = log | ———
W, (2,8)

This gives the following general functional form for estimation:

W, W (2,8) "
yl = log w_ = log —_— + u1 (i = 1, ..., n) (11)
N WN(Z,E)

where W is the observed share, Wi(Z, B) is the functional form for the
shares der;ved from economic theory and ul is an additive stocha;tic
component which is distributed as mulfivariate normal with mean O and
variance-covariance matrix Z. This implies that thé observed shares,
W, are distributed as additive logistic normal.
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Thus, by applying the additive logratio transformation to the

deterministic equations as specified under the traditional approach,

adding a multivariate normal disturbance term and subsequently applying

traditional multivariate regression techniques, we are able to model
systems of demand equations whilst ensuring that individual shares
implied by the model cannot lie outside the unit simplex. If necessary,
the implied shares (composition) can be recovered from the logratio
composition by applying the additive logistic transformation discussed

earlier.

In summary, we have outlined g method of reformulating the traditional
approach to modelling systems of share equations such that we constrain
the budget shares to lie within the unit simplex. By applying the
additive logratio transformation to the model and assuming multivariate
normality of the disturbances, we can’ apply conventional multivariate
regression techniques. Further, it should be noted that within the
‘combined’ approach, we are not constrained to specifying the
deterministic component in the model to be linear in its logarithms.
Just as the estimation and hypothésis testing procedures relating to a
linear regression model may be extended to cover non-linear regression
models, so too can the ‘combined’ approach to estimating and testing in
the contéxt of systems of demand share equations be extended to cover a

non-linear deterministic specification in the logratio model.

Before proceeding to an empirical comparison of the two approaches, we
now consider one class of demand systems (Addilog systems) which,
although not originally formulated as such, represent an application of
the ‘combined’ approach in economics. The particular example we
consider is that of Bewley (1982b) who, in effect, models expenditure
on commoditiés using the Australian Household Expenditure Survey data
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by specifying budget shares as having an additive logistic normal
distribution. In adopting such a specification, he was working with
what he terms the Generalised Addilog Demand System (GADS). The GADS
specification has its foundations in both the Addilog model (Houthakker
(1960)) and the Multinomial Logit model (Theil (1969)), but maintains
the essential characteristics of the Addilog model. For further details
of the derivation of this specification, see inter alia Bewley (1982a,

1982b, 1986).

For convenience in estimation, the budget shares in the GADS model are
converted to centred logrgtio form by applying a logratio
transformation of the form y, = log(wy/ W) where w is the geometric
mean of the shares. This transformation results in multivariate
normality of the disturbance term in the model for the centred
logratios. However, since the dependent variable log(wtx/ Gt) uses the
geometric mean of the shares, the covariance matrix for the disturbance
rterms will not be £ but ' - the centred logratio covariance matrix (see
Altchison (1986a)). One complication involved in using this
specification is that T 1is singular. Statisticians using a CODA

approach would solve:this by using the generalised inverse of I'. Bewley

models log(wi/ W) which may also be written as
A N
(log w o ((1/N)J§110g wj)), or Z(w: - W) where w: = log W Since

E(WI -w) = 0, the centred logratios add to zero, 1illustrating the
singularity of I'. Bewley (1982b) adopts the usual procedure of deleting
one of the equations and estimating the remaining n equations. The
matrix T is then n X n instead of N x N and no longer singular. Once

again, the results are invariant to the choice of equation to delete.

Thus Bewley (1982b) has, in effect, adopted a ‘combined’ approach to
modelling budget shares which will impose the restrictions that the
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shares sum to unity and are each constrained to lie between zero and
unity.  This particular deterministic specification does not
automatically impose any other restrictions arising from economic

theory (for example, homogeneity and symmgtry).

The assumption of additive logistic normality aﬁd the use of the
centred logratio form of transformation in Bewley’s work arise
naturally from the specific functional form used for the budget share
equations (GADS). We would argue that such a specification in fact

arises naturally from an appropriate stochastic specification.
4. Empirical Comparison.

Thus far, we have a theoretical difference between the two approaches:
the ‘combined’ approach restricts the stochastic shares to the unit

simplex, the ‘traditional’ approach does not. Whether the imposition of

the restriction that shares lie between zero and unity makes any

difference .to the results is an empirical question, the answer to which

is not obvious a priori.

In the empirical comparison of the two approaches quarterly Australian
National Accounts data for the period 1969:3 to 1992:3 is used.
Australian total expenditure is divided into four categories: food (F),
cigarettes and tobacco (T), alcoholic drinks (A) and ‘other
expenditure’ (0). The last category 1is a residual, containing
expenditure on all other goods and services. The budget shares for each
category (wF, L W, wo) are constructed as expenditure for the
category as é proportion of total expenditure. The price series for
each category (p_, P P, po) is derived as an ‘implicit price

F A
deflator’ by taking the ratio of currentl to constant ($m1984/8S)
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expenditure. Total per capita expenditure (m) is measured in (current)

millions .of dollars per thousand persons.

. In this application we have tried to follow what appears to be a
standard classification system of expendifure (food, tobacco/alcohol,
clothing/footwear, other) fairly closely. The main difference is in
amalgamating the clothing/footwear and other categories and dividing
the tobacco/alcohol categories into two separate categories. The
amalgamation is useful in reducing the dimension of the problem, while
the division of tobacco/alcohol into two separate categories is carried
out primarily in search of two categories with mean budget shares
“close” to zero. In the light of Woodland's (1979) findings it 1is
thought that if any majof differences are to arise in terms of implied
budget shares outside the unit simplex, they will do so in categories

with mean shares “close” to zero (or unity).

In terms of the empirical comparison, two models are used: the Almost
Ideal .Demand System (A.I.D.S.) and the Indirect Addilog (IA) Demand
System. Under both the ‘traditional’ and ‘combined’ approaches the
estimating equations have an additive error which is distributed as
multivariate normal. Note, however,” that although both of these
multivariate normal distributions have mean O tpey‘ have different

covariance matrices; Q for the ‘traditional’ and Z for the ‘combined’.

Under the ‘traditional’ approach the A.I.D.S. specification would

result in the following demand share equation for the i*" share:

wl = (011 * YIFIngF * vlTlong * lelogpA * 7101°gp0

+ BI(IOgm - (wplogpr + leong + wAlogpA + wologpo)))
+8 D +38 D +8 D +u
12 2 133 14 4 1
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(i,j=F, T, A, O; r =2, 3, 4).

For simplicity, we have adopted the usual approach of using the Stone’s
price index as a deflator. It should be noted that Dz’ D3 and D4
represent the seasonal dummy variables for the second, third and fourth
quarters in each year. As a general rule, seasonal dummies have been
appended to the deterministic component of the deterministic equation
for the share. In these estimating equations the error terms u are
assumed to follow a multivariate normal distribution and estimation is
carried out by maximising the log-likelihood given earlier in section

three of this paper.

The ‘combined’ approach to estimating the share equations with an
A.1.D.S. specification would yield estimating forms of the demand share

equations as:

[al * 71F1°gpF * 71Tlong * 71A1°gpA * 7101°gp0

+ Bl(logm - (wFlogpF + leong + wAlogpA + wologpo))

+6 D +8 D +98 D ]
1272 13°3 1474

[“o * TOFIngF * 70Tlong * 70Al°gpA * 7OOIngO

+ Bo(logm - (wFlogpF + leong + wAlogpA + wologpo))

33 04 4

+8 D +6 D +6 D ]
02 2 o




(1=F, T, A jJJ)k=F, T, A, O; r =2, 3, 4).

In the ‘combined’ approach the shares have been assumed to be
distributed as additive logistic normal and thus the logratios (and the
errors) are distributed as multivariate normal. The model estimated
here is therefore a three equation non-linear multivariate regression

model and estimation is carried out in the usual manner.

The Indirect Addilog model is wunusual in that in the economics
literature it is traditionally estimated using what we refer to as the
combined approach. This is usually done purely for convenience, as the
resulting equations are log-linear. However, for completeness, we have
included the estimation of the Indirect Addilog model as it would be
estimated unaer the ‘traditional’ approach. For the i*" share, we have

the following equation specification:

7
(ocl'.r!(pl/m) )

e LAY LA LA
[(aFWF(pF/m) )+(ocT7_r(pT/m) )+(ocA7A(pA/m) )+(oc070(po/m) ))

+8 D +#8 D +8 D +5 D + u’
1171 1272 1373 1474 1

where © 8 =0, £& =0 (1=F T, A O;r=1,2, 3, 4). Ve
i ir r ir

should note that D1' Dz, D3 and D4 represent the seasonal dummy

variables for each of the four quarters in each year. In the indirect

addilog model, however, we require four such dummy variables as we do

not have an intercept term. Again the error terms are assumed to follow

18




a multivariate normal distribution and estimation is by the maximum

likelihood method outlined in section three.

When we use the ‘combined’ approach to specifying and estimating the
Indirect Addilog model we find that the denominators cancel out and we
are left with the following specification for the estimating equation:

y, = log(wi/wo)

7 .
i
(alwi(pl/m) ) * 611D1 + 6[2D2 + 813D3 + 614D4
= 108 > +
0
(aowo(po/m) )+ 6011.')1 * 602D2 * 6031)3 * 604:])4

8 =0, zZ3 0
J jr r Jr

(1i=F, T, A; J=F, T, A, 05 r =1, 2, 3, 4).

Note that for identification, we require the product ® ¥, to be
normalised, and a normalisation of unity is chosen. This normalisation
is imposed under both the ‘traditional’ and °‘combined’ approaches, as
“the (x’s) are only determined up to a scale factor” (Varian (1984,

p.184)).

Before proceeding, we should. note that the problem of shares outside

the unit simplex in the ‘traditional’ approach is exacerbated when we
have a system of demand share equations in which the deterministic
component is not ‘regular’. In such cases, this will increase the
probability of shares that violate the unit interval. In terms of the
specifications we have chosen to use, A.I.D.S. would pose the greatest
problem, since it is well known that the deterministic component of
this specification is not globally ;egular. However, it can be shown
(see inter alia Bewley (1982b)) that under certain conditions the

Indirect Addilog will be globally regular.
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Furthermore, this ‘irregularity’ of A.I.D.S. poses a similar problem

for the ‘combined’ approach to estimation. Under this approach, the
shares implied by the model are constrained to lie between zero and
unity. If the deterministié component of the model does not restrict
the shares to the unit simplex then the consequences of using the
‘combined’. approach to estimation.are not clear. Indeed, should the
irregularity lead to a negative share, the model specification under
the combined approach would not even be defined. Thus, use of the
‘combined’ approach to estimating systems of demand share equations
that are not globally regular may be viewed either to cause further

problems or solve this weakness of the demand system specification.

Aitchison (1986b) has developed a software package (called CODA)
specifically for applying the compositional data analysis approach to
estimating and festing share equations. However, this package has the
major disadvantage that it is unable to cope with logratio equations
that are complex and non-linear. As a result, each of the models is
estimated under both the ‘traditional’ and ‘combined’ approaches by
Full Information Maximum Likelihood (F.I.M.L.) using the LSQ option in
TSP (see Hall et al (1991)). Under the ‘combined’ approach, the
deterministic component is specified as the logarithm of the ratio of
the relevént deterministic components in the ‘traditional’ approach.
This means that we are able to maintain the same interpretation for the

parameters under either approach and directly compare them.

Tables 1 through 4 contain the results of our estimation of the models
under both approaches fof the A.I.D.S. (symmetry and homogeneity
constrained) and Indirect Addilog models, respectively. The four tables
taken together show little if any difference between parameter
estimates in fhe ‘traditional’ and ‘combined’ approaches. It shohld
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also be noted that in these models there is no systematic pattern in
the parameter estimates as between the two approaches. That is, given-
the small differences between the estimates under the two approaches,
the ‘combined’ approach does not tend to systematically over- or under
estimate parameter values, compared with the ‘traditional’ approach.
The R® values for the ‘traditional’ and ‘combined’ approaches are not
comparable since wunder the ‘traditional’ approach they relate to
variations in the shares, whereas under the ‘combined’ approach they

relate to variations in the logratio shares. A similar caveat applies

to the Durbin-Watson statistics ﬁnd system log-likelihood values.

The estimation of each model under the traditional and combined
approaches does not yield many startling differences: there appear to
be little if any differences in the parameter estimates. This suggests
that, in using the traditional approach to estimating systems of demand
share equations, parameter estimates may be only marginally different.
Thus we require another way of comparing thé two approaches. The method
that we use is to test the validity of the two different distributional

assumptions made regarding the shares.

Under the ‘traditional’ approach, the maintained hypothesis is that the
shares are distributed as multivariate normal (and Fhus each share has
a marginal distribution that is wunivariate normal). The ‘combined’
approach, however, assumes that the logratio shares follow a
multivariate normal distribution and thus the shares themselves have an

additive logistic normal distribution.

Aithough a multivariate normal distribution implies that the marginal
distributions are all univariate normal, the reverse is not necessarily
true (for further discussion, see inter alia Seber (1977, 1984), Plerce
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and Dykstra (1969), Hogg and Craig (1965) and Anderson (1958)). This
means that for us to test the validity of the normal/additive logistic
normal distributional assumpfions, we are unable to use tests for
univariate normality, such as the Jarque-Bera test (see Jarque and Bera
(1987) for further details) as they aré not strictly appropriate.
However, tﬁe literature provides us with “an embarrassingly large
battery (of tests for multivariate normality, with) varying claims to
appropriateness” (Aitchison (1986a, p.143)). We have thus relied on
Aitchison’s (1986a) choice of the Anderson-Darling form of empirical
distribution function test. For further details regarding this test,
see -inter alia Anderson and Darling (1954), Stephens (1974) and

Aitchison (1986a).

Thus, we are able to test both the assumption of normality of the
shares (directly) and the assumption of additive logistic normality of
the shares (by testing for normality of the log-ratio shares). This is
achieved by testing for normality of the estimation residuals under
each of the two approaches using £he radius test (Aitchison (1986a,
p.146)). To calculate the test statistic, we first compute the radii

as:

~ ¢

A = u yu eeo W T (16)
t t t

where ut js a 1 x n (= 3) vector of estimation residuals for the three

estimated equations at time t, & is the estimated variance-covariance
matrix of the residuals (y is labelled Q in the traditional approach
and £ in the combined approach).

The next step 1is to evaluate the xf3) distribution at At

(t =1, ..., T). This provides upper tail areas corresponding to the T

= 93) different arguments. Arranging these upper tail areas in
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ascending order, we refer to these stétistics as et (t=1, ... , T).
To test for significant departures from multivariate normality under
the two approaches, we compar; the-et’s to the order statistics of a
uniform distribution on (0,1). This is achieved by calculating the
Anderson-Darling test statistic and comparing it with tabulated
critical values (see Aitchison (1986a, p. 146)). The test statistic is

defined as:

T
QA = _(1/T)t§1(2t - 1){log Qt + log(l - 9T+1—t)) - T. ' (17)

The five percent asymptotic critical value is 2.492 and we reject
multivariate normality for large values of QA, since this implies that

the departure from multivariate normality is statistically significant.

Although this is a large sample test, “empirical study suggests that
the asymptotic (critical) value is reached very rapidly, and it appears
safe to use the asymptotic value for a sample size as large as 40”
(Anderson and Darling (1954, p.766)). Thus, with our sample of 93
observations, we should be able to use the asymptotic critical values
for the Anderson-Darling test for multivariate normality. The results
of this test are given in Table 5. In all cases, the Anderson-Darling
test is unable to reject the null hypothesis of normality under the
‘traditional’ approach or of additive logistic normality under the
‘combined’ approach. This implies that the test 1is unable to
discriminate between the two distributions, as they are almost the

same.

One final area we address is that of hypothesis testing. As outlined in
section 2 of this paper, the logratio transformation still allows us to
use the conventional hypothesis testing techniques. As an example, we

choose to test the symmetry restrictions in the A.I.D.S. model under
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each of the two approaches. In the context of the ‘traditional’
approach, testing of the symmetry restrictions involves the estimation
of the A.I.D.S. model in both its restricted and unrestricted forms and
performing a likelihood ratio test. Similarly, testing the symmetry
restrictions under the °‘combined’ approach to estimation involves the
same form of likelihood ratio test: we compare the restricted and
unrestricted log-likelihood valués. Using the results shown previously
in Tables 1 and 2 (symmetry constrained) and below in Tables 6 and 7
(symmetry unconstrained), we see that under both the ‘traditional’ and

‘combined’ approaches symmetry is rejected.

This rejection of symmetry is not, of itself, the most important part
of these results. The most important point to note is that the

calculated values for the 1likelihood ratio tests under the

‘traditional’ and ‘combined’ approaches are not the same (calculated

values of 25.49 and 24.009, respectively, as against a critical value
of 12.5916)f In this case, although different, the test statistics lead
to the same outcome for the test: a rejection of symmetry. However, it
is plausible that there may be cases in which we marginally reject an
hypothesis under one approach and yet fail to reject it under the
other. This would distinguish the two’ approaches, since, although they
both give virtually the same parameter estimates, hypothesis tests
using the log-likelihood values (for example, Likelihood Ratio,
Lagrange Multiplier and Wald tests) may result in very different
-conclusions being drawn. If this is the case, then this should provide
sufficient incentive for applied researchers to adopt the ‘combined’

approach in their investigations.




5. Conclusions.

In this paper we have discussed an alternative stochastic specification
to use in estimating systems of share equatibns. The approach is based
upon combining the economic specification of the deterministic
component of the model with modelling the stochastic component using
the compositional data analysis approach used by statisticians in other
disciplines. The new ‘combined’ approach solves the theoretical problem
with the ‘traditional’ approach used in economics, namely, the non-zero

probability of obtaining a share outside the unit simplex.

Furthermore- our use of the ‘combined’ approach based upon the
stochastic assumption of additive logistic normality of the shares
turns out to be less restrictive than previous attempts (Woodland
(1979)) to bind shares using the Dirichlet distribution. This is
because the Dirichlet turns out to be based upon a particularly
restrictive independence assumption which is unlikely to be appropriate
for the data encountered in economics and because the Dirichlet is not
as flexible as the class of additive logistic normal distributions

used.

The efficacy of using the ‘combined’ approach in practice is
investigated in an empirical example using Australian data. We find
that the new approach is éasy to fit in an existing econometrics
package but for the data and deterministic (AIDS and Indirect Addilog)
specifications used there appears to be no large differences in the

parameter estimates. This finding is in common with Woodland (1979) who

finds no apparent difference between the ‘traditional’ use of

multivariate normality and the use of the Dirichlet distribution.
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An implication of our findings is that there is 1little to choose
between the ‘combined’ and ‘traditional’ approaches. This is confirmed
by our results of tests of additive logistic normality of shares in the
‘combined’ approach and of multivariate normality of shares in the
‘traditional’ approach. In both cases we are unable‘ to reject the
distributional assumption which underlies the approach. Thus for this
data and these demand systems the two approaches are similar. However,
this is unlikely to always be the case. It 1is not sufficient to use
multivariate normality as an approximation to additive logistic

normality, as it is theoretically inappropriate. We therefore recommend

that future empirical studies adopt a ‘combined’ approach.

It is possible that a reason for the apparent similarity in the results
is due to the high level of aggregation and high signal to noise ratio
in the data wused. Thus in investigations using micro-level or
disaggregated data where we are likely to find observations which are
sufficiently “close” to zero or one to lead to a difference between the
approaches we would argue that the ‘combined’ approach 1is more
suitable. Although the use of this type of data may well reveal any
differences between .the two approaches, the ‘comsined' approach, as
outlined and used in this paper, 1is unable to cope with zero
observations. Bacon-Shone (1991) and Aitchison (1986a) propose ad hoc
modifications which can be made to the CODA approach to handle zeros.
However, even if we adopt their suggestions to cope with zeros in our
‘combined’ approach, the task still remains to modify the ‘traditional’
approach to solve, in,effect, the same problem (see Heien and Wessells
(1990) for one such attempt). Such -extensions are the subject of a

future paper.
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Table 1: Maximum Likelihood Estimates for A.I.D.S.

(Traditional Approach, Symmetry Constrained).

Food Tobacco Alcohol

.092
.008)

.006
.002)

.002
.004)

.083
.007)

.190
.001)

.066
.003)

.002
.001)

.002
.001)

5 .004
14 .001)

R? .942

D.W. .643

L (system) = 1455.79

(Note: Standard Errors in parentheses.)




Table 2: Maximum Likelihood Estimates for A.I.D.S.

(Combined Approach, Symmetry Constrained).

Food Tobacco Alcohol

.092
.008)

.006
.002)

.002
.004)

.083
.007)

.190
.001)

.067
.004)

.002
.001)

.002
.001)

6‘4 -0.004
.001)

RZ .954

D.W. 0.661

L (system) = 627.343

(Note: Standard Errors in parentheses. )




Table 3: Maximum Likelihood Estimates for the Indirect Addilog

(Traditional Approach).

Food Tobacco Alcohol

-0.294 .662 .087
.044) .032) .038)

.256 .041 .093
.003) .0003) .001)

.002 .001 .0001
.001) .0001) .0005)

.003 .0005 .003
.001) .0001) .0004)

.001 .0004 .003
.001) .0001) .0004)

814 .006 .002 .006
.001) .0001) .0005)

R® .710 .949 .910

D.W. 0.170 .950 ' .285

L (system) = 1316.50

(Note: Standard Errors in parentheses.)




Table 4: Maximum Likelihood Estimates for the Indirect Addilog Model.

(Combined Approach).

Food Tobacco Alcohol Other

-0.345 .650 .124 -1.321
.044) .029) .044) (0.030)

.254 .041 .094 1
.003) .0003) .001) (0)

.002 .001 .0005
.001) .0001) .0005)

.003 .0005 .003
.001) .0001) .0005)

.001 .0004 .002
.001) .0001) .0005)

.006 .002 .006

5
14 .001) .0001) .0005)

RZ .769 .962 .918

D.W. .184 .020 "~ 0.251

L (system) = 484.017

(Note: Standard Errors in parentheses.)

Table 5: Results of the Andersoq-Darling Test for Normality

Under the Traditional and Combined Approaches.

Anderson-Darling Test Statistic

Traditional Combined
Model Approach Approach

A.I1.D.S. 0.782 1.0SS5

Indirect Addilog 0.309 0.631

Critical Value (5%): 2.492




Table 6: Maximum Likelihood Estimates for A.I.D.S.

(Traditional Approach, Symmetry Unconstrained).

Food Tobacco

0.093 -0.005
(0.007) (0.002)

-0.020 .012
(0.003) .001)

0.028 . 005
(0.010) .002)

-0.102 .002
.009) .002)

.190 .028
.0009) .0002)

.054 .038
.004) .001)

.003 .0005
.001) .0002)

.002 .001
.001) .0002)

6‘4 .003 .003
.001) .0002)

R .952 .966

D.W. 0.810 .182

L (system) = 1481.28

Symmetry Test: 2 (L' - L) = 25.49

5% critical value: 7‘?5) = 12.592

(Note: Standard Errors in parentheses.)




Table 7: Maximum Likelihood Estimates for A.I.D.S.

(Combined Approach, Symmetry Unconstrained).

Food Tobacco Alcohol

.092 -0.004 -0.002
.007) (0.002) (0.004)

.019 .012 -0.020
.003) (0.001) (0.002)

.027 -0.006 .005
.010) (0.002) .005)

.100 -0.002 .016
.009) .002) .005)

.190 .028 .065
.001) .0002) .0005)

.004 .037 . 047
.004) .001) .002)

.003 .0004 .003
.001) .0002) .0004)

.002 .001 .002
.001) .0002) .0004)

.003 .003 .005
.001) .0002) .0004)

.963 .972 .982

0.840 .148 .249

L (system) = 651.352

-1®) = 24.009

Symmetry Test: 2 ”

5% critical value: xz(s) = 12.592

(Note: Standard Errors in parentheses.)







