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1. Introduction

Increasingly, survey data is being used for regression analysis,

particularly in economics and other social sciences. Often the survey

design means that observations are gathered in clusters or blocks and

therefore may not be independent. The possibility that the use of such data.

may lead to positive intrablock or intracluster correlation in regression

disturbances has been pointed out by Holt, Smith and Winter (1980), Holt and

Scott (1981) and Scott and Holt (1982). It is well known that ignoring such

disturbance correlation can lead to inefficient estimates and predictions as

well as misleading inferences from hypothesis tests and confidence

intervals.

In the case of a two-stage design, i.e. random sampling from a range of

different blocks or clusters, a number of tests for intrablock correlation

in regression disturbances have been proposed. For example, Deaton and

Irish (1983), King and Evans (1986) and Bhatti (1991) discussed and

investigated the use of the Durbin-Watson test, the one-sided Lagrange

multiplier (LM) test and King's (1987) point optimal invariant (POI) test.

Often there are more than two stages in a survey design. The first

stage may be a choice of cities or states which, for geographical

reasons, are typically very different and so intrablock correlation might

well be expected. Sampling within the chosen cities or states may also be

multi-staged with a second choice of clusters or blocks from which samples

are taken. It is often not so obvious whether intrablock correlation within

these second-stage blocks should be expected. Therefore there is a need to

be able to test for such correlation in the presence of first-stage intra-

block correlation. The main purpose of this paper is to extend the work of

King and Evans (1986) and Bhatti (1991) to this specific testing problem.
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This extension is not entirely straightforward because the first-stage

intrablock correlation coefficient is an unwanted nuisance parameter.

The plan of the rest of this paper is as follows. The three-stage

sampling regression model is introduced in the next section together with

the testing problem under consideration. The class of POI tests for this

problem and also one-sided and two-sided LM tests are constructed in .

Section 3. An empirical comparison of the sizes and powers of two versions

of the POI tests and the two LM tests is reported in Section 4. Some

concluding remarks are made in the final section.

2. The Model and Testing Problem

The following is an extension of the two-stage sampling regression

model considered by King and Evans (1986) and Bhatti (1991) to a three-stage

sampling regression (3SSR) model. Suppose the total of n observations are

sampled from m first-stage blocks (or clusters), with m(i) second-stage

subblocks from the i
th 

block and with m(i,j) third-stage observations from

m m(i)

the j
th 

subblock of the i
th 

block, such that n = E E m(i,j). The 3SSR

i=lj=1

model can be written as

= Y 
x' 
ijk'

 + u 
ijk ijk

(1)

.th
for observations k = 1,2,...,m(i,j) from the j subblock, subblocks

from the i
th 

block, i = 1,2,...,m, where 
Yijk 

is the

. th
(i,j,k) observation on the dependent variable, xijk is a px1 vector of the

(i,j,k)th
observations on p independent variables one of which may be a

constant, and g is a pxl vector of regression coefficients. The error term

u is assumed to be generated as
ijk

= V. + V.. + V. . (2)
ijk lj ijk
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th
where-v. is the i

th 
block random effect, v.. is the j subblock random

1 ij

effect in the ith block and is the random effect for the 
(i,j,k)th

vijk

observation. These three error components are assumed to be mutually

independent and normally distributed with

E(v.) = Vv..) = EC ) = 0
ij 

vijk

and var(v.) = T
2 

var( ) = T
2 

var( ) = 
2
.

1, 
vij 

2' 
v Tijk 

3

and

This implies that

E(u
ijk
) = 0 (3)

u ) =
ijk rst

0

2
T
1

•

for i * r and any j,s,k,t,

for i = r, j * s and any k,t,

for i = r, j = s and k * t,

2 2 2
T
1 
+ T

2 
+ T

3 
for i = r, j = s and k = t;

( 4 )

for k,t = 1,2,...,m(i,j); j,s = 1,2,...,m(i) and i,r = 1,2,...,m. (3) and

2 2
(4) give rise to intra-block correlation with coefficient pi = Ti/T and

2 2 2 2
intra-subblock correlation with coefficient p2 = T2/T where T

2 
= Ti + T2 +

T
2 
' 

Observe that 0 p p
2 

-5- 1 and p
1 
+ p 1.

3

• The regression model (1) under (3) and (4) can be written more

compactly in matrix notation as

y = xg + u (5)

in which y = and u are nxl
- 111'Y112"'"Y121d122'''''Ym,m(m),m(m,m(m))

and X is nxp. The,disturbance vector is distributed as

••
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where

u N(0,T
2
0(p1,p2))

'(p14'2)
. m

i=1 
1 2

is a block diagonal matrix with submatrices

Q.(p p )
l' 2

m(i)

= (1 - pl - p2)Imi + plEm. +p2
 .o Em(i,j)
j=1

(6)

(7)

(8)

m(i)
in which m.= m(i,j), m. is an m.xm. identity matrix and Em and

1 1
j=1 •1

Emo„n aresquaremtricesofonesofdimensionm.and m(i,j), respectively.

Although we can proceed with unbalanced data, i.e., different numbers

of observations •in each subblock and subblocks in each main block; for the

convenience of the remaining discussion, we will assume balanced data. In

this case let T = m(i,j) and s = m(i), i = 1,...,m; j = 1,...,s; so that

T is the number of observations' in each subblock and s is the number of

subblocks in each block. Then (7) and (8) can be written in a more

simplified form as

= (1 - P1 P2)in P1D1 P2D2 
(9)

where D
1 
=1 e E

sT 
and D

2 
=1 e E

T
.

m ms

Our interest is in testing

against

H
O 
: p

2 
= 0
' 

p
1 

> 0

a : P2 > 0,
p
1 

> 0

in the context of (5), (6) and (9). An important consideration is the
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possible range of pl values. One option is to assume 0 pl < 1 but we will

assume 0 pl is 0.5 given that pl and p2 follow the constraint

0 pl + p2 :5- 1 .

This choice of range for pl turns out to have almost no effect in practice

on the properties of the tests reported below.

3. The Tests

In terms of the analogous but simpler problem of testing for block

effects in a two-stage sampling regression model, POI and one-sided LM tests

have been found to have good properties (see King and Evans (1986) and

Bhatti (1991)). This section considers the construction of POI and LM tests

for the more complicated problem of testing Ho against Ha.

3.1 Point-optimal invariant tests

The problem of testing Ho against Ha 
is invariant to transformations of

the form

y —4 y + xn ,

where no is a positive scalar and n is 'a pxl vector. Following King (1987,

1989), it may be that critical regions of a POI test with optimal power at

(P1,P2 = (P11,
p21

)' are of the form

fi,c2-1(, ) / 171,0-1
f"
_

sl , ,
P10 Pll P21) P11"j21 °1 '°) a < c

in which CI and a are the generalized least squares residual vectors from (5)

assuming covariance matrices Wp..11' P21) W and p
10' 

0), respectively. The

existence of a POI test of this form requires the critical value c and the

parameter plo to be chosen such that
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and

PrISIP P P10'" 11'" 21)

Pr [S
(P10 ' P11 ,P21)

<C

<C< 1

u N(07(100))] = 
a (10)

u N(0,n(p
1 
0)) 0 lc pl Ls 0.5] -4 a (11)

where a is the desired level of significance.

Let 00 = 
04310' 

0) and =
11'

p
21

). Under Ho for any given value of
1

p1, the left hand side of (11) can be calculated as

where

Pr[u' 
+10'13114321)u < o]

Pri Eti<0]
L 1.1

crlx cf4x) qx/ cri

r(P1O'Pl14)21) 1 1 1

400 

C201X1X1 C201XY1X1 Q01

(12)

vi,...,pn are the eigenvalues of r(P104)114)21)n(P1,0)
 and g = (gi,...,gny

N(0,I
n
). Thus (12) can be evaluated using Imhof's (1961) algorithm, which

can be implemented using Koerts and Abrahamse's (1969) FQUAD subroutine or

Davies' (1980) algorithm. Shively, Ansley and Kohn (1990) have proposed an

alternative method for calculating probabilities such as (12) which does not

require the separate calculation of eigenvalues. Powers when u

N(0,T
2
Wp1,p2)) can be calculated in an identical fashion with Mp1,p2)

replacing 0(p1,0) in the matrix whose eigenvalues are required.

After some experimentation with the X matrices used in the Monte Carlo

experiment described below, we found it was possible to solve (10) and 
(11)

simultaneously for c and P10. 
This can be done as follows:
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(i) Pick a starting value for p10 and solve (10) for c.

(ii) Evaluate (11) at pl values around p10. 
If (11) is a maximum at

we have the required p10 value.
p1 = p10,

(iii) Otherwise move p10 
towards the p1 

value which maximizes (11) and

solve (10) for c.

(iv) Beginning at (ii), repeat the process.

The resulting p10 value, which we denote as p*0' 
makes the test based on

1 

rejecting Ho for

s(Pi0'P11")21) < c

a POI test which optimizes power at (p1,P2)1 = (P114)21)i. 
For the test to

be operational, this point at which power is to be optimized must be chosen.

One approach, which is explored further below, is to choose sensible mi
ddle

values for p11 and p21. More complicated procedures which involve choosing

(p
11
,p
21
)1 so that the optimized power takes a predetermined value such as

0.5 -have been suggested in the literature. See for example, King (1987,

1989) for further details.

Finally we note that there is no guarantee that the required p*
10

value can always be found. There may be some combinations of X, a, and

(p
11
,p
21
)1 for which it is impossible to solve (10) and (11) simultaneously.

In such cases we recommend the approximate POI test outlined in King (1987,

1989).

3.2 Lagrange multiplier test 

The LM test has proved to be very popular in econometrics and has been

used in a wide range of testing situations. A good survey of the literature

may be found in Godfrey (1988). Typically the LM test is constructed and
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applied as a two-sided test. When a single parameter is under test, a

one-sided version can be constructed which, in the absence of nuisance

parameters, is a locally best test. In this section we outline the

construction of both the one-sided and two-sided versions 
of the LM test of

Ho.

The log likelihood function of (5), (6) and (9) is

-n ' - ,/
L = tn(27rm

2
) - 1/2 tn1n(p1

,p
2
)1 - 1/2 (y - Xg) 

1 n (p1,p2My - Mum
2 
•

2

The score with respect to the parameter under test evaluated 
under Ho is

aL

aP2

where

H
0

in which

-1
= d

1 
- 1/2(y - xgyn (p n 

- D
2
)c2
-1(p

1
-,0)(y - X)/o2 (13)

ld
1 

-1/2 
aln(Pl'P2)1 

ocp ,
ap2

= n(T - 1)1D / 2

H
0

-1 -1-1)1(I - 
p1 
)(1 - p1 

+ sTp
1 
). (14)

From Magnus (1978, Theorem 3), the information matrix .7 of 
the linear

regression model (5), (6) and (9) is of the form

8



-1
(p

1
,p
2
)0

.2 0

tge 1
where 0 is a 3 x 1 vector such that 01 

= a, 0
2 
= p

1 
and 0

3 
= p

2
. 0(0) is

a 3 x 3 symmetric matrix whose (i,j)
th 

element is

= 1/2 tr
[ az-1(e) az-1(e) 

ij 
E(0) E(0) I

ae. ae.
1

where E(0) =
2 

1 
,p
2 
). Under H0

, these elements are

11111 = "12 = 2
2a.
4' 2a.

n(1-sT)
/P22 2

n(1-T) r
tP23 2

n(1-T) r
11133 2

nb(sT-1) nb(T-1)
11113 -

2c r
2

-a
2 
+ b2sT(1 - sT) + 2ab(1 - sT)]

2 ,
-a + b2sT(1 - sT) + 2ab(1 - sT)]

-a2 + b2sT(1 - T) + 2ab(1 - T)],

-
where a = (1 - p

1
) 

1
and b is defined by (14).

For the asymptotic variance of (13) under Ho, we need the bottom rig
ht

element of 0
-1
(0) under H

O. 
It is

33 
=
{ (1133 - (t/113423)

11111 11j12 -

1P12 22

which after much tedious algebra reduces to

33 
=

2(sT-1)(1-p1)
2

nT(T-1)(s-1)

9
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In order to construct an LM test using (13) and (15), unknown n
uisance

parameters g, c2 and p1 need to 
be replaced by their maximum likelihood

-2
estimates under H0. 

We use g, and p
1 

to denote these estimates.

Observe that

- -
= (X'0-1(i)0)X)-1 

1 
(1"

p 0)y

-2
cr =y

and

Now (13) becomes

ap2
Ho

-1 - - - - - -
(p0)X(X'il

1 
(p

l'
0)X)

1 
X'S2

1 
(

1
p ,0))y/n

= (1-p1)
-1
[In - p1 fi + (Ts-1)p11-

/D
1
]

• ' - - - - -2
= a1 - 1/2(y-X) 

1 
(p0)(1

n
-I)
2
)0

1 
(30)(y-Xii) T

say, where al is d1 evaluated at pl =

-33
Let 0 denote 0

33 
with p

1 
replaced by P1. 

A one-sided LM test,

which we denote by LM1, can be applied by rejecting Ho for large v
alues of

- (-33)-1/2
s
1 
0

which has an asymptotic standard normal distribution under Ho. The

two-sided version of this test, which we denote by 1142, involves r
ejecting

H
0 
for large values of

-2 -33
s
1 
/

which has an asymptotic chi-squared distribution with one degree of 
freedom

under H0.
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4. An Empirical Comparison of Sizes and Powers

A Monte Carlo experiment was conducted in order to assess and compare

the small-sample size and power performance of the LM1 and LM2 tests and two

versions of the POI test, namely s(p10,0.1,0.1) and s(pt0,0.25,0.25). We

will denote the latter two tests as 50. 0.25'
and s respectively.

1 
The main

objectives of the experiment were to assess the accuracy of the asymptotic

critical values of the LM tests and to compare the powers of the LM tests

with those of the POI tests.

4.1 Experimental design

The Monte Carlo experiment was divided into two parts. The first

involved estimating sizes of the LM tests at pl = 0.0, 0.05, 0.1, 0.2, 0.3,

0.4, 0.5 under H
0 

using asymptotic critical values at the five percent nom-

inal level. The second part of the experiment was conducted in two stages.

The first stage consisted of the calculation of appropriate critical values

in order to compare powers of tests at approximately the same true signific-

ance level. Critical values and pto values for the POI tests were computed

as outlined in section 3.2. For the LM1 and LM2 tests, the Monte Carlo

method was used to estimate exact critical values at pl = 0.0, 0.05, 0.1,

0.2, 0.3, 0.4 and 0.5 under H0. From each set of seven critical values, the

largest was selected thus ensuring that at least at these chosen points, the

size of the test does not exceed the nominal level which was set at five

percent throughout. The second stage involved the calculation of powers of

the four tests using these critical values.

The following design matrices were used in the study.

X1 : (n,p,m,s,T) = (24,3,2,3,4) and (48,3,2,3,8).

Three-stage sample of inputs into farm production in Bangladesh. The

main blocks are samples from the Divisions of Khulna and Rajshahi.

11



Subblocks are districts within each of these divisions. Individual

elements are farms. The regressors are a constant, biological-chemical

input per acre and human labour in adult man-days. Further details may

be found in Hogue (1988, 1991).

X2 : (n,p,m,s,T) = (24,3,2,3,4) and (64,3,2,4,8).

Cross-sectional Australian census data used by King and Ev
ans (1986).

Regressors are a constant, population and number of househ
olds in each

of 64 demographic groups.

X3 : (n,p,m,s,T) = (24,4,2,3,4) and (72,4,2,3,12).

Artificially generated data. The regressors are a constant, a uniform

random variable and two independent log-normal random variable
s.

These three data sets reflect a variety of economic phenomenon 
and also have

been used in earlier empirical studies.

Sizes and powers were calculated for all combinations of pi_ = p2 = 0.0,

0.05, 0.1, 0.2, 0.3, 0.4, 0.5. For the POI tests, this was done as outlined

in section 3.1 with the aid of a modified version of Koerts 
and Abrahamse's

(1969) FQUAD subroutine with maximum integration and trunc
ation errors of

10
-6
. The Monte Carlo method with two thousand replications was us

ed for

the LM tests. Disturbances were generated based on (2) with pseudo-random

normal variates generated as described by King and Giles (1984). The

results of Breusch (1980) imply the sizes and powers of t
he LM tests are

invariant to the values taken by g and T
2
. For the purpose of the Monte

Carlo calculations, B. i = 1,...,p, and T
2 

were all set to unity. By

construction, the POI tests are also invariant to the values o
f g and T

2
.

The LM tests require maximum likelihood estimates of pl und
er Ho. This

was done by adapting Ansley's (1979) method for estimating AR
MA models to

the problem in hand. The first step was to find an efficient method for

12



transforming (5) by the inverse of the Cholesky decomposition of Wpi3O)

given pl. This allows the concentrated likelihood function to be written as

a sum of squares, thus reducing the estimation problem to minimizing a sum

of squares. The latter was handled by the IMSL subroutine DBCLSF from the

IMSL MATH/LIBRARY (1989) with the constraint that 'pi' Is 1.

4.2 The Results

Table 1 reports the estimated sizes of the LM tests based on asymptotic

critical values at the five percent significance level. Almost always the

estimated sizes are below the nominal level, the only exceptions being

nonsignificant and occurring for n = 24 and low pl values. All LM1 sizes

are significantly below the nominal level, typically being less than 0.025.

These sizes show a clear tendency to increase as n increases with the

largest sizes occurring for the largest sample size, n.= 72 for X3. On the

other hand, the LM2 sizes show a disturbing tendency to decrease as n

increases and for the larger samples, very few estimated sizes are not sig-

nificantly different from 0.05. The LM2 sizes also tend to decrease as the

nuisance parameter pl increases. In general the sizes at pl = 0 are accept-

able while those at pl = 0.5 are not. In contrast, we see from Tables 3 - 5

that the sizes of the POI tests are 0.05 for all values of pl.

Calculated values of p*0 
and c for the POI tests and estimated critical

1 

values for the LM1 and LM2 tests are given in Table 2. It is interesting to

note the high degree of similarity in pT0 values for the 5
o.1 test.

Selected calculated powers of the four tests are presented in Tables

3 - 5. The powers of the POI tests all increase as n increases, as pl

increases or p2 increases, ceteris paribus. The LM1 test and to a lesser

extent the LM2 test powers also follow this pattern with some minor

13 •



exceptions when p2 is small particularly for n = 24. The calculated powers

of the POI and LM1 tests are always greater than the nominal size of 0.05.

This is not the case for the LM2 test when n = 24. For p2 = 0.05 and also

for p2 = 0.1 in the case of X2, almost all estimated LM2 powers are below

0.05.

Of the two LM tests, as expected the one-sided test (LM1) is always

more powerful than its two-sided counterpart. Power differences range from

0..025 to 0.223 when n = 24 and from 0.001 to 0.159 for larger sample sizes.

In some extreme cases (X2 with n = 24), the percentage increase in power

from using the one-sided test instead of its two-sided counterpart is

greater than 200%.

The powers of the two POI tests are very similar suggesting a degree of

insensitiv,ity to the choice of '. 
P
21)1 (p.

ii
. values in these tests. Power

differences range from zero to 0.035 for n = 24 and zero to 0.003 for 
large

sample sizes. Overall, the s0.25 test does appear to have a slight power

advantage which declines as n increases.

Typically both POI tests are more powerful than the LM1 test. Of the

252 LM1 powers calculated, only 18 are higher than those of one or both o
f

the POI tests. Of these 18 cases, 7 lie on the boundary in the sense that

p
1 
= 0, and the rest almost always involve small p1 

values. LM1 powers in

Tables 3 - 5 with stars next to them indicate powers that are significantl
y

different from the lowest power of the corresponding POI tests. Overall,

the POI tests do appear to have a clear power advantage over the LM1 
test

particularly for larger values of pl and p2.
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5. Concluding Remarks

Increasingly, survey data is being used in regression analysis. If

disturbance correlation arising from block and/or subblock random effects is

ignored, it can lead to inefficient regression estimates and predictions as

well as misleading inferences. This paper addresses the problem of testing

for subblock effects in the presence of block effects in a three-stage

sampling regression model.

An obvious test would seem to be the LM test, particularly since a

one-sided version is available for this one-sided testing problem.

Unfortunately our Monte Carlo results indicate that its true size is about

half of its nominal size. It is interesting to note the existence of almost

identical findings for the small-sample size of the LM test for

heteroscedasticity; see for example Breusch and Pagan (1979), Godfrey

(1978), Honda (1988) and Lee and King (1993). It is tempting to suggest

that the one-sided LM test be applied at twice the desired significance

level. Sadly, we only have our limited simulation results to support this

suggestion. The two-sided LM test seems to have better true sizes, however

its use in place of the one-sided LM test can result in a large loss of

power particularly for smaller sample sizes.

Our main finding is that the POI tests have extremely desirable

small-sample properties. At least for the data sets used in our study,

their true sizes correspond to the nominal size for all values of the

nuisance parameter pl under Ho and they almost always are more powerful than

both LM tests when pl > 0. Which POI test to use is not an issue because

both seem to have almost identical powers, particularly for larger sample

sizes. It seems that the extra computational cost of applying a POI test is

well rewarded.
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Table 1: Estimated sizes of the LM1 and LM2 tests

critical values at the 5% nominal level

0 
using asymptotic

Data
Matrix

n Test P1
,

0.0 0.05 0.1 0.2 0.3 0.4 0.5

X1 24 LM1 .015 .018 .016 .016 .016 .014 .013

LM2 .059 .055 .050 .047 .038 .031 .026

48 LM1 .019 .020 .021 .021 .022 .023 .023

LM2 .033 .029 .031 , .029 .028 .028 .027

X2 24 LM1 .013 .012 .013 .012 .012 .012 .010

LM2 .048 .043 .040 .032 .030 .028 .024

64 LM1 .019 .018 .018 .016 .016 .016 .017

LM2 .047 .038 .032 .028 .025 .023 .022

X3 24 LM1 .021 .023 .023 .022 .019 .019 .018

LM2 .059 .050 .045 .038 .033 .032 .031

72 LM1 .025 .026 .025 .028 .025 .025 .023

LM2 .042 .034 .030 .033 .030 .028 .024
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Table 2: Calculated values of plc) and c for the s0.1 and s0.25 tests and

estimated critical values for the LM1 and LM2 tests at th
e 5%

significance level.

Data
Matrix

s01 
test s

0.25

Pio

est

Plo

LM1 LM2

X1 24 .1252 .9591 .3298 .9924 1.2966 3.9919

48 .1279 .9816 .3559 1.0786 1.4947 3.5528

X2 24 .1208 .9691 .3232 1.0112 1.0655 3.8244

64 .1222 .9964 .3441 1.1103 1.2743 3.7645

X3 24 .1192 .9579 .3175 .9950 1.4068 4.0323

72 .1313 .9987 .3693 1.1139 1.5421 3.6574
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Table 3: Selected calculated sizes and powers of the POI and LM tests of

Ho : p2 = 0, pl 0 for X1 at the 5% level.

n = 24 m = 2 s = 3 T = 4 n = 48 m = 2 s = 3 T = 8

Tests p
2 

p
1 
= 0.0 0.1 0.3 0.5 0.0 0.1 0.3 0.5

s 0.0 .050 .050 .050 .050 .050 .050 .050 .050
0.1
s
0.25 

.050 .050 .050 .050 .050 .050 .050 .050

LM1 .043 .050 .047 .041* .042 .048 .050 .045

LM2 .050 .041 .033 .024 .050 .037 .033 .031

S01
 

0.05 .081 .084 .095 .115 .135 .146 .180 .243

S025 .081 .084 .095 .117 .135 .146 .180 .244

LM1 .074 .080 .082* .095* .126 .139 .171 .216*

LM2 .049 .047 .044 .038 .093 .103 .116 .160

s01 
0.1 .119 .128 .155 .208 .245 .270 .342 .465

s
0.25 

.118 .127 .156 .213 .244 .270 .343 .468

LM1 .109 .112* .142* .180* .245 -.280 .330 .417*

LM2 .056 .056 .061 .078 .180 .204 .260 .341

s 0.2 .217 .241 .311 .442 .469 .513 .626 .778
0.1
s
0.25 

.216 .240 .315 .459 .468 .513 .627 .781

LM1 . .198* .217* .277* .370* .484 .521 .601* .715*

LM2 .100 .110 .147 .217 .405 .439 .518 .650

50. 
0.3 .335 .375 .490 .683 .651 .699 .809 .926

1
s
0.25 

.335 .377 .501 .714 .650 .699 .811 .929

LM1 .308* .337* .440* -.593* .661 .701 .784* .886*

LM2 .182 .204 .277 .420 .593 .632 .728 .846

s 0.4 .464 :519 .668 .876 .781 .825 .913 .985
0.1
s
0.25 

.465 .524 .685 .911 .782 .826 .915 .987

LM1 .434* .484* .607* .788* .790 .823 .889* .955*

LM2 .270 .315 .432 .646 .742 .777 .857 .940

S01
 

0.5 .594 .659 .821 .976 .870 .906 .968 1.000
. 

s
0.25 

.598 .668 .843 .998 .871 .906 .969 1.000

LM1 .565* .619* .751* .932* .873 .892* .945* .993*

LM2 .391 .448 .615 .853 .843 .870 .928 .990

Difference in power between POI and LM1 test is significant, whereas

the values without * indicates that the difference in power between POI

and LM1 test is not significant.
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Table.4: Selected calculated sizes and powers of the POI and LM tests of

H
O 
: p

2 
= 0
' 

p
1 

2-- 0 for X2 at the 5% level.

n = 24 m = 2 s = 3 T = 4 n = 64 m = 2 s = 4 T = 8

Tests p
2 

p
1 
= 0.0 0.1 0.3 0.5 0.0 0.1 0.3 0.5

50. 
0.0 .050 .050 .050 .050 .050 .050 .050 .050

1
s
0.25 

.050 .050 .050 .050 .050 .050 .050 .050

LM1 .044 .049 .050 .049 .045 .049 .045 .046

LM2 .050 .041 .030 .024 .050 .035 .028 .024

50 
0.05 .079 .083 .094 .115 .150 .164 .205 .283

.1
s
0.25 

.079 .082 .093 .114 .149 .163 .204 .282

LM1 .074 .084 .090 .102 .144 .154 .187 .250*

LM2 .040 .034 .027 .031 .083 .080 .088 .127

S01
 

0.1 .115 .124 .151 .205 .284 .315 .402 .548

S025 .114 .123 .150 .206 .282 .313 .401 .548

LM1 . .107 .123 .148 .185* .271 .304 .375* .492*

LM2 .050 .046 .043 .060 .159 .179 .224 .333

S01
 

0.2 .206 .229 .299 .435 .548 .598 .719 .864

s
0.25 

.208 .229 .301 .442 .548 .598 .721 .866

LM1 .204 .228 .281* .381* .553 .579 .673* .804*

LM2 .087 .093 .124 .187 .402 .443 .558 .707

s01 
0.3 .316 .355 .471 .681 .742 .790 .888 .972

s
0.25 

.318 .358 .479 .698 .744 .792 .891 .973

LM1 .304 .339 .436* ..599* .739 .767* .854* .947*

LM2 .150 .169 .235 .378 .619 .658 .762 .900

S01
 

0.4 .436 .492 .648 .893 .864 .900 .963 .997

s
0.25 

.443 .500 .663 .907 .866 .903 .965 .998

LM1 .430 .479 .602* .723* .849 .878* .946* .988*

LM2 .234 .261 .379 .602 .771 .815 .900 .977

s
0 

0.5 .561 .630 .812 1.000 .935 .958 .991 1.000
.1

s
0.25 

.572 .643 .827 1.000 .936 .960 .992 1.000

LM1 .555 .606* .748* .947* .920* .944* .981* 1.000

LM2 .342 .397 .544 .851 .874 .902 .967 .998

Difference in power between POI and LM1 test is significant, whereas

the values without * indicates that the difference in power between POI

and LM1 test is not significant.
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Table 5: Selected calculated sizes and powers of the POI and LM tests of

H0 : p2 = 0, pi 0 for X3 at the 5% level.

n = 24 m = 2 s = 3 T=4 n = 72 m = 2 s = 3 T = 12

Tests p
2 

p
1 
= 0.0 0.1 0.3 0.5 0.0 0.1 0.3 0.5

s01 
0.0 .050 .050 .050 .050 .050 .050 .050 .050

s
0.25 

.050 .050 .050 .050 .050 .050 .050 .050

LM1 .044 .050 .047 .046 .040 .043 .040 .044

LM2 .050 .039 .029 .025 .050 .037 .033 .028

s 0.05 .081 .085 .097. .119 .190 .208 .261 .354
0.1
s
0.25 

.081 .085 .097 • .120 .190 .208 .261 .354

LM1 .077 .081 .088 .104* .190 .198 .235 .310*

LM2 .045 .042 .040 .040 .142 .152 .174 .233

S01
 

0.1 .122 .131 .161 .219 .354 .389 .482 .620

S025 .121 .131 .161 .223 .354 .389 .482 .620

LM1 . .115 .121 .154 .199* .357 .381 .448* .548*

LM2 • .067 .061 .072 .099 .293 .312 .373 .480

s 0.2 .225 .250 .327 .472 .620 .664 .765 .878
0.1
S025 .224 .250 .330 .484 .620 .664 .765 .878

LM1 .219 .250 .314 .419* .619 .659 .743* .825*

LM2 .120 .139 .184 .273 .562 .600 .678 .782

S01
 

0.3 .350 .393 .518 .725 .783 .821 .897 .966

s
0.25 

.349 .394 .525 .744 .783 .821 .897 .966

LM1 .334 .377 .484* ,652* .780 .808 .862* .924*

LM2 .215 .250 .335 .499 .736 .766 .830 .905

s01 
0.4 .485 .544 .701 .912 .878 .907 .958 .994

s
0.25 

.486 .547 .712 .930 .878 .907 .959 .994

. LM1 .476 .531 .657* .850* .870 .886* .927* .977*

LM2 .332 .375 .518 .744 .837 .862 .908 .970

s
0 

0.5 .619 .688 .853 .994 .934 .954 .986 1.000
.1

s
0.25 

.622 .693 .864 1.000 .934 .954 .986 1.000

LM1 .595 .656* .807* .969* .918 .928* .970* .999

LM2 .464 .528 .701 .931 .899 .914 .960 .998

Difference in power between POI and LM1 test is significant, whereas

the values without * indicates that the difference in power between POI

and LM1 test is not significant.
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