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Abstract

This paper outlines several difficulties with testing economic

theories, particularly that the theories may be vague, may relate to a

decision interval different from the observation period and may need

construction of a metric to convert a complicated testing situation to

an easier one. We argue that it is better to use model selection

procedures rather than formal hypothesis testing when asking the data to

decide on model specification. This is because testing favors the null

hypothesis, typically uses an arbitrary choice of significance level and

researchers working with the same data could easily end up with

different final models, which would make policy recommendations

difficult.
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1. Introduction

The basic paradigm for scientific research is the construction of

an abstract theory, based on fundamental principles and sensible

assumptions, from which can be derived propositions that should hold for

the actual world, if the theory is correct. These propositions can be

translated into specific hypotheses about properties of estimated models

which can then be tested using actual data and statistical procedures.

A model is here taken to mean an approximation to the generating

mechanism of the variables occurring in the real world and which is also

capable of containing the hypothesis of interest. In this paper we

point out, using a fairly simple example, some of the difficulties that

arise when trying to test a hypothesis (and thus a proposition or

theory). It is then suggested that an alternative approach is at least

worth discussing, in which a "best" model is selected, from a wide class

of models, using a model selection criterion applied to actual data.

This model is selected without any attention being paid to the

hypothesis being investigated, except to insure that the data set used

is sufficient for consideration of the hypothesis. The question of

whether or not the hypothesis is correct thus becomes one of whether the

model selected supports the hypothesis or not.

Our use of words such as theories, models, and hypothesis are

standard in advanced statistical and econometric texts and formal

definitions of "proposition" can be found in texts on the philosophy of

science, such as Gardenfors (1988). It is clear that the procedure

suggested will not necessarily lead to a conclusion of either acceptance

or rejection of th-e proposition - or hypothesis. This is *again in

accord with some -aspects of modern philosophy and can be linked with the
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idea of a belief function or a degree of belief B of the correctness of

some particular hypothesis, again as discussed in Gdrdenfors (1988).

The purpose of these belief values is also to suggest why it is useful

to analyze and "test" theories and hypotheses.

The following statements will be taken to be either self-evident

(in the case of (a)) or, at least, to -be-reasonable working assumptions

((b), (c), (d)):

(a) Economics is a decision science. It is concerned with the

decisions taken by economic agents, corporations, institutions and

governments, and the effects of these decisions.

(b) Whether or not these decisions are optimal or optimizing, they are

partially based on beliefs or individualistic "theories" about how

the economy operates. To each theory, every economic agent has a

"degree of belief" B, that the theory .is correct. (Where "correct"

can be taken to mean that the theory correctly specifies part of

the generating mechanisms of the variables being considered,

assuming such a mechanism exists). The values of the B's enter the

decision process.

(c) The main, overt purpose of research in economics is to affect one's

own degrees of belief or that of other researchers or of economic

decision makers.

(d) Most economic agents will not change their B values if a theory is

presented to them which has not been confronted with actual

economic data. The use of test statistics is a helpful way of

presenting evidence about the correctness of a theory or belief.

They can be used to summarize this evidence in a possibly
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uncontroversial way. Of course B need not change even if a theory

has been confronted with data and been rejected.

It is convenient but not necessary to assume that B has the

properties of a probability, so that 0 B 1 and B is monotonically

increasing as belief increases, but this does not imply that B is a

probability. Unfortunately we are using the phrase "degree of belief"

in almost the opposite sense to that used by Bayesians. For example,

Judge et al. (1985, p.97) observed that "in a Bayesian framework

probability is defined in terms of a degree of belief". (Also see

Zellner, 1984, p.275.) Our use of the phrase corresponds more to the

prior odds ratio of the hypothesis compared to a vague alternative.

However B is used here merely as a pedagogical device and will not be

treated formally in what follows.

Philosophers have discussed the dynamics of B-values (see

Gardenfors, 1988) as have Bayesians. Our attitude is that a statistical

test is not a "final product" but rather an intermediate product, being

an input to the decision process.

As a simple example, suppose that a government announces some

general income tax cuts. There may be a theory that such cuts lead to

an increase in the growth of GNP. A B-value for this theory may affect

decisions about decreased savings rates by agents or increased

investments by companies. Presenting evidence about the effects of the

"supply side economics" tax cuts by the Reagan government in 1981 may

affect B-values. In fact real US GNP growth was 3.1% in the 1970's and

2.8% in the 1980's which could suggest to some agents that B-values for

this theory should be reduced. However other statistics on changes in
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real, disposable income or on who benefits may affect B in other

directions.

There are many aspects of B-values which need consideration but

which we shall not discuss here. There can be a multidimensional

aspect, with a theory having many forms, each of which has an associated _

B. Thus B is now a. vector and its components may be interrelated.

Similarly, if there exists a pair of alternative theories T T
2 

with

B-values B
1' 

B
2 

then presumably 0 B
1 

+ B
2 

< 1 where the second in-

equality allows for the belief that neither theory is correct. There is

also a potential problem with the dynamics, as if everyone has a high

B-value it may affect behaviors such that the theory almost becomes

true. Similarly, if B-values have apparently fallen for an influential

group of economists or agents, the theory will hopefully be considered

for revision.

2. An Example: Hall's Consumption Theory

To illustrate the difficulties inherent in testing theories in

economics, it is useful to consider a deceptively simple theory - that

suggested by Hall (1978) for consumption. Suppose that an individual

obtains utility u(c) from an amount c of consumption. The results are

based on a life cycle theory in which the person maximizes discounted

utility

T-1
E
t 

E (1+6)
-k

u(c
t+k
)

k=0

subject to the constraint

T-1 -
E (1tr)-qct+k - w
k=0 

t+k]
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where r is the (constant) interest rate, wt is earnings at time t, 6 is

the discount rate, At is assets apart from human capital and Et is the

mathematical expectation conditional on all information available at

time t. If U' (c) is the marginal utility (i.e., du/dc) it follows from

this construction and the permanent income hypothesis that

Et[u."(ct+1)] = Au'(ct) (1)

where A = (1+6)/(1+r) . (2)

It follows that if A = 1 and u(c) is a quadratic function then

c
t+1 

= c
t 
+ e

t+1 
(3)

where e
t 
is a martingale difference sequence, i.e., ct 

is a random walk.

However, if

then

u(c) = c
(1+0)

0 0
c
t+1 

= Ac
t 
+ e

t+1 •
(4)

0
So that now if A = 1, ct is a random walk. Before looking at the data,

this proposition may (or may not) sound convincing. So one could start

with B = 0.5, say. [We assume that the theory was formulated by Hall

without any specific data set in mind for which it might hold.]

The random walk implication of a form of the theory, i.e. (3), is

generally the one tested in the literature, probably because Hall (1978)

says that this simple relationship is a "close approximation to the
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stochastic behavior of consumption under the life cycle-permanent income

hypothesis". At first sight this would seem to be an easy hypothesis to

substantiate, as time series techniques are available to test if the

change in (real) consumption has the properties of a martingale

difference sequence. For example, with a consumption series ct one

could fit the AR(p) model

c
t 

= E a lct_j + et

j=1

and then test the null hypothesis:

H
0 
: a

1 
= 1 ,

= 0 , j = 2,...,p ,

p
j 
= corr(c

t 
,c

t 
.) = 0 ,

-j
••,q ,

for some arbitrary large p and q. Thus the null hypothesis requires p+q

particular parameter values to hold, which makes it rather complicated.

In practice, values of p and q are chosen that are satisfactorily large,

so that the test. results can be considered convincing. A further

complication is that the power of the test typically will decline as p

and q increase. Acceptable values for p and q may vary across individ-

uals. An alternative is to ask if the spectrum of Act is flat, but in

theory a spectrum is a continuous curve containing an uncountably

infinite number of points, which is also difficult to test.

Using aggregate quarterly data for US real consumption (of services

and non-durable goods) for the period 19471 - 1984111, Ermini (1988)

compared three models for the change of consumption:

(i) a series with zero autocorrelations;
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(ii) a moving average of order one, finding

Ac
t 

= e
t 
+ 0.239 e

t-1 ' 
(5)

where e
t 
is as in (i);

(iii) and an ARMA(3,3) series suggested by considering all ARMA(P,q)

models with p + q 5. 6 and maximizing likelihood.

He reports that a likelihood ratio test prefers the MA(1) or ARMA(3,3)

models to the uncorrelated series, but cannot distinguish between the

two temporally structured models. It would appear that the theory is

rejected as the change in consumption is forecastable and so B may drop

to 0.3, say. However, anyone familiar with time series analysis would

recognize (5) from the result by Holbrook Working (1960) that if a flow

series (such as consumption) is a random walk but is then temporally

aggregated over a long period, the resulting series is ARIMA(0,1,1) with

coefficient 0.25. It follows that (5), estimated on quarterly data, is

consistent with the random walk theory but with the individual's

decision period much less than a quarter. This is pointed out in Ermini

(1988). As this looks promising, B could go up to 0.6. Does this mean

that the theory is accepted by the data? In a sense, the theory is not

rejected but neither are various other models. It is also pointed out

in Ermini (1989) that if Act 
is MA(1) with a negative coefficient, then

after sufficient temporal aggregation, consumption becomes an IMA(1,1)

process with MA coefficient 0.25. Thus many models are consistent with

the data within the simple class considered and the "test" is not

decisive. [This could be rephrased as saying that the theory is too

vague.]

However, these tests just consider a property which is suggested by

the theory of the single series ct. The theory also proposes a much



more complicated property, that there exists no vector of series x such
-t

that the regression

Ac = E x + c
j=1 -t-j t

(6)

has any p component that is significantly different from zero. Such a

hypothesis is virtually impossible to test - there are too many

variables to consider for inclusion in x and too many parameters to
-t

check. At best, one can use a limited set of likely variables for xt,

suggested by theory or by common sense, to be tested in small groups and

with lag values (i.e. size of p) chosen to be modest or by a model

selection criterion such as AIC or Schwarz's (1978) BIC [ignoring the

important problem of interpretation of multiple tests]. If the data

support the theory, with no significant explanatory variables found,

then at most one can say that the theory has not been falsified; it

cannot be claimed to be verified. Even with such an apparently simple

theory one can only try to falsify the theory, with verification

impossible, in agreement with a recent attitude in the philosophy of

science; for a history and discussion see Redman (1991).

What does one conclude if a significant coefficient is found in (6)

or if c
t 

has a temporal structure that is not consistent with a random

walk after temporal aggregation? Then one may reject the strict random

walk form of the model, but there are other versions which have not been

tested. The utility function need not be quadratic and A need not equal

one. There is also the problem of cross-sectional aggregation. The

theory is about the behavior of an individual but it is tested on

aggregate consumption. Suppose that the jth individual or family has

consumption c
jt 

and also suppose that all individuals have the same
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utility function u(c) = c
1+0

, although this is extremely implausible.

This is called the "constant elasticity of substitution form" of the

utility function. From (4) it follows that the aggregate relationship

is

E = A E c. t + et+1 c.
j,t+1 j=1 J'j=1

under the extra strong assumption that the A value is the same for every

individual. The value 
e
ci,t is not observed, in general, if 0 # 1. What

is usually observed (or estimated from a sample) is aggregate

consumption, E c i t, where N is the number of individuals or families,
j=1 J'

which has a value near 100 million in the United States. It is unclear

[14 [1\1 0 I

how much correlation there is between E c. and and c for any
1 1

value of 0, particularly if the c series are interrelated with each

other. Thus, with cross-sectional aggregation and non-quadratic utility

functions, aggregate data that is readily available to econometricians,

cannot be used for testing the theory. It would be necessary for econ-

omic statisticians to find plentiful panel data so that the original

form of the theory can be investigated. It also seems that the theory

is not very precise, having an unspecified utility function, and so it

is very difficult ever to falsify it. It is seen that an apparently

simple theory, based on a rather unlikely set of basic axioms, is very

difficult to evaluate. This is related to the "Duhem-Quine Thesis"

discussed by Cross (1982).

In this example it is seen that the B value can fluctuate as new

"information" about the correctness of the hypothesis is accumulated.

This information may consist of results achieved by others or by
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oneself. If the analysis that changes it is conducted personally a

formal Bayesian procedure may be considered, with the initial B a prior

odds ratio of some form, the data being written as a likelihood and the

outcome being a new B written as a posterior odds ratio, as discussed by

Zellner (1984). This assumes that the proposition being considered can

be simply translated as a statistical hypothesis, such as R = 0 where R

represents coefficients on some -finite -set f- -variables. The example

discussed here shows that such a translation is not always easy.

We feel that the problems encountered in "testing" Hall's

consumption theory are not at all uncommon when testing economic

theories, although these difficulties are not often discussed - but see

Stigum (1990). A further example is the efficient market theory for

speculative prices, which may be taken to say that returns (after

adjustment for risk and transaction costs) are unforecastable using

publicly available data. As this data set is potentially huge, it is

obviously impossible to test all variables in it as possible explanatory

variables for future adjusted return. What can be done is to accumulate

tests using different variables and, possibly different data sets, i.e.

various exchanges and periods, and to thus accumulate information about

the correctness of the theory and so affect the degree of belief B.

An alternative approach is to try to construct a metric M which

measures the deviation of the data from the theory and to base a test on

M. For example, if one wants to test that a series xt is a martingale

difference, the Box-Pierce (1970) statistic (based on the sum of the

squares of the first p estimated autocorrelations), or the maximum

deviation of the estimated spectrum, at p frequencies, from the mean of

this spectrum, would be possible choices for M. Similarly, if there are
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k possible explanatory variables of xt+1 
one could choose p variables

at random and use R
2 

from the corresponding regression as M. In each

case p has to be chosen to make the test both practical to implement but

also sufficiently convincing that degrees of belief can be affected. In

the second case if k is small compared to the sample size, all variables

could be used and R
2 

used to measure the goodness of fit, but if k is

very large, a- selection -procedure -is-necessary -to-prevent-over-fitting

of the model associated with an optimistic R2 value.

A final example of an important but difficult testing situation is

to ask if a relationship is linear or non-linear (in mean). A null of

linearity allows many models to be considered, with potentially very

many parameters. The alternative of non-linearity requires consider-

ation of a huge number of possible models and consequently an immense

number of possible parameters. See Lee, White and Granger (1992) for

recent work in this area.

It may be noted that sometimes a detailed economic theory leads to

no testable implications. The question "what restrictions does economic

theory (the assumption that rational agents maximize) place on asset

prices?" leads to the answer "almost none" according to Rothschild

(1990).

3. Problems with Pre-Testing

While hypothesis testing has a role to play in terms of testing

economic theories, it is frequently used in the model building process

to make choices between competing models based purely on the data. For

specific examples, see the literature on general-to-specific modelling

(Hendry, 1979, Gilbert, 1986, Pagan, 1987), cointegration (Engle and
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Granger, 1991) and pretesting (Wallace, 1977, Judge and Bock, 1978 and

Judge, 1984). In our view this is an incorrect use of hypothesis

testing. Whenever a hypothesis test is used to ask the data to choose

between two models, one model must be selected as a null hypothesis. In

most instances, this is usually the more parsimonious model and

typically a nested test is applied. Often it is difficult to

distinguish between the two -models - because . of data quality

(multicollinearity, near-identification or the models being very similar

such as in testing for integration). In such cases, the model chosen to

be the null hypothesis is unfairly favored.

This point can be illustrated by reference to the pre-test

literature which mainly concentrates on issues of estimator accuracy.

Typical findings of empirical or simulation studies are that pre-testing

strategies produce estimators with reasonable properties but the usual

choice of significance level
1 

such as 5% or 1% in the pre-test is far

from optimal. For example, Fomby and Guilkey (1978) suggest that the

Durbin-Watson test in the linear regression model should be applied at a

significance level of about 50% rather than 5% if the aim is to re-

estimate with AR(1) errors if the test rejects Ho. This suggestion is

hardly surprising. Given a well-defined loss function of estimator

accuracy, we no longer have a classical hypothesis testing problem in

which the null hypothesis has its special role. Instead we have a model

selection problem in which the relative importance of the null and

1
A choice of significance level for a given hypothesis test is

essentially a choice of power curve. If one has a higher degree of

belief in the null hypothesis then one should be happy with a lower

significance level and hence a lower power curve. Other than this

preference ordering, there is typically no relationship between the

degree of belief in either hypothesis and the choice of

significance level.
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alternative hypotheses are determined by the loss function.

When the model building process involves non-nested testing, the

choice of null hypothesis is not obvious. Some advocate applying a

non-nested test twice with each model having a turn as the null

hypothesis. This does not always result in an unambiguous outcome. A

further problem with non-nested tests.. .is that they .typically aim for a

constant probability of committing a Type I error at all points in the

null hypothesis parameter space. Because the models are non-nested, it

is possible to have data generated from a null model which could not

have possibly come from an alternative model. For example, in testing

an AR(1) null hypothesis against an MA(1) alternative, observe that the

first-order autocorrelation coefficient p1 
can take values in the range

-1 < p1 < 1 under H0 
but is restricted to -0.5 :5 pl. 0.5 for an MA(1)

process. As King (1983) pointed out, a test which has constant size for

all values of p1 in the range -1 < p1 < 1 is undesirable. A sensible

test
2 

would have size reducing to zero as 1p1
1 increases past 0.5.

Almost always, model building involves a series of tests, often

with little regard to controlling overall size. Two investigators

working on the same data could easily end up with different models

purely because they performed their tests in different orders or used

different levels of significance.

The above arguments point to three deficiencies with formal

hypothesis testing when used as a tool in model building. The first

2
For testing an AR(1) process against an MA(1) process, Burke,

Godfrey and Tremayne (1990) and Franses (1991) have suggested

procedures that satisfy this requirement.
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concerns the manner in which the trade-off between Type I and Type II

errors is resolved by controlling the probability of a Type I error to

be a small value such as 5%. The second is the pre-occupation with the

construction of tests whose probability of a Type I error is constant

for all parameter values of the null hypothesis model. While this may

be good practice for nested testing problems, it is questionable for

non-nested problems. •The most prominent -non-nested test procedure is

the Cox (1961, 1962) test, which can be viewed as the standard like-

lihood ratio statistic adjusted to have an asymptotic standard normal

distribution under the null hypothesis. This results in a constant

probability of a Type I error, asymptotically. It seems that this

adjustment may be unnecessary and in fact harmful. The third deficiency

is that formal tests involve pairwise comparisons of possible specific-

ations.

4. Model Selection Criteria

It is our view that model building should be based on

well-thought-out model selection procedures rather than a series of

classical pairwise tests. The use of an information criterion based on

minus the maximized log-likelihood function plus a penalty function for

the number of parameters in the model is most worthy of consideration.

This number is calculated for each model and the model with the smallest

value is chosen. Examples include AIC and Schwarz's (1978) BIC. No one

model is favored because it is chosen as a "null hypothesis". The order

in which calculations are done does not affect the final results. Also,

as POtscher (1991) points out, minimizing such an information criterion

amounts to testing each model against all other models by means of a

standard likelihood ratio test and selecting that model which is

accepted against all other models; the critical values are determined

14



by the penalty function. Observe that when nonnested models are being

tested, the standard likelihood ratio statistic is used rather than

Cox's adjusted likelihood ratio statistic. Judgment on which

significance level to use is no longer needed although there is the

issue of what penalty function is appropriate.

This approach has an advantage in dealing with-another difficulty

in testing an economic theory which is that the theory may only deal

with a partial aspect of the data. For example, a theory may try to

explain a single stylized fact, whilst ignoring other facts such as

seasonal or trend components in the data. By selecting the best, or at

least a good model, there should be few major features of the data that

have not been modelled.

The situation considered is as follows:

(i) Suppose that there are a number of model types, M1, M2
, M

k'

(for example, autoregressive, moving average with ARCH, bilinear)

which are not necessarily nested. Each model in each type has a

number of parameters, q, associated with it. Thus, the models in

type M. consist. of 14.(1), M.(2), ..., M.(Q). [In practice, there

may be different types of parameters in each model, so that q is

really a vector, but this complication is not considered.] If a

particular theory is being considered, it may suggest one type of

model even before looking at data. The models are chosen to relate

to a theory that one is interested in testing. It will be assumed

that the models are being constructed to test a theory rather than

for forecasting or policy uses, for example.
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(ii) There is available a variety of model selection criteria (hence-

forth criteria), Sl, S2, ..., S. Each is assumed to be a function

ofthemaximizedloglikelihoodL.(q) of the model M.(q) and also

of the number of parameters q. A specific form might be the

information criterion

S.(d) = -L.(q) + qdf.(n)
1 1

(7)

where d is some positive parameter and f1(n) is a specific function

of n, the sample size. If several models are considered, the one

with the smallest value of the criterion is preferred. As q

increases, 1...(q) is non-decreasing and the second term in (7) is

the penalty for using more parameters. A criterion S
1 
will be said

to be "parsimonious" with respect to S2 if it gives a higher

penalty to the size of q. Thus, if the two criteria have the same

d value
' 
S
1 
is more parsimonious than S2 if f1(n) > f2(n). Clearly

this ranking may change as n changes. Well-known examples with

d = 1 are AIC, for which f(n) = 2/n and Schwarz's BIC, for which

f(n) = log(n)/n. Clearly for n > 8, BIC is the more parsimonious.

The parameter d is introduced in (7) to widen the variety of

criteria usually considered. If d > 1 there will be a tendency to

choose more parsimonious models than if d = 1.

It is easy to see that if two models M1, M2 are such that L1 
> L

2

and ql < q
2 

or L1 > L2 and qi = q2 or L1 = L2 and q1 
< q

2 
then all

criteria of the form (7) will prefer Mi to M2. Many other forms of

criteria than (7) can also be considered and a similar result will hold.

Different choices for f1 will be appropriate depending upon whether

mdelsarenestedornon-liested.Admissiblechoicesforf.are1

discussed by Sin and White (1992).
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To implement the procedure, for a data set Xt, t = 1,...,n, every

model of type j is fitted up to parameter value Q and, for some

particular criteria S, the best model chosen, M.(q. ). Repeating this
j lo

for each model type, the set of best models can be compared using Si 
and

the overall best model M. (q o
) chosen, with "o" denoting optimum.

When comparing models M1(q1), 112(q2), with the first preferred

according to the criterion Si(d), then the difference in log likelihoods

from (7) is

L
1
(q

1
) - L

2
(q
2
) > (q

d 
- q

d
)f.(n) .

1 2
(8)

The LHS is the log of a likelihood ratio test statistic. Thus we are

able to see the point made by Nitscher (1991) that minimizing (7)

amounts to testing each model against all other models by means of a

standard likelihood ratio test and selecting that model which is

accepted against all others. The RHS of (8) shows how the critical

values for these tests are determined by the penalty function.

One can ask how well the model selection criteria work
•

asymptotically. Of the class of models considered, that is the union of

all of the types of models, define the "best" model to be either

a) the true generating mechanism of the data (assuming this

exists) corresponds to one of the models, or

b) it is the model, within the class considered, that is in a

specific sense the closest to the generating mechanism, or, if two

models are equally close, the more parsimonious model. The
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distance measure used is analogous to the Kullback-Leibler

criterion that is relevant for comparing distributions.

Nishi (1988) and Sin and White (1992) show that asymptotically,

information criteria such as (7), with d = 1, consistently find the

"best" model in the sense just defined provided

lim f(n)
n-xo n

=

lim  f(n) 
0 and

n900 loglog n
= +03

It follows that AIC does not have good asymptotic properties but

Schwarz's BIC does. (It is an open question whether this result

continues to hold if d > 1.) POtscher (1991) considers the asymptotic

effects of using these types of model selection criteria on the

estimation and parameter testing properties of the model chosen. If the

criterion is such that the correct model is selected with probability

approaching one, then there is no asymptotic effect of the model

selection.

An alternative to information criteria as just discussed are

"cross-validation" approaches to estimating the Kullbach-Leibler

information or expected log-likelihood. These techniques give sample-

based estimates of (7) that adjust for the biases contained in the

sampleestimateofL(ci) . Because such techniques generally are

asymptotically equivalent to criteria of the form (7), we shall not

discuss them further here. However, the fact that cross-validation

techniques canprovidedirectsample-basedmeasuresofbiasinL.(q)

makes them attractive as practical alternatives to (7).

An obvious question is how to decide which criterion to use. It is
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clear that one cannot make a choice on a single data set as this would

require the use of a super-criterion, but if this existed, it would be

used directly as a model selection criterion rather than having to

choose between criteria. The best criterion may be selected from a

simulation study. If the data is generated from a model included in the

set of models considered and with a finite go, a cost function can be

constructed based on the distribution of the estimated q values from the

criterion around the true go. A major purpose of a criterion is to

limit the number of parameters used in a model for two reasons. The

first because when estimating, parsimony is an advantage - better

estimates can be expected for fewer parameters - and because the dangers

of model over-fitting or data mining will hopefully be reduced.

Ideally, if one has an objective in mind, such as getting the best

forecasting model, a good criterion will predict from in-sample what is

the best model for this objective.

A standard criterion is that suggested by Rissanen (1987) based on

considerations of model complexity, leading to essentially the familiar

BIC criterion. This criterion can be used with nonlinear and ARCH

models, for example.

What, then, should be the respective roles of model selection and

diagnostic testing? Should one first select a model and then perform

diagnostic tests on the selected model, or should one perform diagnostic

tests on all candidate models, and then select a model from those that

pass the diagnostic tests, using an appropriate criterion? Because

computation of the model selection criterion is usually much simpler

than computation of the diagnostic test statistics, the first approach

has the advantage of computational simplicity. Further, if the correct
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model is in the candidate set, it will be selected with probability one

asymptotically by a well-behaved criterion. Also, because diagnostic

tests may often be interpreted as tests of particular restriction on a

given model, the asymptotic size of such tests will be correct when one

does model selection first.

There nevertheless appears to be some appeal to doing diagnostic

testing first. The source of this appeal seems to us to stem from the

insight that diagnostic testing may give into alternative models not

formally included in the original candidate set. The candidate set may

be expanded as a result of this insight. But there is no justification

for then restricting the model selection to the subset that pass the

diagnostic test. Certainly there is no justification on grounds of

computational burden, as performing the diagnostic tests is already more

burdensome. But in addition, unless the diagnostic tests have asym-

ptotic size zero, a correctly specified model may be wrongly rejected by

a diagnostic test and thereby excluded from further consideration when

selection is limited to models that pass the diagnostic tests.

•

We therefore prefer (ideally) to do model selection first. In a

perfect world of unlimited data and complete foresight about possible

forms of misspecification, a consistent strategy is to consider a wider

group of initial models, including the original ones plus those

including the terms which the diagnostic tests would look for, such as

missing variables, ARCH heteroskedasticity, lagged residuals and so

forth. The criterion is then applied to this wider group of models and

the ovePall best model determined.

A related question is whether it is useful to start with a large
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group of model types. It is obviously more expensive to analyse many

models but, in a perfect world, it makes it more likely that the good

approximation to the true generating mechanism will be found. It is

also possible that the criterion will have difficulty in deciding

between a few models. This may suggest new combined models which

further increases the number of models under consideration.

Unfortunately we do not live in a perfect world. We have limited

data which leads to the following concern. If a large number of models

are considered, there is a possible problem with "data mining", that is,

a high probability of accidentally finding a model which happens to fit

the particular data set very well. Clearly there is a trade-off between

the accuracy of our model selection procedure and the number of models

considered. As the pool of models increases, the chances of selecting

the correct one declines. An important practical question is how should

we position ourselves on this trade-off. The following three alternat-

ive strategies may help in this regard:

i) If only model classes that are not nested are considered, let the

numberofparametersinclassM.be limited to be no more than —
J 

Qj

Let (2 := :EQ . denote the total number of parameters considered over-

all. As the number of model types considered increases, Q may

become unacceptably large. One may decide to limit Q and have some

rule which distributes the possible number of parameters between

the models.

ii) A second alternative is to constrain the set of models under con-

sideration to only those that are distinct possibilities and after

selection, test for outside chances. This testing should perhaps

be applied to a model that encompasses all models in the model

21
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selection procedure. This would reduce problems caused by the

incorrect model being selected. Note that such diagnostic tests

will favor the encompassing model because of the choice of null

hypothesis.

iii) A third alternative is to adopt some rule such that the parsimony

parameter d in (7) is made an increasing function of -(5, so that as

more models, and thus parameters, are considered, the penalty for

having more parameters increases. Consideration is required of

this possibility and what function d(5) is helpful.

Once the best model is found, there may still be a need to test it

if only because we can never have perfect foresight about all possible

models. We favor the use of a "portmanteau" test rather than several

.specific tests. It is worth bearing in mind that such a test might

reject for all sorts of reasons. It may be best to interpret such a

rejection only as indicating that the set of models being selected from

needs augmenting.

Obviously, there are no easy answers. Considerable judgment is

needed and there is much room for further research. So far we have

assumed that the sample size n .is fixed. However, in practice further

data accumulate through time, so that a sequential model selection pro-

cedure is required. This is clearly another rich area for further

research.

The criteria considered here are based completely on statistical

properties of the data. Any particular researcher may want to add

economic considerations to the criteria, such as an expected sign on a

coefficient or a . belief in homogeneity. This is certainly a real
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possibility but asymptotically at best an improvement in efficiency will

be gained; at worst the economic beliefs could be wrong, and the model

selected will be deflected away from the "best" one, where "best" could

be measured in terms of the model's ultimate purpose, such as providing

relatively good forecasts.

If model selection is to be .based on more than one criterion, this

should be explicitly recognised. Selection should then proceed

according to a coherent set of requirement criteria. This approach is

discussed in the next section.

A problem that we have not faced is that models are built for a

variety of purposes. Ideally, the best model according to a criterion

should be best for all purposes, provided all appropriate variables have

been considered in its construction. There would be no point in asking

if a model is good for policy purposes if the policy variables were not

included in the modelling process. The model may well not be designed

to change a B-value, but an individual can use its results for that

purpose. How this is done is up to the individual and may not be a

formal process. However, if a Bayesian approach is used, with a prior

odds ratio, and a likelihood leading to a posterior odds ratio, the

evolution of the B-value can occur formally. Zellner (1978) points out

the link between this procedure and a particular criterion, the AIC, but

points out that the linkage is by no means exact even in a Gaussian

linear regression context.

5. Model Selection by Testing for Requirements

A researcher may be able to provide a list of required properties

for a model and an econometrician can then suggest tests of whether or
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not any particular model meets these requirements. Such a set of tests

can be considered as a model selection procedure, and this has been

discussed by White (1990). One set of such requirements are those for a

model to be "congruent with the evidence" according to Hendry and

Richard (1982) and Hendry (1987). A model is said to be congruent if

and only if:

a) it encompasses all rival models,

b) its error process is a "mean innovation process",

c) its "parameters of interest" are constant,

d) it is data admissible, and

e) its current conditioning variables are weakly exogenous for

the parameters of interest.

Denote these requirements by Co. Of course, not all researchers

would agree that Co are the necessary requirements. White (1990)

proposes various sets of requirements, with C1 
being (a) and (b) of CO3

C2 replaces encompassing by "correct model specification", so that C2

includes Cl. C3 replaces correct specification by an information matrix

equality and C4 is the union of C1 and C3. Each requirement is

associated with an m-test. White also provides conditions such that

asymptotically the procedure chooses all models that satisfy the

requirement. In a given application, one may find one model that

satisfies the requirements, or many models or no model. If there are

several models, then further preferred conditions can be added, such as

parsimony. If no model is satisfactory this implies that a wider class

of models should be investigated.

An obvious problem is that one researcher has to justify a
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particular set of requirements as being reasonable to other researchers.

Nevertheless, the test should be helpful for affecting degrees of

beliefs. Experience is needed to see how this approach performs

compared to other model selection methods.

The two methods of selection discussed in this and in the previous

sections are different but clearly can be related. The approach in this

section can be viewed as a complement to the model selection method of

the previous section; one could use a selection criterion to select a

model as in section 4, and the selected model can be subjected to the

requirements described in this section. If it passes, it is accepted;

if not, one might search over "near best" models according to the

criteria until one is found that meets the requirements. The best way

to conduct the search is unclear and whether or not some relaxation of

the requirements is considered worthwhile to achieve a more parsimonious

model is an individual decision. It is clear that further work is also

required to make these ideas practical and capable of implementation.

6. Conclusions

We have pointed out several difficulties with testing economic

theories, particularly that the. theories may be vague, may relate to a

decision interval that is different from the observation period and may

need construction of a "metric" to convert a complicated testing sit-

uation to an easier one. The metric should also be designed to

communicate empirical results that can change degrees of beliefs and

consequently affect decisions.

A key component of econometric practice is the building of econ-

ometric models. Frequently researchers are forced to use the data to
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make decisions about the particular form of a model. We argue that it

is better to use well-thought-out model selection procedures rather than

formal hypothesis testing in such situations. This is because formal

testing favors the 'model chosen to be the null hypothesis, the choice of

significance level is typically arbitrary and different researchers

working with the same data could easily end up with different models

purely because theyTerformed - their tests • in different orders or used

different levels of significance. In contrast, the use of an inform-

ation criterion such as (7) means that no model is favored because it

has been chosen as a "null hypothesis", judgment on the level of signif-

icance to be used is not required and the order of computation is

irrelevant. There are, however, some unsolved problems such as the

choice of penalty function in (7), how to guard against data-mining and

how to ensure that an important model specification has not been over-

looked. We also considered model selection based on testing for desir-

able properties of models. The two approaches can be combined to yield

a comprehensive model selection strategy. Further research is needed to

determine how these procedures might best be applied in practice.
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