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1. INTRODUCTION

In the context of modelling economic time series with unit roots, the Error Correction

Model (ECM) representation suggests a natural strategy for identifying and estimating

the long run and short run characteristics of a relationship. Engle and Granger (1987)

introduced the two-step procedure, the first step of which enables estimation of the

cointegrating vector by a straightforward ordinary least squares (OLS) regression

involving the levels of the variables. All dynamics can be ignored and endogeneity of

any of the variables has no effect asymptotically due to the unit root in the data. In the

second step of the procedure, these estimated long run parameters are used in an ECM

to obtain estimates of the short run dynamics.

Many authors have expressed concern at the use of OLS in levels to estimate the

cointegrating vector. There is a clear loss of efficiency through omitting dynamics, and

inference based on standard test statistics is in general not valid. Consequently, a

number of alternative methods for estimating cointegrating vectors have been proposed

(see Phillips and Loretan, 1991, for one recent survey). These represent different

approaches to allowing for the dynamics in the system. Comparative studies also exist

which seek to determine which of these alternatives is the most appropriate (again see

Phillips and Loretan, Phillips, 1988, Inder, 1993, among others). The criteria for

evaluating seem to be related to the degree of precision or bias in the estimators of the

cointegrating vector, as well as validity of inference. The conclusion reached in most

studies is that it matters which estimator is used; those which allow for dynamics in the

data generating process and possible endogeneity of the explanatory variables seem to •

give much more reliable estimates and inference.

As various new estimators of the cointegrating vector have been proposed, the question

of how the short run parameters are to be estimated has generally been overlooked.

Presumably one could follow. the approach of Engle and Granger (1987): find estimates

of the cointegrating vector, and then substitute these into the ECM to estimate the short

run dynamics.
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The question we wish to address in this note is: does a different choice of estimator for

the cointegrating vector have much effect on estimation of the short run dynamics in the

ECM? Our basis for comparison is the root mean square error (RMSE) of estimates of

the parameters of the ECM, and mean square error (MSE) of forecasts up to four

periods ahead. It could be expected that different estimates of the cointegrating vector

may have little effect on short run estimates, as the asymptotic properties of the various

estimators are the same. Differences may, however show up in finite samples. We

investigate this possibility by way of a simple Monte Carlo (MC) study involving two

different estimators of the co-integrating vector.

2. MODEL AND MONTE CARLO DESIGN

Consider the following model for y,

a (L)), = P'Wx, ut , (t=1„n (1)
where y, is a scalar, x, is a k x 1 vector of explanatory variables, u, is a stationary error

term, and u(L) and 13 (L) are IP and qth order polynomials in the lag operator.

We assume that x, is generated by the process

- 1 +
8 + (2)

where v, is stationary. By (2) we are implying that each regressor is integrated of order

1, or I(1), and (1) implies that y, and x, are cointegrated.

The cointegrating vector implied by (1) is (-1, X'), where X = )3(1)/a(1). An ECM .

representation of (1) is given by

81(L) iy = + 871. (L) Az, - a (1) [y - (3)

cc(L) - a(1)LP p (L) -i3(1)LP
and 8 2 (L) -where 81 (L) -

1 - L 1 - L

(see Inder, 1993). Having obtained estimates of X, the remaining parameters of (3) can

be estimated by OLS. .It is these estimates we wish to evaluate. We will also

investigate the forecasting performance of the model with different estimates of X.
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Engle and Granger (1987) show that X can be estimated consistently by an OLS

regression of y, on x,, we will describe this as the OLS estimator. The alternative

estimator considered in this paper involves estimating (1) by OLS, and then estimating

X by (1)/ a (1); that is, all possible dynamics is included in the model. This we will

describe as the unrestricted ECM estimator [see Inder (1993), Banerjee et al (1986) and.

Stock (1987)].

A more comprehensive study would need to include other contenders, including Phillips

and Hansen's (1990) fully modified OLS, Saikkonen's (1991) asymptotically efficient

estimator, and others. This study could be seen as a pilot investigation of the question;

the results below based on just OLS and unrestricted ECM estimators will give us a clue

as to the effect of improved efficiency in the long run estimation on ECM estimation.

• The details of the design of the MC study are given below. There are three regressors

with the disturbances generated by

ut= p11 ut-1 ct

yr = P2 Vt-1 + et ,

where p2 = diag (0-21, D227 23) 1 and; and et are independent and identically distributed

standard normal variables. This implies that x, is exogenous in (1), making the

unrestricted ECM estimator asymptotically valid (see Phillips, 1988).

The parameters of the data generating process (DGP) are given by:

T=50 and 200, k=3, p=q=4, ii=0-2, (P11, P21, P229 P23) = 0.5, 0.4, 0.3 0.2),

(5' = (0.191, 1.759, 1.42), p(; = (0.58, 0.45, -0.78). Models were then generated with

no dynamics (f3; = = 13; p4, , a' = 0), dynamics in terms of either lagged y (a' =

(0.2, 0.15, 0.1, 0.07) or lagged x ( (0.55, 0.3, -0.68), (0.5, 0.2, -0.6), p;

(0.45, 0.2, -0.5), p (0.4, 0.14, -0.32)), and then with dynamics including both lags

of y and of x. Initial x and y values were selected to give realistic looking series;
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specifically,

Yo =y_i = y_2 =y_3 = 3, x(; = (10, 7, 9), x_'1 = (10, 6, 5), x 2 = (10,8, 10),

= (10, 10, 9).

All results are based on 5000 replications for each experiment.

3. RESULTS AND DISCUSSION

3.1 Precision of Estimates

The overall precision is measured by RMSE, which is obtained by averaging the

individual RMSE's for each estimated short run parameter. Table 1 contains all the

RMSE's for the different DGPs and estimators that are employed in this study. The

following observations may be made about the results:

(i) When all the dynamics are included in the DGP, the Unrestricted ECM (UECM)

exhibits noticeable superiority over OLS. In the small sample case (T=50), the

latter's RMSE is 0.39, more than twice as big as that of the former (0.17). Even

in the large sample case where T=200, the superiority of the UECM over OLS

is still preserved as the RMSEs for the OLS and UECM are 0.28 and 0.21

respectively.

The overall precision appears better again for the UECM than for the OLS if

only partial dynamics are included in the DGP 031 = 132 133 = P4 = 0 or

ai = a2 = a3 = a4 = 0), i.e. the UECM model is partially overspecified. The table

presents to us a picture that as long as there are dynamics in the DGP, the

UECM will yield better short run parameter estimates. Specifically, in small

samples (T=50) when all lagged explanatory variables are excluded

(pi = = p3 = o), the UECM gives an RMSE of 0.17 as compared to 0.21
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given by the OLS. As sample size increases to 200, the former has an RMSE of

0.10 while the latter 0.12. When all lagged dependent variables are excluded

from (9) (a1 = a2 = a3 = a4 = 0), the RMSEs of the UECM and the OLS are

0.17 versus 0.35 in the small sample size (T=50) and 0.18 versus 0.25 in the

large sample size (T=200).

In the case where no dynamics are present in the DGP, the UECM model is

completely overspecified. From the table we see that only under these

circumstances does OLS defeat the UECM. The former has a RMSE of 0.17

versus 0.19 for the latter in small samples and 0.1 versus 0.11 in large samples.

Thus, it appears that the overspecification problem matters less in large samples

than in small samples. The price paid in overspecifying the dynamics seems to

be very small though, compared to the hazards of underspecifying.

3.2 Forecasting performance of the ECM

It may be reasonable to use the ECM to forecast economic variables. Given the

two different sets of long run and short run parameter estimates, we are able to

compare the estimators' forecasting performance. Table 2 contains the results on

the precision of the forecasts of the estimated ECM. We observe that, similar to

the situation above, exclusion of dynamics does incur a substantial penalty.

When all dynamics are present and T=50, the forecasting error of OLS exceeds

that of the UECM, and the magnitude of the difference between the two

estimators' forecasting error increases as the forecasting period becomes greater.

This holds for all cases where dynamics are present. The difference becomes

smaller as the dynamics are gradually removed from the DGP. Not surprisingly,

OLS outperforms the UECM when dynamics are absent. Regardless of the

presence or absence of dynamics, the difference between the forecasting errors of

the two estimators tends to be negligible as sample size increases. This indicates

that forecasting precision may be insensitive to the dynamics in the DGP so long

as the sample size is large.
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4. Conclusions

This paper has been motivated by the fact that the estimation of long run parameters has

received a great deal of attention and the estimation of dynamics, in contrast, seems to

be largely ignored. As such, this paper investigates the effects of the choice of

estimator of the long run parameters on that of the short run parameters. It turns out

that an estimator .that.gives. more precise long_run_parameter..estimates .also gives more

precise short run parameter estimates (the ECM parameters). Our Monte Carlo

evidence has revealed that as far as estimation of short run parameters is concerned it is

unwise to discard possible dynamics. When samples are small, disregarding possible

dynamics in the first-step can only lead to much poorer precision of long run parameter

estimates as well as that of short run parameters in the second-step. This situation can

be alleviated somewhat when samples are large..

Since 1(1) variables are well modelled by an ECM, the task of forecasting I(1) variables

can be performed within the ECM framework. Our Monte Carlo results have brought

some ideas as to the precision of forecasts of an ECM when its long run part is

estimated by the two different estimators. The evidence has shown that the forecasting

precision of an ECM is sensitive to the choice of estimator of the long run parameters.

The estimator that gives good short run parameter estimates often brings about more

reliable forecasts.



Table 1

RMSEs of the short-run parameters estimates

-
DGP

,

Estimators in 1st-step

OLS
,

Unrestricted ECM
N.,

Dynamics in both
x and y

T=50 .._ 0.390 0.170

T=200 0.280 0.210

, , ,

Dynamics in x only T=50 0.350 0.170

T=200 0.250 0.180, ,,
1

Dynamics in y only T=50 0.210 0.170

T=200 . 0.120 0.100

No Dynamics

.

T=50 0.170

,

0.190

.. 
T=200 , 0.100 i 0.110



Table 2

Precision of Forecasts from the ECM

DGP Estimators in 1st-step OLS Unrestricted ECM

Forecasting 1st-period 14.391 9.763
MSE 2nd-period 15.571 10.631

3rd-period 17.498 10.834

Dynamics in T=50 4th-period 19.814 11.506

both x and y
Forecasting lst-period 7.835 7.496

MSE 2nd-period 8.168 7.688
3rd-period 8.223 7.601

T=200 4th-period 8.326 7.572 ,

Forecasting 1st-period 13.278 9.702
MSE 2nd-period 14.452 10.413

3rd-period 15.905 10.519

Dynamics in x T=50 4th-period 17.804 11.154

Forecasting 1st-period 7.534 7.194
MSE 2nd-period 7.848 7.420

3rd-period 7.819 7.362
T=200 4th-period 7.940 7.398

Forecasting 1st-period 11.032 9.664
MSE 2nd-period 11.798 10.265

3rd-period 12.783 10.534

Dynamics in y T=50 4th-period 13.801 11.058

Forecasting 1st-period 7.076 6.934
MSE 2nd-period 7.379 7.200

3rd-period 7.199 7.026
T=200 4th-period 7.335 7.094

,,

Forecasting 1st-period 9.391 9.684
MSE 2nd-period 9.724 10.198

3rd-period 9.855 10.408

No
Dynamics 

T=50 4th-period 10.181 10.944
,

Forecasting
MSE

lst-period
2nd-period

6.932
7.201

6.943
7.321

- 3rd-period 6.966 6.989

,
T=200 4th-period 7.074 k 7.053
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