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Abstract

This paper considers the linear regression model with the 
lagged

dependent variable as a regressor. It argues that the Dynamic CUSUM

test may not be ideal in testing for a structural change at 
an unknown

point in time. A new test is proposed, with critical values based 
on

small disturbance asymptotics. A Monte Carlo study shows some power

improvement. The new test also provides far more reliable estimat
es of

the location of the structural break.

Key Words: CUSUM Test, Small Disturbance Asymptotics, Locating

Structural Breaks, Lagged Dependent Variable.



1. INTRODUCTION

When an econometric model is used for forecasting or policy

simulation, parameter stability plays a very important role. The

problem of testing for the stability of an economic relatio
nship over

time has been discussed by many authors. Among the various test

statistics, Brown, Durbin and Evans' (1975) (henceforth BDE) 
CUSUM test

and CUSUM of squares tests, which are based on recursive residua
ls, have

become the standard diagnostic tests in linear regression model
s when

the possible timing and the type of instability are unknown.

However, relationships among economic variables are often d
ynamic,

and lagged dependent variables are included in regression models. 
In

this case, the CUSUM test is not applicable because of the presence o
f a

stochastic regressor. In this case, Dufour (1982) suggested replacing

the coefficients of the lagged dependent variables by their c
onsistent

estimates from the full sample, and hoping that the resulting r
esursive

residuals and any tests based on them will have approximately the
 same

properties as those based on the true coefficients of lagged de
pendent

variables.

Ploberger, Kramer and Alt(1989) showed that under some regulari
ty

conditions, Dufour's approach is asymptotically valid if the

coefficients of lagged dependent variables are estimated under the n
ull

hypothesis of no structural change. Kramer, Ploberger and Alt (1988)

(henceforth KPA ) also showed that asymptotically one can disregard t
he

dynamic character of the regression and proceed with the CUSUM test as

in the static model. Any choice between Dufour's approach and Kramer et

al.'s approach is a matter of power and of the accuracy of the actual

size of the test. KPA's Monte Carlo (MC) experiment shows that the

dynamic CUSUM test can perform much better than Dufour's approach.
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Although it outperforms Dufour's approach, the dynamic CU
SUM test

suffers from some serious drawbacks. The first is that it is only

valid asymptotically; its power performance for small sample size is

not satisfactory. The second is that it has low power when the shift is

orthogonal to the mean regressors. Finally, as with many other tests,

it possesses low power when the coefficients change late in t
he sample

period.

Small disturbance asymptotics has been used profitably in a nu
mber

of recent studies involving dynamic models. For example, Nankervis and

Savin (1987) report the small disturbance distribution (SDD) of 
F and

t statistics for testing linear restrictions on coefficients 
in the

dynamic model; Inder (1986) and King and Wu (1991) find the SDD of the

Durbin-Watson statistic in these models. In each case the SDDs are the

same as the exact distributions of the statistics in a regressio
n with

the lagged dependent variable replaced by its mean.

In this paper we are interested in detecting structural change

taking the form of a discrete jump in one or more of the parameter
s. We

argue that the CUSUM test may not be ideal for this, and propose an

alternative test, called the Q-step multiple t test. Critical values

for this test are based on the statistic's SDD. The theory is given in

section 2, with a MC comparison of this test with the dynamic CUSUM 
test

being discussed in section 3. This study suggests that the new test is

quite powerful. when the structural change takes place in the latte
r part

of the sample.

One of the benefits of CUSUM-type tests is that they can not 
only

detect instability, but also provide information about where any

structural breaks may take place. In section 4 we evaluate the Dynamic

CUSUM and Q-step multiple-t procedures as estimators of the change
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point. Evidence suggests that the Dynamic CUSUM is quite inferior 
for

this purpose.

2. THEORY

Consider the dynamic linear model

y
t 

= y
t-1

a + xgt + ut
( t = 1, . T), (1)

where y
t 

is the t
th

observation on the dependent variable, xt is a

k x 1 vector of observations on the exogenous variables at time 
t, a and

p
t 
are unknown parameters, and u

t 
is a stochastic disturbance with u

t

- c
2
). We are interested in testing for a discrete jump in at

least one of the elements of f3t at an unknown point in time.

Specifically, the null hypothesis can be formulated as

H
O
: pi g2 = 

PT

with the alternative being HI: at least one equality does not hold.

The recursive residuals, which are a basis for the CUSUM test, 
are

given by

w
r 

[yr 
- (y 1' 1

x')b 1/f Cr = k + 2, ..., T), (2)
r- 

where b
r-1 

is the ordinary least squares (OLS) estimator of (a, g')

.using the first r-1 observations, and

with

f
r 

= [1 + (y x')[(Y
r-1 
' 

X
r-1)CYr-1 

X
r-1

)1
-1
(y , x')

'
]
1/2

,
r-1' r -1 -1 ' r-1 r

Y
-11 

= (y
0' y1' 

. y
r-2

) and X
r-1 

= (x
1' 

x
2' • • 

. , xr-1
)
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The Dynamic cusum test is based on the statistic

S = max
k+25-rL1T

(r)

1{7-71-(-1
/ [1 2(r-k-1)

T-k-1
(3)

- -2 -
where W

(r)
= 

-1 
T E wt and T = (T-k-2)

-1 E (14 -w)2' with
t 

t=k+2 t=k+2

-1
being (T-k-1) E wt. H

o 
is rejected for large values for S, with,

t=k+2

for example, the 5% critical value being 0.948 (see BDE and KPA for

details).

It is clear from (3) that the key to discriminating between null

and alternative hypotheses for the CUSUM test is the term W
Cr)

, which

is the sum of all recursive residuals up to time period r. If the

structural break occurs at the point m, the wt's will have zero mean up

to the point m, and non-zero means subsequently. The inclusion of Wt

for t = k + 2, . m in the test statistic will thus not be helpful in

detecting the change. They are likely to lead to a loss of power. This

may well explain the poor power of the CUSUM test when m is close to

the end of the sample period, as many wt's with zero mean are included

in the test statistic.

The above discussion leads us to consider an alternative to the

CUSUM test which relies on more than just one-step ahead forecast

errors, which are the basis of the CUSUM test. We propose a test which

involves averaging, at each point in time r, forecasting errors from

one-step to q-steps ahead. We can then apply a sequential testing

procedure at each point in time, rejecting the null hypothesis if any of

the separate tests lead to rejection.
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It is helpful to apply a regression interpretation to the

forecasting errors. The q forecasting errors can be calculated as the

coefficients of a set of dummy variables added to the regressor
 matrix.

Specifically, if forecasting q periods ahead from a point r, one can

r r+q
regress Y

r+q
on Z

r+q 
D
r,q

], where Z
r+q

D
r,q 

is an (r+q) x q matrix of dummy variables given by

[ 0
rxq

D
r,q

Xr+1, and

with 0
rxq 

being an rxq null matrix, and I represents a qxq

identity matrix. The forecasting errors are the estimated coefficients

of Dr q' 
represented in the vector Tr,q. A test of .the hypothesis

that the average of these q errors is zero is easily performed, as

this amounts to a test of linear restrictions on the coefficients in 
the

above regression. Using results on partitioned matrices, the test

statistic is given by

t'i
r,q

gr,q -1 1/2

Cr[t' D )
r,q 

Z
r+q r,q

(4)

where t' is a vector all of whose elements is q
-1

, P = I - z(z/z)
-1
zi ,

^2
and cr is a consistent estimate of the error variance in the above

regression. The statistic g
r,q 

could be calculated for all values of

r, from k+2 to T-q, and each statistic compared with appropriate

critical values.

Small disturbance asymptotics provides a simple means of obtaining

reliable critical values for the gr,q 
tests. Given the above

regression interpretation of the test statistic, the results of

Nankervis and Savin (1987) can be applied to show that the g-
r,q
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statistic has an SDD which follows the t distribution with r-k-1

degrees of freedom. This result is seen by observing that the

regressions involve r+q observations, with k+1+q regressors. We

thus have a multiple hypothesis testing situation as discussed by Savin

(1984). The acceptance region of an individual 0-level two-tailed test

is given by

I g
r,q

I t
0/2 

(r-k-1) Cr = k + 2, T - q), (5)

where t
0/2

(r-k-1) is the upper 0/2 significance point of a t

distribution with r-k-1 degrees of freedom. For the multiple testing

problem H
0 

is accepted if g
r,q

for all values of r.

falls in the acceptance region (5)

Because of the dependence that exists between each of the test

statistics, we are only able to obtain an inequality on the small

disturbance asymptotic significance level of this multiple testing

procedure. Again following Savin (1984), we use Sidak's (1967)

inequality to choose a significance level 0 for each individual t

test according to

1 - (1 - 6)
T-k-q (6)

where 6 is the nominal significance level of the multiple testing

procedure. Critical values with different implications of 0 and r are

given by Games (1977).

As with the CUSUM test, there is a reasonable computational burden

in executing the above testing procedure. OLS regressions need to be

performed for each value of r, and a test statistic calculated

according to (4). To complicate matters further, each value of
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(see (5)). This whole procedure could, of course, be automated without

difficulty using any reasonable econometric software. There are also

alternative ways of representing the forecast errors and updating

regression estimates with new observations which would vastly impro
ve

computational speed. These are not discussed here as our focus is on

the intuition behind and performance of the testing procedure.

The question of how many forecast errors to Include in the test

statistics (a value of q) remains. If q is too large, the testing

must stop too soon before the end of the sample period, but a value of

q which is too small will leave the test vulnerable to outliers or

other temporary perturbations. Our preliminary MC analysis has led us

to choose q = 3, and results on the performance of the test are

presented in the next section with this value. This practical issue

does, however, need further investigation.

3. COMPARISON OF THE TESTS

Same intuition has been presented in section 2 for why one may

expect the multiple t test to be more powerful than the dynamic CUSUM

test in detecting structural change. It is the purpose of this section

to test this claim by performing a MC comparison of the tests. We

consider their performance under the null hypothesis (closeness of

actual size to nominal size) and the alternative (power).

For ease of comparison, the design of the MC study presented here

is consistent with KPA's. The model generating the data is given by

equation (1), with the first observation generated as

y
0 

= x10/(1-a) + u/(1-a
2
)
1/2

0



This start-up condition is commonly used to allow for a random yo, but

to ensure it has a realistic mean and variance.

There are two sample sizes used with each X matrix: small (T=31)

and medium sized (T=58). We allow the structural shift to affect only

the p parameters. Initially p' = (10, 2) and a = -0.5 or 0.5, and

the structural shift in 8' = (a, (v) is given by

A8'   (0, cos(0 + 0), sin(0 + 0)),

T
1/2

where 0 is 00, 30°, 60° and 90
o 

and b = 0 under Ho and 8 unde
r 

Hl.

0 is the angle between the mean regressor and constant term, 0 is the

angle between shift vector and mean regressor.

The structural shift occurs at time m = zT + 1, where z takes the

values 0.3, 0.5 and 0.7.

The following X matrices were used:

X1: x
t 

= 
(_1)t

 with x
0 
= 1.

X2: x
t 

= 1 + e
t' 

with x
0 
= 1, and e

t 
IN(0, 1).

• X3: x = 1 + 4t/T + e
t' 

with 
x0 ' 

= 1 and e
t 

IN(0, 1).
t 

Two values of T, the error standard deviation, were used in the MC

study: T = 0.5 and T = 1. This effectively gives us 24 sets of

results: three X matrices, each with two sample sizes, two values of

T, and two values of a. Results are based on 3000 replications for

each set of parameter values.

The results of this MC study are given in Tables 1 to 4. Table 1

presents the probabilities of a type I error, which it is hoped will be

as close as possible to the nominal significance level of 5%.
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The evidence in this table suggests both tests perform reasonab
ly

well under H0: sizes are generally a little low, but in most c
ases are

acceptably close to .05. Both tests perform the worst with the X1

matrix, with some sizes of around 2%.

Turning to power, there are a few points which can be drawn
 from

the MC simulation.

The performance of both tests very much depends on 0 the 
angle

between the shift vector and the projection of the mean regressor
 on the

(3 plane. When 0 increases, the power of both tests decreases

dramatically. Actually, KPA proved that when 0 = 90°, the dynamic CUS
UM

test has trivial local power. For the QSMT test, the results show that

it posesses non-trivial power in this case although its performa
nce is

still poor.

When a is negative, then for small sample size CT = 31) the dyna
mic

CUSUM test has better power than QSMT test for all three X matric
es if

z = 0.3. On the other hand, the QSMT test outperforms the dynamic CUSUM

test for all X matrices if z = 0.7. When z = 0.5, the QSMT test is

preferred with X1 and X3, and the two tests have similar performanc
e for

X2.

If the sample size is increased to 59, the dynamic CUSUM test is

still preferred with T* = 0.3, but QSMT test is much more powerful with

T = 0.7. When T = 0.5, however, the situation is a little bit

different. For the X1 matrix, the dynamic CUSUM test has better

performance for large T. For the small T value, there is little

difference between the tests. For X2, the dynamic CUSUM test dominates

the QSMT test for both T values, and with X3 both tests have good power

when T is small, while QSMT is slightly better for the large T value.

9



A more reasonable assumption is that a takes positive values. In

this case, QSMT test shows some advantage over the dynamic CUSUM test.

For convenience, we assume that power differences of less than 0.1 are

not considered important or substantial.

When the sample size is small, for the X1 matrix there are only

four points at which the dynamic CUSUM test is more powerful than QSMT.

However, the improvement is small with all under 0.2. On the other

hand, there are 14 points at which the QSMT test outperforms the dynamic

CUSUM test, and for half of them, the power improvement exceeds 0.5. 
A

similar situation occurs with X2. For the X3 matrix, QSMT test is

superior to dynamic CUSUM test in virtually every case. It is not

uncommon to have situations where the dynamic CUSUM test has virtually

no power, while •the QSMT test has power close to 1.

Overall, it seems that QSMT test deserves to be recommended as an

alternative to the dynamic CUSUM test, especially for small sample

sizes.

4. ESTIMATION OF THE BREAK POINT

One of the alleged advantages of the CUSUM test over other tests

for structural change is that it can provide information about the

location of such a change. While there is no formal treatment of this,

it is seen that the point in the sample at which the test becomes

significant could be used as an estimator of the break point. In this

section we evaluate this estimator for the dynamic model, and also

compare it to the analogous estimator using the QSMT test.

Specifically, the change point in the sample, T*, is estimated by

the smallest value of r at which the Dynamic CUSUM statistic exceeds

its critical value (see equation (3)). Similarly, for the QSMT

10



estimator, the smallest value of r which leads to a rejection 
of the

null hypothesis using equation (5) is used as the estimator.

Table 5 gives the results of this comparison, using a simi
lar MC

design to section 3. In each case, the T value is 1 and the structural

break takes place around half-way through the sample (T* = 17 
for the

smaller and 31 for the larger sample). An estimator is calculated only

if the test leads to rejection of the null hypothesis. We calculate the

mean absolute errors in the estimates of T*, as well as their ro
ot mean

square errors (RMSE), and also the percent of estimates within 
one of

the correct T* value (PN1).

It is obvious from Table 5 that the Dynamic CUSUM estimator

performs very poorly. For the X1 and X2 matrices, the dynamic CUSUM

test detects the structural change an average of 5 to 8 periods 
after

the true breaking point for the small sample size, and 10 to 15 peri
ods

for the medium sample size. On the other hand, the QSMT test estimates

the break point quite accurately. When the sample size is small, the

estimated break point is around 18 - 20 while T* = 17; when sample s
ize

is medium, the estimated break point is around 33 - 37 while T* = 31.

For X3 the QSMT test provides an almost unbiased estimate for the break

point while the performance of the dynamic CUSUM estimator varies with

the sign of m.

In all the three experiments, the largest PN1 value of the dynamic

CUSUM test is around 24%, with more than half being below 4%. In

contrast, half of the PN1 values for the QSMT test are over 40%, with

values as large as 90%.



5. SUMMARY

The CUSUM test, is probably the most well-known diagnostic t
est for

structural change in regression models. Recent work by KPA and others

have provided a justification for its use in models which
 include a

lagged dependent variable. This paper has proposed an alternative to

the Dynamic CUSUM test which involves q-step ahead forecast errors

rather than recursive residuals, which are essentially 
one-step ahead

forecast errors. There is reason to expect that the QSMT test will

yield a power improvement for changes that occur late in the sample

period, and the MC evidence supports this.

We have also shown in this paper how small disturbance a
symptotics

can be used to obtain critical values for the QSMT test. 
This approach

could also be used profitably with other tests which are 
applicable to

dynamic models, such as the "multiple F test" approach of Andrews

(1991).
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Table 1. Probability of Rejecting a True Null Hypothesisa

( Nominal Size = 0.05 )

Test
X matrix

X X X
1 2 3

T=31

T = 59

0.5

1.0

0.5

1.0

-0.5

0.5

-0.5

0.5

-0.5

0.5

-0.5

0.5

DCUSUM 0.036 0.019 0.040

QSMT 0.045 0.029 0.039

DCUSUM 0.037 0.043 0.036

QSMT 0.039 0.047 0.043

DCUSUM 0.036 0.016 0.036

QSMT 0.045 0.023 0.039

DCUSUM 0.043 0.047 0.038

QSMT 0.045 0.047 0.043

DCUSUM 0.030 0.022 0.040

QSMT 0.037 0.031 0.044

DCUSUM 0.035 0.039 0.040

QSMT 0.039 0.044 0.048

DCUSUM 0.029 0.017 0.040

QSMT 0.040 0.031 0.046

DCUSUM 0.041 0.045 0.041

QSMT 0.047 0.049 0.051

a: DCUSUM is the Dynamic CUSUM test, and QSMT is the q-step Multipl
e

t test. q = 3 for these results.
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Table 2. Power of the tests ( X matrix )
1

(i)

a = -0.5 o0.5

0
0 60 0 00 0 0 0

30 90 0 30 60 90

T=31

T=59

Dynamic CUSUM

z=.3 .745 .527 .196 .017 .319 .308 .164 .043

z=.5 .498 .260 .072 .016 .284 .170 .071 .020

z=.7 .165 .073 .028 .034 .127 .055 .033 .037

c=1 
z=.3 .241 .237 .131 .027 

QSMT 
.158 .172 .124 .044

z=.5 .576 .497 .245 .046 .531 .519 .274 .060

z=.7 .712 .617 .223 .064 .652 .564 .211 .075

c=. 5

cr=1

cr=. 5

Dynamic CUSUM

z=.3 .996 .932 .386 .006 .589 .525 .289 .008

z=.5 .908 .556 .090 .009 .611 .353 .082 .008

z=.7 .333 .090 .015 .012 .246 .069 .016 .013

QSMT

z=.3 .586 .582 .415 .034 .424 .424 .381 .041

z=.5 .995 .984 .807 .128 .988 .982 .832 .129

z=.7 1.000 .999 .886 .132 1.000 .998 .861 .116

Dynamic CUSUM

z=.3 .872 .732 .252 .029 .807 .685 .239 .034

z=.5 .758 .584 .155 .032 .620 .523 .160 .033

z=.7 .274 .197 .068 .031 .148 .141 .052 .045

QSMT

z=.3 .277 .252 .094 .041 .299 .301 .118 .043

z=.5 .441 .342 .151 .060 .418 .375 .188 .073

z=.7 .591 .498 .237 .049 .515 .448 .221 .055

Dynamic CUSUM

z=.3 1.000 1.000 .676 .016 1.000 1.000 .660 .014

z=.5 .999 .987 .523 .008 .993 .981 .544 .012

z=.7 .793 .572 .165 .021 .521 .371 .128 .021

QSMT

z=.3 .909 .889 .437 .040 .904 .893 .462 .043

z=.5 .976 .960 .627 .100 .972 .963 .670 .113

z=.7 .999 .999 .913 .106 .998 .997 .877 .111
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Table 3. Power of the tests ( X matrix )
2

a = -0.5 a = 0.5

0 o
0 

0 60 
0 . 

0 30 900 o 30 600 900

T=31

T=59

cr=1

cr=. 5

cr=1

cr=. 5

Dynamic CUSUM

z=.3 .379 .378 .162 .011 .203 .244 .188 .051

z=.5 .314 .215 .074 .009 .167 .152 .091 .014

z=.7 .123 .060 .015 .007 .117 .073 .035 .015

QSMT

z=.3 .054 .112 .081 .024 .056 .088 .105 .067

z=.5 .173 .202 .150 .046 .177 .175 .178 .076

z=.7 .254 .258 .156 .056 .275 .263 .189 .093

Dynamic CUSUM

z=.3 .744 .872 .638 .012 .239 .281 .526 .040

z=.5 .654 .621 .333 .006 .165 .128 .171 .003

z=.7 .312 .126 .041 .002 .127 .062 .028 .001

QSMT

z=.3 .168 .341 .261 .045 .198 .265 .288 .095

z=.5 .625 .771 .563 .090 .632 .649 .614 .153

z=.7 .820 .911 .692 .149 .810 .818 .734 .200

Dynamic CUSUM

z=.3 .528 .458 .156 .029 .285 .268 .155 .052

z=.5 .398 .317 .092 .023 .237 .206 .090 .028

z=.7 .126 .098 .033 .015 .103 .079 .051 .027

QSMT

z=.3 .086 .085 .066 .046 .062 .082 .086 .066

z=.5 .152 .167 .109 .047 .124 .146 .117 .072

z=.7 .198 .166 .101 .046 .173 .170 .121 .070

Dynamic CUSUM

z=.3 .945 .969 .676 .024 .335 .426 .532 .045

z=.5 .914 .893 .444 .017 .285 .308 .255 .016

z=.7 .503 .362 .116 .004 .163 .131 .066 .004

QSMT

z=.3 .259 .403 .248 .056 .241 .288 .245 .099

z=.5 .578 .679 .414 .073 .498 .508 .409 .138

z=.7 .730 .802 .502 .091 .589 .634 .517 .143
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Table 4. Power of the tests ( X matrix )
3

= -0.5
o 

30°
0 0

60 90

IX = 0.5
0 0 0

°0 30 60 90

T=31

T=59

cr=1

T=. 5

o-•=1

Cr=. 5

z=.3
z=.5
z=.7

z=.3
z=.5
z=.7

z=.3
z=.5 .
z=.7

z=.3
z=.5
z=.7

z=.3
z=.5
z=.7

z=.3
z=.5
z=.7

z=.3
z=.5
z=.7

z=.3
z=.5
z=.7

.777

.549

.363

.422

.967
1.000

.989

.788

.599

.986
1.000
1.000

.905

.812

.609

.605

.950
1.000

1.000
1.000
.970

.999
1.000
1.000

.761

.547

.357

.300

.921
1.000

.989

.866

.600

.903
1.000
1.000

.814

.773

.550

.461

.880
1.000

1.000
.998
.945

.993
1.000
1.000

.518

.418

.252

.166

.541

.944

.947

.852

.562

.447

.995
1.000

.411

.413

.315

.105

.335

.784

.946

.943

.826

.591

.987
1.000

Dynamic CUSUM

.028 .040

.030 .064

.032 .030

QSMT
.033
.050
.059

.201

.846

.999

Dynamic CUSUM

.026 .008

.026 .027

.045 .004

QSMT
.042 .771

.077 1.000

.113 1.000

Dynamic CUSUM

.031 .202

.030 .185

.037 .160

QSMT
.044 .540

.052 .897

.055 .995

Dynamic CUSUM

.039 .377

.040 .271

.047 .247

QSMT

.058 .998

.081 1.000

.116 1.000

.061

.079

.055

.147

.721

.999

.033

.039

.011

.588
1.000
1.000

.194

.208

.159

.416

.756

.987

.349

.343

.269

.989
1.000
1.000

.107

.121

.082

.086

.369

.818

.165

.155

.093

.247

.945
1.000

.137

.130

.129

.106

.278

.671

.331

.351

.305

.519

.969
1.000

.048

.030

.047

.048

.051

.060

.057

.033

.037

.070

.083

.113

.038

.040

.039

.064

.066

.044

.041

.051

.055

.068

.084

.101
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Table 5. Performance of Estimators of the change point

Dynamic CUSUM QSMT

0 0 0 0
0 30 60 90 0

0 0 0
30 60 90

X
1

T=31
(T*=17)

X
1

T=59
(T*=31)

X
2

T=31
(T*=17)

X
2

T=59
(T*=31)

X
3

T=31
(T*=17)

X
3

T=59
(T*=31)

EIT*-T*1
-.5 RMSE

PN1

EIT*-T*1
.5 RMSE

PN1

EIT*-T*I
-.5 RMSE

PN1

A
EIT*-T*I

.5 RMSE
PN1

A
EIT*-T*I

.5 RMSE
PN1

A
EIT*-T*I

.5 RMSE
PN1

A
EIT* -T*I 9.1

.5 RMSE 9.91
PN1 0.4

8.9
9.49
0.0

14.8
16.20
1.9

15.5
16.95
1.6

6.1
7.05
.9.2

8.1
8.81
2.8

13.0
15.23
6.3

15.7
17.28
3.0

3.7
3.89
3.8

7.2
7.97
0.2

EIT*-T*I 6.1
.5 RMSE 6.89

PN1 4.8

EIT*-T*I 9.7
-.5 RMSE 10.83

PN1 1.0

EIT*-T*1
-.5 RMSE

PN1

EIT*-T*1
.5 RMSE

PN1
^ -

EIT*-T*1
-.5 RMSE

PN1

8.7
9.44
0.0

8.8
9.31
0.0

16.6
17.91
1.4

17.1
18.42

1.6

7.1
8.18
8.8

8.8
9.48
3.9

14.7
16.38
1.6

17.3
18.70
0.3

3.7
3.86
4.6

7.3
8.05
0.4

7.2
8.33
5.2

10.8
12.10
1.4

7.9
8.57
2.6

7.8
8.44
1.2

17.4
18.88
3.2

17.9
19.27
2.0

7.8
8.67
6.7

8.7
9.49
4.5

15.7
17.37
2.4

16.4
17.72
0.0

4.9
5.56
2.5

7.3
8.02
1.2

9.9
11.57
7.1

13.1
14.58
2.9

4.7
5.74
19.4

4.8
6.19
23.8

9.8
12.06
7.7

10.1
11.88
8.0

6.5
7.79
12.5

5.2
6.53
16.6

9.3
11.39
12.0

10.1
12.58
5.3

5.1
6.39
8.8

5.8
6.73
6.3

11.1
13.47
8.7

12.0
14.30
4.9

2.3
3.02
21.9

2.3
3.05
18.5

4.6
7.51
50.5

5.4
8.59
45.8

1.7
2.95
75.8

2.6
4.17
50.3

5.3
7.85
36.2

7.4
10.22
27.1

0.6
1.14
90.1

0.6
1.07
91.6

1.3
2.96
84.0

1.1
2.51
84.4

2.6
3.13
8.2

2.7
3.29
7.9

6.1
9.31
46.0

6.9
10.67
44.4

2.0
3.17
65.4

3.1
4.36
48.2

6.7
9.51
30.5

8.8
11.44
21.4

0.6
1.16
85.0

0.6
1.30
87.4

1.0
2.54
87.4

1.0
2.00
85.5

3.4
3.95
1.5

3.2
3.90
2.0

10.3
13.23
28.6

9.1
12.28
31.1

3.5
4.81
43.3

3.2
4.45
49.7

7.9
10.46
25.3

9.6
12.12
18.2

1.4
2.05
47.4

1.4
2.16
50.5

2.0
4.65
76.1

2.5
5.06
67.2

4.0
5.54
42.9

3.9
5.71
40.0

10.6
13.00
9.3

11.3
13.76
9.7

4.5
5.83
24.4

3.6
5.22
33.3

10.2
12.70
13.3

8.3
11.29
21.6

5.1
6.06
11.3

4.5
5.69
20.9

10.1
12.58
13.2

11.4
13.40
9.8
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