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David Harris and Brett Inder

Department of Econometrics

Monash University

Clayton Vic 3168

The cointegration tests of Engle and Granger (1987) test the null hypothesis of no cointegration. We extend

the unit root testing framework of Kwiatkowski et al (1992) to testing the null hypothesis of cointegration. A test

is developed which is asymptotically equivalent to the locally best invariant.(LBI) test and is applicable to a wide

range of non-stationary data generating processes. The asymptotic distribution of our test statistic is found to be

free of nuisance parameters, and is dependent only on the number of regressors in the cointegrating regression. We

tabulate asymptotic critical values for the test based on this distribution, and report on a small power comparison

with the Dickey-Fuller test.
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1 Introduction

In the literature on cointegrated time series, hypothesis tests developed for testing for cointegration have a

null hypothesis of no cointegration. Such tests can be found in Engle and Granger (1987), Phillips and Ouliaris

(1990) and Johansen (1988). However, there would seem to be some merit in constructing a test of the null hypothesis

of cointegration. In fact, Engle is quoted in Phillips and Ouliaris (1990) as writing "a null hypothesis of cointegration

would be far more useful in empirical research than the natural null of non-cointegration". Phillips and Ouliaris

proceed to suggest two tests of this hypothesis, but then show that these tests are inconsistent. They leave the

problem unsolved.

The merit in testing the null hypothesis of cointegration can be seen if we were building a model where the

variables were believed, a priori, to be cointegrated. The classic example of aggregate consumption and income

could be one such case. If we were to use the standard approach of Engle and Granger (1987) based on augmented

Dickey-Fuller tests of the null hypothesis of no cointegration, then we are implicitly saying that we believe the

variables are not cointegrated unless the data can convincingly demonstrate otherwise. Instead, we suggest a test

of the null hypothesis of cointegration, so that we will believe the variables to be cointegrated unless the data can

strongly convince us otherwise. Such an approach may prove to be useful.

Not all applications of cointegration tests may involve some a priori beliefs on the presence or absence of

cointegration. In such cases, one procedure could make use of tests of both null hypotheses. If we accept no

cointegration and reject cointegration, then this is strong evidence for no cointegration. Similarly, if we reject no

cointegration and accept cointegration then there is strong evidence for cointegration. There is also the possibility

of two inconclusive results. If both null hypotheses are rejected, then a type I error may have occurred in one of

the tests.' If both null hypotheses are accepted, then at least one of the tests is the victim of a lack of power against

the particular data generating process.

This paper can be considered a generalisation of Kwiatkowski et al (1992) (referred to as 1-CPSS), who

proposed a unit root test with the null hypothesis of stationarity. We extend their model to include explanatory

variables, so that we can estimate a cointegmting regression and test the null hypothesis of stationarity of the

residuals. On the issue of model specification, we find that the 1CPSS model is not a completely general data

generating process, and we suggest a more general model. However, in the context of the hypothesis testing problem,

this difference is found to be unimportant. Locally best invariant (LBI) tests are constructed for quite restrictive

models, but we also construct an asymptotically equivalent test which is applicable to very general data generating

processes.

1 Another possibility is that the potential error correction term is fractionally integrated but this is not explored in
this paper.
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In the process of deriving a test that is asymptotically equivalent to the LBI test, we find that the asymptotic

distribution of the test is a function of independent standard Brownian motions. and is not dependent on any nuisance

parameters. The only variable in the distribution is the number of explanatory variables in the cointegrating

regression. Hence we can construct tables of percentage points of the distribution under different numbers of

regressors for use as critical values.

In section 2 we discuss two models of non-stationary variables, and in section 3 we derive tests of the null

hypothesis of cointegration for these models, which turn out to be identical. To make the tests of section 3 more

generally applicable, an asymptotically equivalent test is constructed in section 4, and consistency is proved in

section 5. Methods for finding critical values for the test are discussed in section 6, and section 7 provides a brief

summary of the procedure for our test. Section 8 presents a simple Monte Carlo comparison of the new test with

the Dickey-Fuller test for cointegration. An application of our test to the Fisher effect in Australia, following Inder

and Silvapulle (1992), is given for illustrative purposes in section 9.

2 The Models

In this section we suggest two models from which tests for cointegration can be derived. Both are basically

extensions of the idea of the cointegrating regression as introduced by Engle and Granger (1987) to allow for the

possibility of non-stationarity in the error term.

2.1 Model 1: Independent Random Walk

Model 1 is a simple extension of the model used by KPSS for testing for unit roots, and is specified as

(2.1)

(2.2)

(2.3)

where y, is the dependent variable, x, is a vector of k non-stationary explanatory variables and µ, is a random walk

in the error term of the cointegrating regression (2.1). If we define 4, = [u„ v,', my to beak + 2 dimensional process,
then we assume that 4, is serially independent and 4,-N(0, E) where

-a; 0 0

= 0 E22 0 .

0 0 (7 ..

With this set of assumptions on 4„ we can regardx, as a set of exogenous variables. Also the random walk component

of the error term is independent of the white noise component. If model 1 is the true data generating process then

y, and x, are not cointegrated, due to the presence of the random walk p1 in equation (2.1). However, if we could
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impose the restriction al = 0 then lif would collapse top, for all t. That is, equation (2.1) would be a cointegrating

regression with a constant and a stationary error term. Hence, testing the null hypothesis cr3= =0 against the alternative

(323> 0 will test the null hypothesis of cointegration against the alternative of no cointegration.

- Repeated back substitution for 1.4_ , in equation (2.3) leads to the following representation for (2.1):

Y1 = go +x,'130+ ± Iv, + Ur
k = I

If we define Zr = ( ± wk)+ u„ then E(z1) =0 and
k = I

(2.4)

E(z,zi) = min(i , j)o- + a; i =j

= min(i , j)cs i # j.

Now equation (2.1) can be expressed as a linear regression in matrix form,

y = Xf3 + z; z—N(0,a;Q1(X)), (2.5)

where A, = 4af, Q1(X) .--- AX+1, and A is the matrix with if' element min(i, j). The null hypothesis of oi = 0 is

equivalent to testing X =0 in equation (2.5) against X > 0. If A.= 0 then z, = u, and is stationary, whereas if A.> 0

then z, is non-stationary. The advantage of formulating the model in this way is that this is the exact hypothesis

testing problem considered by King and Hillier (1985) for constructing LBI tests. This is considered further in

section 3.

One possible objection to the specification of model 1 arises from the independence of u, and w,. This places

a restriction on the data generating process for z, when cr2i > 0, which can be seen by writing down the first difference

of z, as Az, = w, + u, — u,_ 1. This imposes a negative first order autocorrelation on the moving average process

generating Az„ since E(Az,Az,_ ,) = —(31. This restriction is expressed in terms of the spectrum of the process by

Watson (1986). In this sense, model 1 is not a completely general data generating process. In the next section', we

suggest a model which does not impose this restriction, although there is no difference between the models under

the null hypothesis.

2.2 Model 2: Perfectly Correlated Random Walk

In model 1, the random walk and stationary components of the error term in equation (2.1) were driven by

independent processes. Following the idea of Snyder (1985), we let the processes driving the two components be

perfectly correlated. As we shall see, this allows for an unrestricted data generating process. Model 2 is

3



y, = x1130+ p., +141 (2.6)

X,=-"X 1 -FV,

11, = Ili_ , + out.

If -c, = [u„v,l' then we assume that (, is a serially independent process with distribution N(0, E) where

E .[szr; 0 I

0 I.„

(2.7)

(2.8)

Under these assumptions, x, is a set of exogenous explanatory variables. At first glance, imposing perfect correlation ,

between the processes driving the random walk and stationary components of the error of (2.6) may seem restrictive,

but as discussed below, this is not the case. The coefficient 0 is a scale parameter which reflects the relative size

of the effects of a shock on the random walk and stationary components. We do not restrict 0 to be positive, so that

the direction of the effect of a shock may be different for the random walk and stationary components. Clearly, if

0 =0 then the random walk 11, collapses to a constant 1 0 and it follows that y, and x, are cointegrated. Thus we are

interested in the two sided testing problem of 0 = 0 against 0 # 0.

Back substituting in equation (2.8) leads to an equivalent representation for model 2 as given in equation

(2.4) for model 1:

y, =
k=1

We can then define the compound error term z,=0( i uk +u„ and we note that E(z,)= 0 and
k=1

E(zizi)=min(i, j)02crf+20af+o-; i =j

= min(i, j)02of + Oaf i #j.

•

(2.9)

Equation (2.6) can now be expressed in matrix form as follows

y = Xl3 +z; z—N(0, c4Q2(0)), (2.10)

where Q2(0) = A02+ (J +1)0+1 and J is a TxT matrix with if' element equal to 1. Thus we have expressed the

testing problem in the same form as for model 1 in equation (2.5), and the theory of locally best unbiased invariant

(LBUI) tests in King and Hillier (1985) is applicable.

4
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We showed in section 2.1 that the data generating process for Az, was constrained to have a negative first

order autocorrelation. For model 2, we find dz, = (1 + 0)u, — u,_, and E(dzoo.z, _,) = —(1 + 0)05f. Thus the data

generating process for Az, is positively autocorrelated if 0 < —1 and negatively correlated for 0 > —1. Watson (1986)

showed that this model is completely general (in terms of the Wold representation), in contrast to model 1. More

discussion on this point can be found in Snyder (1985) and Watson (1986).

3 Tests for Cointegration

3.1 LBI Test for Model 1

We want to test A, = 0 against ?> 0 in equation (2.5) with Q,(X) = AX+ 1 • Since Q1(0) = /, we can directly

apply the results of King and Hillier (1985) for the form of the LBI test. The form of the LBI test in the general

case is given by

ritoi
S1 <CO3<c1 -PA 0,z z

where A0= —3Q1(x)/ak ix.0 and i are the residuals from the estimation of equation (2.5) by OLS. Evaluating the

partial derivative gives the following LBI test

rAi

z z

which KPSS show is equivalent to

(3.1)

(3.2)

up to a power of T, where K (, = ± 1,. and k = ris•f is the estimator of the error variance. The required
i =1

normalisation by a power of T is explored further in section 4.

3.2 LBUI Test for Model 2

We consider the test for cointegration in model 2 in more detail. The equation of interest is (2.10) with

Q2(0) = A 02+ (J +1)0+1 , and since Q2(0) = /it is again straightforward to follow King and Hillier (1985) to derive

locally best tests. The maximal invariant for this hypothesis testing problem is defined to be
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where M =1 = M , PIP =M and PP' =1„„ m =T -k. The probability density function of the

maximal invariant is given by

1r(m)
.AW I 0) 2 —2 IC 2 I P Q2(0)P' 12 CIV(13 Q2C0T w)

and the log of the likelihood ratio test for 0 = 0 against 0 = 5 is

(3.3)

log r(0) 10.0= logf(w I + 8) 10.0 -logf(w I 0) 10.0> ct (3.4)

for some value of 5. At this stage, we are following the steps to construct a one sided test, and direction of the

alternative depends on the sign of 5. In what follows, we will show that the critical region for (3.4) depends on 52

(and not 5 as in a standard LBI tea), and hence that the critical region is unaffected by the choice of alternative

hypothesis. Expanding logf(w I 0+ 5) in a Taylor series about 5 = 0 gives

logf(w I 0+8) = logf(w I 0)+8
a logf(w 

ao 

 I 0) 82a2logf(w I 0) 
a02 

+ 03).
+ 2 

Substituting this expansion into equation (3.4) gives the following test:

log r(0) 10.0= 5
a logf(w I 0) 82a2logf(w I 0)

•I= Cl. .ao 10-0 + 2 ao2

Evaluating the first derivative gives

a log f(w 10) m  +1)1
10.0= constant+ 

2 ri 
= constant +—

'ae 2 

(3.5)

where the constant term is constant with respect to f. Clearly the first derivative is constant with respect to and

can be transferred to the right hand side of (3.5) and combined with c,. In this way, the dependence of the test on

8 disappears, and we are left only with 52. Evaluation of the second derivative gives

a2logf(w I 0) , m i'Ai
6.0= constant +—.302 2 •

Now dividing (3.5) (without the first term) by 82, and letting 8 approach zero to maximise power local to the null

hypothesis, we obtain the following test:

s2=,--77,-> C2.
Z Z

Thus the test statistic is the same for models 1 and 2.

•

6
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4 Relaxing Some Assumptions

The tests developed in section 3 are finite sample tests, in the sense that the optimal local power properties

hold for finite samples. However, the assumptions of the models from which the tests are derived are quite restrictive.

In.particular, imposing exogeneity on the explanatory variables and serial independence on the error process of

the cointegmting regression is quite unrealistic in practice. In this section, we relax these assumptions and derive

a transformed test statistic that has the same asymptotic distribution as the locally best test statistic. Hence we

greatly improve the generality of the model, but at the expense of relying on asymptotic theory.

4.1 A Generalised Model

Since the tests for models 1 and 2 are identical, we concentrate on model 2. Using C, = [u„ v11' and defining

St = fS„„ S,,T = (i C;), we assume that C, satisfies the multivariate invariance principle as set out in Theorem 2.1
i .1

of Phillips and Durlauf (1987), so that

_1
T 2Strti B (r) as T

where B (r) is a k + 1 dimensional Brownian motion defined on r E [0, 1] with covariance matrix f2. The Brownian

motion can be partitioned conformably with ci as B(r)= [B1(r),B2(r)T , and similarly the covariance matrix is

n= lim riE(STST') =
[
(13 -i (1311
0)21 K222

We can regard f2 as the long run covariance matrix of, in the sense that it captures both contemporaneous variances

and covariances as well as covariances at all lags. It can be expressed as a sum of the contemporaneous and lagged

components by writing S2 = + A + A' where

and

02
=E(') = [ I

a21 Ez2

A = =[11x2: A22112
]•= I

The conditions imposed by Phillips and Durlauf (1987) on allow for some non-stationarity, but in defining

the preceding covariance matrices we have added the assumption of stationarity. This is necessary so that we can

interpret u, as a stationary error term in the cointegmting regression. These conditions on C, generalise model 2

considerably, since x is now endogenous, and the error terms ur and v, may be any of a wide range of stationary

processes, including all stationary ARMA processes. The LBUI test from section 2.2 is no longer exactly LBUI
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for this generalised model, but we will show that the only difference to its asymptotic distribution is the introduction
of correlation between 131(r) and B2(r), which can be removed with a non-parametric correction due to Phillips and
Hansen (1990). This is described in section 4.3.

4.2 Asymptotic Distribution of the Test

In this section, we derive the asymptotic distribution of the test given by (3.6) when applied to model 2 (that

is, not including the generalisations described above). Since u, and v, are mutually independent iid processes in

model 2, c, is a special case of the general class of processes described above. Thus the convergence of T-If2SET,1

to a Brownian motion is assured. The lagged covariance matrix A is zero, and the covariance matrices E and SI are

block diagonal and equal, so the two components of the Brownian motion B(r) are uncorrelated. To reflect this in

the notation, we write the partition of 8(r) as 8(r) = [B 12(r), B2(r)], so .81.2(r) is independent of B2(r).

The asymptotic distribution is found by considering the form of the test statistic given by equation (3.2).

Under the null hypothesis, we know that z,=u, and so

where

and

Then

X 'X =

= u; — [1 (4.1)

T
1=1

I xt E x,x,'
1=1 1=1

X 'u =

= E

G H

T

Ut
t=1

=
[Bc].

xtu,
t=1

(X1X)-1 
=[ 11-1 —D-1FH-1

--11-1GD-1

where D =E—F11-1G. This leads to the following expression for K,=(± ii):
i=1

Kt= Sw — 13-1(B — FI1-1C)t --(± x;')(11-1C —11-1GD-1(B — F WIC))
i=1

by summing (4.1). We can now consider the behaviour of each of these terms as T

8
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The notation will be simplified in the following results by assuming the integrals are taken from 0 to 1 and

with respect to r unless stated otherwise, and by omitting the argument r from the Brownian motions. Lemma 2.1

of Park and Phillips (1988) provides a number of useful intermediate results.

3 3

T B2' T2G IB2 2-2H = B2B2'

T-22.B = B1.2(1) 7-1C = 1B2c1B1.2
We will also make use olthe following two results:

rit r

_2 t jr

T I xi' B2(s)ids.
= 1 0

Now we can obtain the limiting behaviour of each of the terms in equation (4.2).

Bi.2(r)

7-1131 = 1— B41 B,B,')1 B,
T i(B —F1-1-1C) B1.2(1)' — B411321341(1 B,dB1.2)

(1132132')-1 IB2
TH-1C (IB2B2')-1 (1B2c1131.2)

These limits can be combined to obtain the limiting distribution of Kr However, these limits contain implicit

nuisance parameters in the form of the variances of the Brownian motions B1.2 and B2 given by co?.2 and f)..

respectively. To show this, we define W (r) = f2 -1B (r) to be standard Brownian motion, since its covariance matrix

is the identity. Since S2 is block diagonal for this case, we can also define the elements of the partitioned standard

Brownian motion to be W1.2(r) = wi1/31.2(r) and W2(r) =

For convenience, we define the following functions of standard Brownian motions:

•

P =1— W21(.1 W2W2') 1 W2

-1

Q = W12(1)'— W2f W2W2') I W2d

R =(.1 W214/2')-1 W2

(f W2W211 W2dWi.2

9



Combining the limits from the previous paragraph, and replacing Brownian motions by standard Brownian motions

gives the following limit for Kr:

where

T1K1 coi V(r),

V(r)=Wi.2(r)— P-1Qr 
0
W2(s)'ds)(S —RP-1Q)].

Now we can evaluate the limit of the numerator of (3.2) as follows:

r2 Kt2 =, re 2 d

r`

r

= 1 0

211 V(r)2dr.0

T
The bottom line of (3.2) is the estimate of the error variance '61 = ri(I i? , which will be a consistent

(4.3)

(4.4)

t = 1

estimator of 031 since; = u, under the null hypothesis. Also co? = cq since u, is iid, so we can say

co; .

Now the asymptotic distribution of the test statistic can be found by the ratio of (4.4) and (4.5).

7-2 E Ki2
1.1

s2= .62 V(r)2dr.

4.3 Correction for Endogenous Regressors in the Generalised Model

(4.5)

(4.6)

When applied to the generalised model described in section 4.1, the LBUI test no longer has the same finite

sample optimal power properties. In this section, we consider the asymptotic behaviour of the test under the more

general assumptions that u, and v, are correlated stationary processes.

Following the derivation in section 4.2, equation (4.2) is unchanged as the expression for K. Since the

elements of the Brownian motion B(r)=[B,(r),B2(r)T are no longer independent, we have new limits for B and

C.

TjiB B1(1) r'C B2dB1+521,
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where 6, = + A is a matrix partitioned conformably with Si, Z, A. Thus we have two differences in the limits

introduced by the generalised model - correlation between the Brownian motions and a related nuisance parameter

621. To remove these effects, we make use of the method of fully modified OLS suggested by Phillips and Hansen

(1990). Notice that both of the problems are due to the endogeneity of x„ not to the serial correlation in ut and v„

The effect of the serial correlation will be discussed later in the section.

To deal with the endogenous regressors, we consider the modified error process u = u, — If

= [u,+, vii and .5,+ =(± C) then the long run covariance matrix of C is
=

co2sr urnr1E(S +D ;S =[ 1.2
T 0T

o
n22.1'

where ai;-.2= co; — co12117w2,. Now 7.-Strri =B(r) where B(r)= [81.2(r), B2(r)T We use B1.2(r) since the covariance

matrix of the Brownian motion B(r) is block diagonal. Also, the following limits containing zit+ hold.

I T

ut+ BI.2(1)
1=1

xtu,+ .1/32dB,.2+ 51,1=1

where ö1 = 521 61"i-122(1)21 •

Even with endogenous regressors, OLS estimation of the cointegrating regression (under the null hypothesis)

is consistent. Taking the estimated residuals i, from this regression, we can form C, = Axil' and obtain consistent

estimates of 12 and A by
T

n.7-1 E w(k , I (C, -kgt'=1 k=1 r=k+1

1 T

a= ri I I Ut-k
k=01=k+1

where w(k , I) are a set of weights to ensure the postive-definiteness of the estimated matrix (see Newey and West

(1987) for example), and the truncation parameter I increases at a slower rate than T (say 0 (Tv2)). Then if we

define the transformed variable y,+ = y, — .„we can write the cointegrating regression as

= µ,+x,130+ (u,— #6,26:212v,), (4.7)

and the error term in this regression is asymptotically equivalent to lir+. The Phillips-Hansen fully modified OLS

estimator is then defined to be

11



(X'y' — ekT8;,), (4.8)

where ek = [0, /„]'and = 821 -3'47221 Ca2, . The extra term involving 841 in included to remove the nuisance parameter

5;, from the asymptotic distribution of 0+. This correction will also remove the nuisance parameter from the

asymptotic distribution of our test statistic.

We can now derive the asymptotic distribution of the test in equation (3.2) using the residuals obtained from

the fully modified OLS regression. The estimated residuals will be given by

where

12+ = uf —X(VX)-1 (ru+ — (4.9)

ru+ —e,T8+21=

The limits of these terms are easily found and they are not dependent of the nuisance parameter ö and involve

only independent Brownian motions.

T-4B+= B1.2(1)
7-1C+ = T xiu:- 8+2,= IB4B1.2

Notice the these terms have the same limiting distributions as B and C for model 2 (see section 4.2). Now we can

define IC7 =(E 11,+), and following the steps leading to equation (4.2) we obtain
i =1

KT F-S,:—D-1(13+ —(± xi')(1-1-1C+ —H-1GD-1(B+ —FH-1C+)). (4.10)
i=1

Those terms without a "+" superscript are left unchanged by fully modified OLS, since they involve only functions

of xt. We can find the limits of each term in (4.10), and those of interest are

T 2S = B1.2(r)

T i(B+ —Fit-LC+) B1.2(r)— B2f1 B2B2') B2c1131.2)

TH-1C+= B2B21)1 (1 B2c1131.2).

Hence the limit of each term of Ki+ is the same as the limit of each term of K, when constructed from the restricted

model 2. Thus the limit of the top line of (3.2) using IC,* will be the same as given in equation (4.4) for model 2.

12



Tr2 E KT- (021.211 v(r)2dr •
0

(4.11)

The one difference between (4.11) and (4.4) is that in equation (4.11) cof.2 is not equal to 61 since u; is not iid in

the general case. If, however, we define the transformed test statistic

T

T-2 I Kr
(.1 

S2=
w1.2

where (42 is a consistent estimator of 04.2, then the asymptotic distribution of sI is

s; V(r)2dr.
0

(4.12)

(4.13)

That is, s; for the general model has the same asymptotic distribution as s2 for model 2. Hence we have a test which

is asymptotically equivalent to the LBUI test, and is applicable to a wide range of data generating processes.

5 Consistency

In this section, we consider the asymptotic behaviour of the test under the alternative hypothesis. We refer

to equation (2.9) as the model under the alternative hypothesis, where 0 # 0. Defining uf =OS+u, we obtain the

following regression model

y=XP+u°, (5.1)

from which the test statistic s2 can be constructed. The OLS residuals from equation (5.1) are

aa = ua —X(X'X)irua, (5.2)

where

If we define Kf =

X'ua =
0
1.1

0 I );S„, + I x,u,
1=1 1=1

=1K +B1

[L +c

to be the partial sum process under the alternative hypothesis, then

13
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= S,„ —1)-1(B —FH-LC)t —(x1'
i=1

H-1C —H-1GD-1(B — F WIC))

+0 I S.,—D-'(K —F11-1L)t —(± x;')(11-1L-11-1GD-1(K —FH-11,))]
.1 •=1

= K, + OM,.

From section 4, we know that K, is Q(T). Thus we are only concerned with finding the order of probability of

M,. The orders of the terms of M, can be found by noting that K,F,G and ± x; are O(T), L and H are
i =1

and D and t are Op(T). Then ± — F WIL)t, and ( ex,')(11-1L-11-1GD-1(K —FH-1L)) are Op(T312). Thus
1=1 i =1 T 2

M„ and hence K, are O(T). The top line of s2 under the null hypothesis is T-2 Z K7 which is Op(T2). From
=

Phillips (1987) or ICPSS, we know that the long run variance estimator is Op(1T), and so under the alternative

hypothesis s2 is 0 p(TI1). Since / at a lesser rate than T (typically 1 = 0(T"2)), we deduce that s2 --> 00

under the alternative hypothesis, and hence the test is consistent.

6 Critical Values

As can be seen from equation (4.13), the asymptotic distribution of the test stntistic sI is a function of V(r)

only, which in turn is dependent only on two independent standard Brownian motions. In particular, we have been

able to produce a test which does not depend on nuisance parameters such as (01.2, .Q.„ or 82, . The only way in which

the asymptotic distribution depends on the model specification is that the number of explanatory variables in the

cointegmting regression determines the dimensions of W2(r). Hence we can obtain sets of asymptotic critical values

for various numbers of regressors. These are found by simulation of (4.13) using a GAUSS program with a sample

size of 4000 and 50000 replications for 1 to 5 explanatory variables. The results of this simulation are reported in

Table 1.

Table 1 Asymptotic Critical Values

Number of Regressors
(Excluding Constant) 10% 5% 1%

1 0.2335 0.3202 0.5497
2 0.1617 0.2177 0.3727
3 0.1203 0.1590 0.2756
4 0.0929 0.1204 0.1983
5 0.0764 0.0972 0.1560

0
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7 Summary

In this section we give a summary of the testing procedure that has been derived in the paper. First apply

OLS to the regression

= +x,130+ z„ (7.1)

and obtain the estimated residuals it. Form C, = [1,, &']' and calculate the estimated covariance matrices

^ 2 ^
CO CO - 

1 

1

„ 2]=T—' z C,C,'+ ri w(k,I)
(021 0.22 1.1 k=1 t=k+1

where w(k,l) = 1 —k/(l + 1). Then calculate

and

8 1 T
"12 =r1 I I CiCt-k%

k=0t=k+1

)17 = —

= 821 

A A

032.

and re-estimate the cointegrating regression using the fully modified OLS estimator

= (X'XI1 (Vy+ —ekT8+21),

where ek = [0,1,]'. Obtain the estimated residuals at+ from this regression and construct the test statistic

7-2 I Kt+2

= 1
S2 —

6-1 Nwhere K= I a+, and co1.2 = "112'"
;;

ie
= 1

(7.2)

(7.3)

(7.4)

(7.5)

Critical values for this test statistic are provided in Table 1 above. This procedure provides a test for the

null hypothesis of cointegration which is consistent and is asymptotically equivalent to the locally best invariant

test.
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8 Monte Carlo Comparison

In this section we examine briefly the power properties of our test by comparing its ability to distinguish

between null and alternative hypothesis with that of the Dickey-Fuller test. A power comparison between these

two tests is difficult, as they are derived from different assumed data generating processes (DGP's), and have

opposite null and alternative hypotheses. To resolve these difficulties, the Monte Carlo study is undertaken as

follows.

We first specify.a DGP as in equations-(2.6).to.(2.8), as designed for the sI,test,.with T = 100 and k = 1. A

10% critical value for the sl" test is taken from Table 1 (0.2335). For the Dickey-Fuller test, we generate 10000

sample under the hypothesis of cointegration (0 = 0), and compute Dickey-Fuller t statistics for cointegration. A

"critical value" of -8.89 is found where 10% of statistics greater than this value (leading to a conclusion of no

cointegration). Both tests thus have a 10% chance of concluding that there is no cointegration when 0 = 0. "Powers"

are then calculated for a range of values of 0 under the alternative, with 10000 replications. These results are given

in the first half of Table 2.

To ensure a fair opportunity is given to each test, further results were obtained with a DGP for which the

Dickey-Fuller test is designed, namely

= x130

117 = P11,- ur

(8.1)

(8.2)

For the Dickey-Fuller test, a 10% critical value for testing the null of no cointegration is found in Phillips and

Ouliaris (1990) (-3.0657), and for the s test we use 10000 replications under the hypothesis of no cointegration

(p = 1) to find a "critical value" of 0.7543 where 10% of the sI statistics are less than this value (leading to a

conclusion of cointegration). Both test thus have a 10% chance of concluding there is cointegration when p = 1.

"Powers" are then calculated for values of p under the alternative, with 10000 replications. These results are given

in the second half of Table 2.

It is difficult to draw definitive conclusions from such a limited Monte Carlo study, but Table 2 does suggest

a couple of points worthy of note. Firstly, it is not surprising that each test performs at its best when the DGP

follows that for which the test is designed. The sif test shows clear domination over Dickey-Fuller in the error

components DGP, particularly for small values of 0. Likewise, the autoregressive DO? favours the Dickey-Fuller

test, especially as p moves further from one. The s test actually dominates for p close to one, but this is reversed

with smaller p. .

Given that we do not know which DGP is more realistic, it is inappropriate to "choose" between the two

tests on the basis of power. What we can say, though, is that deriving a test which reverses the null and alternative

hypotheses has not obviously hurt the capacity to distinguish between cointegration and no cointegration.
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Table 2 Powers of Tests'

DGP: Equations (2.6), (2.7), (2.8)

Null Hypothesis: Cointegration

0=0 0=0.05 0=0.1 0=0.15 0=0.2 0=0.25

s; 0.103 0.281 0.519 0.673 0.764 0.839

Dickey-Fuller 0.100 0.164 0.344 0.567 0.718 0.837

DGP: Equations (7.1), (7.2)

Null Hypothesis: No Cointegration

p=1 p=0.95 p=0.9 p=0.85 p=0.8 p=0.75

s; 0.100 0.235 0.386 0.528 0.643 0.720

Dickey-Fuller 0.105 0.181 0.375 0.642 0.866 0.966

' In both DGP's the innovations u, are iid N(0, 1), so the Dickey-Fuller procedure is not

augmented by any lags of the differenced residuals, and the s; test has a lag truncation parameter

(1) of zero.

9 Application

Inder and Silvapulle (1992) used cointegration methods to test if the Fisher effect applies in Australia. One

question related to this is whether nominal interest rates and inflation are cointegrated. Consider the equation

= (8.1)

where i, is the nominal interest rate and 7; is the inflation rate. Inder and Silvapulle (1992) treat (8.1) as a long run

relationship which implies that the interest rate and the inflation rate are cointegrated. They use the augmented

Dickey-Fuller test to test for cointegration between the series as represented by the change in the log of CPI for

inflation and the bank accepted bill rate for interest rates. The estimated parameters for equation (8.1) were

00= 7.2275 and 0, = 0.4387, and the Dickey-Fuller t smtistic was -2.5921. Compared with a 10% critical value of

-2.84, it can be seen that the null hypothesis of no cointegration could not be rejected.

However, it is possible that the failure to reject the null hypothesis was due only to lack of power of the

Dickey-Fuller test, rather than true non-cointegration. To check this, we computed s to test the null hypothesis of

cointegration. We chose the lag length / by following Inder (1991), who suggested choosing the largest significant

lag in the autocorrelation function of the OLS residuals. For this application, this gave a choice of! = 4. We obtained

s; = 1.6674, which when compared to the 1% critical value of 0.5497 allows rejection of the null hypothesis of

cointegration. This provides further evidence for the results of Inder and Silvapulle (1992) rejecting the cointegration

hypothesis.
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