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ABSTRACT

A parametric specification of an indirect utility function in terms
of expenditure and two unit cost functions .is. proposed. Spécification
of these unit cost functions in terms of regular functions leads to the
notion of an "effectively globally regular" system of demand equations;
that is, a system of demand equatidns that is regular over a cone in
expenditure-price space, and for which the regular region includes all
points in any given sample, and all values of nominal expenditure and
prices generating higher values of real expenditure than the sample
minimum. This general model nests a number of popular demand systems,

such as the Linear Expenditure System, as special cases. An empirical

application demonstrates the value of the generalization.

J.E.L. Classification: D11, Di12.




INTRODUCTION

Microeconomic theory provides a firm foundation for the estimation
of systems of demand equations. In its most transparent form, this
theory states that such demand equations should be consistent with the
maximization of a wutility function subject to a budget constraint,
generating systems of equations satisfying homogeneity, monotonicity,

symmetry and- curvature restrictions.

Three approaches to the translation of these restrictions into
empirical application may be identified. In the primal approach, the
demand equations are derived literally by specifying a direct utility
function and solving the constrained maximization problem. While this
approach leads to demand systems which satisfy the above regularity
conditions by construction, the need to derive analytical solutions to
the first order conditions restricts 1its application to utility
functions of the origin-translated C.E.S. form, such as the Klein-Rubin.
A second approach is the Rotterdam methodology, which attempts to impose
the regularity restrictions on log-differential approximations to the

demand equations.

This paper is in the spirit of the third approach, which exploits
the theory of duality among direct utility functions, indirect utility
functions, and cost functions, and the regularity conditions on these
functions which make them equivalent representations of the underlying
preferences. Duality theory allows systems of demand equations to be
derived from these dual representations via simple differentiation,
according to Roy’s Identity or Shephard’s Lemma. This approach was

popularized by Diewert (1974, 1982), and led to the use of flexible

functional forms such as the Generalized Leontief of Diewert (1971) and




the Translog of Christensen, Jorgenson and Lau (1978). While such
flexible functional forms lead to demand equations which can attain
arbitrary elasticities at a point 1in price-expenditure space, such
systems generally satisfy globally only homogeneity with respect to
prices and expenditure, and often violate monotonicity and, in
particular, curvature restrictions, either within the sample, or at
points close to the sample. ..Lau (1986) discusses the charaéterisation
of regularity of such systems, and finds that the domain of regularity

is rather limited.

Much recent work has been devoted to deriving demand systems that
satisfy regularity over a wider domain. Many of these methods are based

on series expansions - see Barnett (1983, 1985), Barnett, Lee and Wolfe

(1985, 1987), Barnett and Yue (1988a, b), Gallant (1981, 1984) and

Gallant and Golub (1984).

This paper generalizes a parametric representation of the indirect
utility function in terms of expenditure and price indexes that was
introduced in Cooper and McLaren (1988, 1992) in order to generate
demand systems in the spirit of the Almost Ideal Demand System of Deaton
and Muelbauer (1980), but with improved regularity properties. This is
achieved by the use of regular functional forms for unit cost functions
which are components of the indirect utility function. The generaliza-
tion 1includes as nested cases a number of known separable demand
systems, such as the linear expenditure system, and hence provides a

consistent framework for the testing of the restrictions of additivity.

The parametric representation of the indirect utility function in
terms of unit cost functions is introduced in Section 2, where condi-

tions forAregularity are specified. Section 3 considers possible spec-




ifications for the unit cost functions, and Section 4 provides an empir-
ical application using Australian data. The final result is a demand
system satisfying what is denoted "effectively global regularity"; that
is, the domain of regularity includes the entire sample and all other
possible values of nominal expenditure and prices generating real

expenditure greater than the minimum value observed in the sample.

THE REPRESENTATION OF PREFERENCES

n s 4s n
Let x € Q  represent an n-vector of commodities, p € Q+ represent

the corresponding vector of prices, and let c¢>0 represent total

n

expenditure (cost), where Q" [Q+

] is the non-negative (positive)
orthant. We will assume that preferences can be represented by the
(direct) wutility function u = U(x) where U satisfies regularity

conditions RU:

RU1 : U is continuous,
RU2 : U is non-decreasing,

RU3 : U is strictly quasi-concave.

Dual to U(x) is the indirect or "Marshallian" utility function defined

by

UM(c,p)

max {U(x) i p’x=c, xX¢€ Qn}
X

U[XM(c.p)]

where the adjective "Marshallian" (and hence superscript M) refers to
the arguments of the corresponding functions (the solutions XM(c,p) are
usually referred to as Marshallian demand equations). As a notational

convention, upper case letters will represent functional forms for the




corresponding values represented by lower case letters - for example,
u = U(x); xM = XM(c,p); etc. The indirect utility function UM(c,p)
corresponding to a direct utility function U(x) satisfying RU1 - RU3
will satisfy the regularity conditions RIU:

1

’

RIU1 : UM is continuous on Q?+
RIU2 : U7 i homogeneous of degree zero (HDO) in (c,p),
RIU3 : UM is non-increasing in p,
RIU4 . UM is non-decreasing in c,

RIUS : UM is quasi-convex in p.

By Roy’s Identity,

(2.2) He,p) = /e
aUM/ac

Also dual to U(x) is the (Hicksian) expenditure or cost function defined

by

C(u,p)

min {p’x : Ulx) zu, x¢€ Qn}
X .

p’XH(u,p)

Here the adjective "Hicksian" (and hence superscript H) refers to the
arguments (u,p) of the corresponding functions. (The solutions XH(u,p)
are usually referred to as Hicksian (or utility-compensated) demand
equations. Since we have only one function C( ), the H is deleted as

superfluous. )

The cost function C(u,p) corresponding to a direct utility function
U(x) satisfying regularity conditions RU will satisfy the regularity

conditions RC:




RC1 : C is continuous on R x 92,

RC2 : C(u,p) is homogeneous of degree one in p,
RC3 : C is non-decreasing in p,

RC4 : C is non-decreasing in u,

RCS : C is concave in p.

UM(c,p) and C(u,p) are related by
UM(C(u.p),p) =u ; C(UM(c.p),p) =c ;

and by Shephard’s Lemma:

2.4)  x*(u,p) = ac/ap .

The primal approach to demand system specification begins by
specifying a functional form for U(x) directly, and deriving XM(c,p).
and hence UM(c,p), by explicit solution of (2.1), or by deriving
XH(u,p), and hence C(u,p), by explicit solution of (2.3). If the
functional form U(x)'satisfies the regularity conditions RU over Qn,
then UM(c,p) will satisfy regularity conditions RIU over QE+1, C(u,p)
will satisfy regularity conditions RC over R x Q?, and the functions
XM(c,p), UM(c,p), XH(u,p) and C(u,p) will be said to be globally

regular.

The best-known example of this approach 1is the Cobb-Douglas

specification of U, which we write for convenience in logarithmic form:

(2.5a) u = Y Bi in X; Bi >0

where the Bi may be normalized to sum to unity, } Bi = 1.




The derived globally regular equations are

(2.5)  Xte,p) = B c/p,

2.5¢)  WMie,p) LB, tn B, +in (c/P)

B.
(2.5d) X?(u.p) Bi C(u,p)

1

(2.5e) in C(u,p) = -7 Bi in B.1 +u + &n P,

where the price index P(p) is defined by én P = } Bi én P - A general-
ization that preserves global regularity (for a suitable choice of para-

meters) is the Constant Elasticity of Substitution (CES) form.

By duality, it 1is convenient to modify the indirect utility

function (2.5c) by generalizing the price index P from a Cobb-Douglas to

a CES form:
(2.6a)  P(p) = [z B, p‘i’]l/"
and ignoring the redundant constants.

Provided < 1, the éofresponding globally regular functions are:

(2.6b) UM in (c/P)

-1
Xbi1 = [Bi p? ] c/ Z[BJ. p‘j-]
inC = u+é&npP°r

- p-1 _(1-p) u
Bi p.1 P e .

(2.6e) *i’

Two well-known generalizations that do not preserve global regularity

are considered next.




Firstly, consider the Translog function. The Translog direct util-

ity function generaiizes (2.5a) by adding quadratic terms in ¢n X

(2.7a) = ¥ Bi ¢n X, * % Z Z 7ij ¢n X, ¢n x‘j
1]

The implied U( ) is not globally regular unless 7ij =0 Vi,j, and the
functions X?, UM, X? and C cannot be derived in closed form (and are not
globally regular). By analogy, both UM and C could also be represented
by Translog functional forms. The advantage of the dual approach is
that the implied demand equations may be derived by Roy’s Identity or
Shephard’s Lemma, respectively, but again the functions UM (or C) cannot
satisfy the regularity conditions RIU (or RC) globally, except in the
trivial cases. Indeed, the implied regions of regularity of these func-

tions are quite limited.

A second generalization is accomplished by origin translation.

Hence consider
(2.8a) Ux) = ¢ B, n (x,-7;) ¥ =0

which, for Bi > 0 and } B.l = 1, is regular over the cone x ¢ Qn + {7},

i.e. xs > AT i=1,...,n. Solution for X? then gives the Linear

Expenditure System

B.
(2.8b)  Xi(c,p) ¥. + -~ (c-xP1)
i i p;

with corresponding functions

(2.80)  U'e,p) = LB, t B, +in (c-kP1) - tn P2

B.
(2.8d) X?(u,p) ¥yt Bi (C(u,p) - kP1)
i




(2.8e) Clu,p) = P2 exp(u - ¥} Bi ¢n Bi) + kP1

where the price indexes Pl(p) and P2(p) are defined by Pl(p) =
(x ¥,P;) / Kk, k=7 ¥,» and én P2 = § By in P> ) B; = 1. The functions
(2.8a,b,c) are not globally regular unless ¥, = 0 for all i =1i,...,n,
whereas vy > 0 are necessary for the usual interpretation as "sub-
sistence" parameters, and empirical models often lead to estimates of ¥y
> 0. Models with 7 strictly positive are, however, regular over an

unbounded region, the cone xi > 71 for U(x), and the region c > kP1 for

UM and hence XM.

Since little progress has been made in the search for globally
regular demand equations, the regularity properties §f the LES are
appealing; regularity is assured over regions of increasing c for given
p. Since this 1is analogous to 1increasing real income, which
characterises much time series data, the potential exists to define
demand systems whose regular regions automatically include post-sample
data. Such demand systems are as regular from an empirical viewpoint as

globally regular systems.

We note that the 1indirect wutility function of the Linear
Expenditure System may be represented in terms of two price indexes P1
and P2 and that the regularity properties of the Linear Expenditure
System depend upon the properties of these price ;ndexes. Define P(p)
to be a price index if it satisfies the properties of a unit cost

function, i.e. the regularity properties RP:

RP1 : P is continuous in p,
RP2 : P(p) > O for p ¢ Q,

RP3 :" P is homogeneous of degree 1 (HD1),




RP4 : P is non-decreasing,
RPS : P is concave,

RP6 : P(1) = 1.

In the next section we develop this approach by specifying the
functional form of an indirect wutility function whose regularity

properties derive from the regularity properties of two general price

indexes which satisfy properties RP1 to RP6.

THE GENERAL EXPONENTIAL FORM

If the indirect wutility function is to be defined in terms of two
price indexes, it is natural that these price indexes should act to

deflate nominal expenditure c, i.e. to enter in the form c/Pk, k =1,2.

Hence consider the indirect utility function in the general form:

< . 1
kP1

1l

(3.1) UM(c,p) =

where Pk(p), k = 1,2, iafe two price indexes satisfying regularity
properties RP, and parameters p,7n,k satisfy 0 = n = 1, pu = -1,
k > 0. In an appendix it is shown that provided these conditions are

satisfied, UM satisfies conditions RIU over the region

{(c,p) :¢c > nPl(p)} and so UM, and hence the set of Marshallian demand

equations, are regular over this region. Since, for any given units of
measurement of expenditure and prices, k may be chosen such that the
regular region includes any desired base value of real expenditure and
hence all larger values, we define such demand systems to be

"effectively globally regular".




Demand equations are most easily represented in share form. From
the logarithmic fofm of Roy’s Identity:

p.Xg 8UM/8 ¢n p,

(3.2) Nb;(c,p) = - ——— = EP1,(1-2) + EP2,2

6UM/3 én c

where EPki(p) =

= EgT' Thus 2 is a mapping of real expenditure (R) into the [0,1]

interval. If expressed in terms of ¢, Pl(p) and P2(p), it can be seen
that (3.2) is an example of Lewbel’s fractional demand systems, (Case

(vi), EXP demands), in Lewbel (1987).

If o0 = 0, then W? varies between EPl.l for low real income (c = kP1
and Z2 = 0) and EP21 for high real income (2 = 1). However, if u > 0,
then as ¢ » o, Z2 > ﬁgﬁ and W? converges to a fixed weighted average of
EP1i and EPZi. For this general model the Slutsky matrix has typical

term

Sij = (c / pipj] [ llJ(1-2) * Ty J2

where T,.
1ij

T,, . + WT w? wf 3. .

2ij lJ

EPI(iJ 8 EPki / 3 in pj ,

and 8., is the Kronecker delta.

ij




The responsiveness of budget shares to real expenditure is given by

sW, Joc = [EPZ.l - w’f] [(-u)z + n(1-2)]

Also of 1interest 1is the behaviour of marginal budget shares

MBSi =4 (pi X?] / 8 c¢. For the general model

MBS, = [EPZ. - EPI.] [c 82 /8c+ Z] + EP1, .
i i i i

Marginal budget shares will generally depend upon both expenditure
and prices except in certain special cases. Independence with respect
to expenditure would apply if either of the following conditions were
satisfied: (i) P1 = P2 or (ii) cd2 / dc + Z does not depend upon Z.
The condition P1 = P2 is degenerate and implies that budget shares W?
are invariant with respect té expenditure. Since cdZ2 / dc + 2 = +
(1-n) 2 - (p+m) (1-2), the only way that condition (ii) can be met for
arbitrary 2 is if p = -1 and n =1 (see Case 1 below). Even under
either of these two conditions marginal budget shares will be price-
dependent unless the price indexes are of the Cobb-Douglas form. Gener-
ally, the ability of model (3.1) to represent flexible MBS character-

istics with respect to both expenditure and prices is an important

feature of this model.

Expenditure elasticities Ei for the general model exhibit similarly

flexible characteristics. Since Ei = MBSi / W?, we observe

IEZPli + (E:PZi - EPli) [n + (1-0)Z2 - (p+n)2(1-2)]

E. =
1

EP1, + (EP2, - EP1,)2
1 1 1

so that, for the poor (2 » 0), E, » 1+ (EPZ.1 / EP1, - 1)n, while for
the rich (2 » 1), Ei - 1. For Z = 0, luxuries (E1 > 1) may therefore be

identified by EPZi > EPI1 and necessities by EPZ1 < EPli. However, for

11




Z in the [0,1] range, it is possible for Ei to move through unity and
hence for budget shares to exhibit regions of non-monotonic response to
expenditure. In all cases expenditure elasticities asymptote to unity.

Two nested special cases are of particular interest:

In this case, UM is of the form

P2
which is the Gorman Polar Form, a generalization of the LES (2.8c).

Case 2 : p = 0. In this case UM is of the MPIGLOG form, a
generalization of the PIGLOG preferences of Muellbauer which allows
enhanced regularity over PIGLOG, introduced by Cooper and McLaren (1988,

1992).

The advantage of a parametric form such as (3.1) is that the
specification of an indirect utility function satisfying conditions RIU
has been reduced to the problem of specifying two unit cost functions
satisfying conditions RP. At this stage, many specifications of P1 and
P2 would be possible, but since our interest is in the effective global

regularity of UM, we will concentrate on examples where P1 and P2

satisfy conditions RP over Q?. An obvious choice would be to employ CES

unit. cost functions.




The resulting general specification nests a number of known
functional forms. For example, p = -1, » = 1, Pl linear and P2
Cobb-Douglas gives the Linear Expenditure System, while p = 0 generates
a class of functional forms which is AIDS-like but with enhanced
regularity properties (see Cooper and McLaren (1992)). Hence this opens
up the possibility of testing a number of existing models against more

general but regular alternatives.

EMPIRICAL SPECIFICATION

The models of the previous section relate to individuals or
households. In Cooper and McLaren (1992) the issue of aggregation
across individuals in the context of MPIGLOG preferences is addressed in

detail, and it is shown that an appropriate estimating form of (3.2) is

(4.1) . = EP1,(1-2) + EP2.Z + 8/d + u
i i i i

1

where d is a vector of explanatory variables acting as a proxy for the
change in distribution of real expenditure over the sample period, and
the ei are parameters satisfying 261 = 0. Given CES specifications

for the price indexes

Pk(p) = [Z Bk, p‘i"‘]“”k.

the elasticity terms in (4.1) take the form

- pk pk

With this specification, sufficient conditions for effective global

regularity of the systematic part of (4.1) over the region c > kP1 are




For purposes of estimation, an error term ui has been appended

additively in (4.1). For time series data, the specific error terms ug

t

are assumed to be distributed multivariate normal, with

E(uit) =

In addition, the budget constraint implies that Ziu.

0, and hence
it

Q 1] is singular. For purposes of estimation, one equation is
deleted, and as usual the parameter estimates are invariant to the

deleted equation. (See McLaren (1990)).

The model (4.1) and a number of nested special cases were estimated
using annual Australian data covering the period 1954/55 to 1990/91.
The data used are based on Adams, Chung and Powell (1988) who construct-
ed a data base ending in 1985/86, and are updated to 1990/91 using a
similar methodology. For this period, the available categories are:
Food (F), Tobacco and Alcohol (T), Clothing (C), Rent (R), Durables (D)
and Other (0). The rent component poses a problem with Australian data,
because of its high imputed component, and would be unlikely to be
explained by a static allocation model. Similarly, it is unlikely that
durables wauld be well suited to such a model, and hence these two cat-

egories are excluded in the empirical work. The variables used to proxy




the effect of changing distribution of real expenditure over the sample

period were: the rate of inflation (I), the rate of unemployment (U),

and the participation rate (P). Estimation was carried out using the
LSQ option of TSP, which is well-suited to the estimation of systems

with complex cross-equation constraints.

RESULTS

Estimation results for the general specification (4.1) are reported

in Table 1.




Table 1: General Model Results

Functional Form Parameters

[T n Pl p2 K

-0.268 0.639 1.056 =7.871 0.617
(-0.7)* (2.5) (10.0) (-2.9) (4.6)

Tobacco Clothing

Price Index Share Parameters

P1: Bli

Aggregation Parameters

Inflation:

Unemployment:

Participation:

Summary Statistics

System Log-likelihood

* Asymptotic t values in parentheses.
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The most important point to highlight from the results in Table 1
is that the parameter estimates satisfy the sufficient conditions for
effective global regularity without the need to impose constraints, with
the minor exception of pl which at 1.056 is only marginally above its
limiting value of 1. This very minor violation of sufficient conditions
for regularity is present in all the estimated submodels. It 1is
unlikely to lead to actual regularity violation in practice; However,
after selecting a preferred model we re-estimate imposing the regularity

restriction.

The summary statistics indicate that the general model fits the
data extremely well, even though estimation is in share form. Although
the Durbin-Watson statistics may  be suggestive of residual
autocorrelation, it seems probable that this is a consequence of
splicing techniques in the data series. To obtain an improvement here
it would be preferable to revise the data rather than make technical

model corrections.

At base period prices (pj = 1 for all j) the price index share

parameters Bk.l (k = 1,2) become the price elasticities EPki. Thus the
Bli (BZi) may be interpreted as the low (high) income budget shares

evaluated at base period prices. The budget share parameter estimates
given in Table 1 therefore imply that "Other" is a luxury while "Food",
"Tobacco and Alcohol" and "Clothing" are all necessities. While the
asymptotic budget shares of the three necessities are insignificantly
different from zero on the basis of t-tests, a likelihood ratio test

rejects the joint hypothesis.

A final point of interest to note from the parameter estimates is

that the 'freely estimated scale parameter k, at approximately 0.6,

17




provides an extension of the assured regular region to values of real

expenditure well below the minimum value in the sample.

There are a variety of models nested within the general

specification which are of interest. Table 2 provides a summary.

Table 2: Summary of Specific Model Results

Specific Functional Form Log-likelihood
Model Parameter Restrictions

7

1

In Table 2, Model 12 represents the general model. Note that in
all the above models, a CES specification is maintained for both price
indexes, and hence pl and p2 are freely estimated. Models 1, 2, 5 and 6
are "MAIDS-like" (Cooper and McLaren (1992)) in the sense that p =

implies a logarithmic form for the first real expenditure term in the




indirect utility function. On the other hand, models 3 and 4 are "LES-
like" in the sense that the Gorman Polar Form (GPF) (see Case 1, Section
3) estimates P1 as effectively linear (although P2 remains CES, not

Cobb-Douglas). In fact, pl is approximately unity in all models.

There are several alternative sequences of nesting which are worth

discussing. These generally involve successive one-parameter restric-

tions for which the critical value of xz is 3.8. On a likelihood ratio

test, the LES-like models 3 and 4 are dominated by models 7 and 8, sugg-

esting a rejection of the GPF. On the other hand, subsequently freeing
up ¢ (models 11 and 12) does not lead to a significant improvement once
n has been freed up. That is, models 7 and 8 compare favourably with
models 11 and 12. The freeing up of the scaling parameter k is also of
little statistical value once m has been freed. However, free estima-
tion of k is desirable on economic grounds since the estimate, which in
all models is significantly less than unity, implies that the regular
region extends well below the minimum value of real expenditure in the
sample (as well as, necessarily, above, as holds when k is constrained
to unity - see Cooper and McLaren (1992)). It may also be noted that in
the restricted MAIDS-like models 1 and 2, the freeing up of the scaling
parameter k achieves much the same effect as freeing up 7. In fact,
model 2 is not statistically inferior to any of the models in which it
is nested (including the general model 12). This is not true for the

LES-like models 3 and 4, which are clearly dominated by models 7 and 8

respectively.

It is interesting to note that of the two alternative non-nested
branches (p = 0 and p = -1), the simplest model on the p = O branch

which cannot be rejected relative to the general model is the restricted




MAIDS-like model 2, while on the other hand on the p = -1 branch the
simplest model which cannot be rejected relative to the general model is
not LES-like, but takes the more complex form (n # 1) of model 8.
Models 2 and 8 are not nested, but strong grounds for preferring model 2

lie in its more parsimonious parameterisation and the simplicity of its

functional structure.

Our preferred model is therefore based on model 2. As discussed

previously, when freely estimated, pl has a tendency to slightly exceed

unity (pl = 1.023 in the case of model 2). The detailed parameter

estimates for a restricted version of model 2 in which pl is constrained

to unity are reported in Table 3.




Table 3: Results for the Preferred Model

Functional Form Restrictions: pu =0, 7 pl =1

Functional Form Parameters

p2

Tobacco Clothing

Price Index Share Parameters

P1: Bli

Aggregation Parameters

Inflation:

Unemployment:

Participation:

Summary Statistics

0. 0.954

0.77 1.16 .42

System Log-likelihood 514.161




CONCLUSION

The General Exponential Form (GEF) indirect utility function,

introduced 1in section 3, 1is particularly designed for empirical
application. While not necessarily globally regular, the function may
be easily constrained to be regular over an unbounded region which
includes all points in any given sample, and all values of nominal
expenditure and prices generating higher values of real expenditure.
Included as nested special cases are a number of well-known demand
systems, including the Linear Expenditure Systen. The LES is a pars-
imonious demand system that has been found to fit extremely well in a
number of applied studies, but has been criticized for the additive
preference structure. The model of this paper allows a simple general-
ization away from additivity, and an empirical example demonstrates the

value of this generalization.
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Appendix 1: Regularity of U'(c,p)

In the paper it is claimed that if UM(p,c) has the form (3.1) then
if P1, P2 satisfy RP1 - RP6é and 0 = 5 = 1, then UM(p,c) satisfies RIU1 -

RIUS over P = {c,p; ¢ >0, p > 0, (c/P1) = 1}.
Consider these properties in turn,
Follows from RP1 and the continuity of (3.1).
Given P1 and P2 satisfy RP3, RIU2 is satisfied over the entire

positive orthant Q?+1 .

TS U (-0 L W (- -1, (e )" L 82
Py T (kP1) 3p, (P2 " \Bz) P2 3p,

Hence, given P1 and P2 satisfy RP4 and RP2, if n > O then RIU3

will be satisfied at least wherever (c/P1) = 1.

By RIUZ, cug = —Zpiug , and hence RIU4 will be satisfied over the

1

same domain as RIU3.

Define normalized prices s; < pi/c .

Let UM(p,c) = UM(s,1) = v(s) = g(s) /e (s),
x H-1

(KP1(s)]'“—1
—n and f(s) = (P2(s))". Now - is

increasing provided x > 0, and concave provided p = -1. Since an

where g(s) = -

increasing concave function of a concave function is concave, the
negative sign makes g(s) convex. Provided kP1(s) < 1 (i.e. c >
kP1(p)) then g(s) = 0. f(s) is concave provided 0 < 5 = 1. From
Greenberg and Pierskalla (1971, p.155), g(s)/f(s) is quasi-convex

provided g(s) is convex, g(s) = 0, f(s), = 0, f(s) is concave.







