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Abstract

A mean shift can cause tests for a unit root to erroneously fail to reject the

null hypothesis of the existence of a unit root. Perron (1990) and Hendry and

Neale (1991) provide simulation evidence of this for (augmented) Dickey-Fuller

tests in models without a time trend. This paper extends these analyses by

considering a wider range of test statistics (including statistics proposed by

Bhargava (1986)) applied to models (possibly including a time trend) subject

to a shift in mean. Our simulation results show that, at least for

alternatives close to the unit root, either an appropriate Bhargava test

statistic or the suitably normalised OLS estimator of the unit root has higher

power than the Dickey-Fuller or augmented Dickey-Fuller t-tests. In

particular, in models with a trend, an increase in the mean shift does not

reduce the power of Bhargava's R2 test as much as it reduces the power of the

other tests. Estimated response surfaces summarise the likely power loss due

to any particular mean shift.

KEYWORDS: Testing; unit roots; structural break; mean shift; simulation.



1. Introduction

A mean shift can cause tests for a unit root to erroneously fail to

reject the null hypothesis of the existence of a unit root. Perron (1990) and

Hendry and Neale (1991) provide simulation evidence of this for (augmented)

Dickey-Fuller tests in models without a time trend. This paper extends these

analyses by considering a wider . range of test .statistics (including statistics

proposed by Bhargava (1986)) applied to models (possibly including a time

trend) subject to a shift in mean.

In the next section we outline various tests for a unit root, in models

with and without a linear trend, and considers how a simple mean shift 
may be

incorporated into the models. Section 3 outlines a Monte Carlo simulation

study of the size and power properties of various tests for a unit root when

applied to models subject to a mean shift. In Section 4 we show how estimated

response surfaces can summarise the likely power loss due to any particular

mean shift. Section 5 concludes.

2. Unit Root Tests with Mean Shifts

A simple but common representation of a nonstationary time series is the

random walk with drift model

Yt P Yt-i Ct

We can write

yt = yo iit i=18i

t IN(0,a2) t = 1,...,T

which is clearly nonstationary since E[y] = pt is time-dependent. 
The random

walk with drift model is sometimes used to explain a variable that is believed

to have a time trend. A common alternative to this is a model which is

stationary about a deterministic trend, i.e.

yt — (m + pt) = /3(yt_i — (m + g(t-1)) + st Ifil <1
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where m is the mean of the stationary series (yt pt). The problem we

investigate here is that of a step change in m, such that m = m1 for t < to,

and m = m1 + m2 
for t a: to . Both Perron (1990) and Hendry and Neale (1991)

. 

argue that mean shifts may characterise many economic time series.

This paper seeks to examine (i) the extent to which the mean shift (or

structural change) causes unit root tests to erroneously fail to reject the

null hypothesis that a unit root exists, and (ii) the relative performance of

a selection of different unit root tests under the influence of the mean

shift. Recently, Hendry and Neale (1991) considered the impact of structural

change in models without time trends on two Dickey-Fuller unit root tests.

This study extends their analysis by considering models both with and without

time trends and by examining the effect of mean shifts on unit root tests

suggested by Bhargava (1986), in addition to Dickey-Fuller tests.

The Dickey-Fuller tests considered here are those commonly labelled r

(used by Hendry and Neale), Tr, pp, pt. and appropriate versions of the

augmented Dickey-Fuller test of order one, labelled ADF(1) here. Note that

there are two different ADF(1) tests, one when the augmented regression

excludes a linear trend (as in Hendry and Neale's (1991) analysis), and

another when the augmented regression includes a linear trend.

The first of the two Bhargava (1986) unit root test statistics considered

here is

E(Yt Yt-1)

2

E(Yt — S'Y
t =1

where sr- = T-' yt

The R1 R1 test is a uniformly most powerful invariant test of the null hypothesis

that yt follows a random walk, against the one-sided stationary alternative

that

(Yt = 1607t-i m) + et
c IN(0,a2) 0 Ls fl < 1
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This test statistic (which is clearly equivalent to the Durbin-Watson test

statistic) is invariant to the values of m and a2. 1% and 5% critical values

are given in the first rows of table 1 of Sargan and Bhargava (1983).

The second of the Bhargava test statistics is

where

2

R = t=2 
2

cr-o-2 (R* R**)2t t
t=-1.

(T-1)-1 (yT

R* = (T-1)yt — (t-1)yr — (T—t)yi

and = (T-1)Gi — 0.5(y1 + yr)]

This is a locally most powerful invariant test in the neighbourhood of 13 = 1

of the null hypothesis that yt follows a random walk with non-zero constant

drift against one-sided stationary alternatives of the form

(yt — m — pt) = /3(y1_1 — m — 4u(t-1)) +

s IN(0,a2) 0 fi < 1

The R2 test statistic is invariant to the values of Az, m and a2. 5% critical

values are given in table 1 of Bhargava (1986). A 1% critical value for

sample size T = 100 is estimated by Monte Carlo simulation; the estimated

value based on 8101 replications is 0.47.

3. Monte Carlo Simulation

The experimental design of our Monte Carlo simulation analysis sets three

parameters as fixed, i.e. T = 100, a2 = 1 and m1 = 
1. Other parameters vary

as follows:

M
2 
= 0 0.5 1 2 4 }

p ={ 0 0.001 0.01 0.05 0.1 }

to = { 20 4
0 60 80 }

fl ={ 0.2 0.4 0.6 0.8 1 }

The sample size is fixed at T = 100 for two reasons. First, critical values
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for both the Dickey-Fuller and Bhargava tests seem to be available for only

two sample sizes, T = 50 and 100. Second, much of the extensive literature on

the finite sample performance of unit root tests suggests that for alternative

hypotheses with 16 close to 1 these test all have very low power for small to

moderate sample sizes. For example, DeJong et al. (1992, p. 431) recommend

against using unit root tests when T <100. Given that we fix both m1 = 1 and

a2 = 1, our choice of values for m2 has t
he effect of defining the mean shift

relative to the (standardised) value of a2, as is done by Hendry and Neale

(1991). This experimental design defines a total of 500 experiments for the

test statistics, which we evaluate at both 1% and 5% critical values. We set

the number of replications of each experiment to 9604, so as to give a 
maximum

95% confidence interval for the test rejection frequency of 0.01.

For the experiments where It? I < 1 the initial value yo of the yt series

is given as

Yo = ami + (14)-1/280 where so - IN
(0,a

2
)

so that yo has the same distribution as the other values in the (detrended) yt

series for t < to. As all the test statistics can be shown to be invariant to

the value of yo when 16 = 1, we set yo = 0 in these cases.

We begin the analysis of the simulation results by commenting on the

cases where /3 --= 1, that is, where the null hypothesis is true so that we are

estimating the sizes of the tests (not that these are not reported here in any

detail). Using 1% critical values, all the rejection frequencies for every

test statistic fall within the approximate 95% confidence interval about 0.01.

In fact, if we report the rejection frequencies to two decimal places we find

only one case (for the R1 test) where the rejection frequency is not equal to

0.01.

For 5% critical values, examining the results for fl = 1 we find 
for the

Dickey-Fuller, R2 and ADF(1) tests all the rejection frequencies fall between
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0.04 and 0.06. Even to two decimal places there are only a couple of cases

where the rejection frequency is not observed to be 0.05. The story for the

R test is rather different. The R1 test is appropriate only when 4u = 0. As

increases, ceteris paribus, the value of the R1 test statistic falls, and

hence so do rejection frequencies for the Ri test. As a result, in 27 out of

100 experiments -(with fl = 1) the -rejection -frequency is not equal to 0.05 to

two decimal places (in fact these are all less than 0.05) and in 21 of these

cases the rejection frequency is less than 0.04. These cases all occur for

relatively large values of p (0.05 or 0.1).

In general these results indicate that the existence of a mean shift

(i.e. when m2 0) of which the econometrician is unaware does not prevent

finding a unit root if one is present. Except for the problems with R1 noted

above, we can use the tabulated critical values to estimate the powers of the

tests.

We now consider the cases where m2 = 0
 (and I 131 < 1), so that no mean

shift occurs at all (see Tables 1 and 2). Rejection frequencies will

therefore be estimates of the power of the tests for a unit root. As one

would expect, for any given value of p rejection frequencies for each test

decline as fl increases towards one. For p = 0, R1 seems to be the most

powerful of the tests considered, rejection frequencies only deviating

significantly from 1 when ft = 0.8. R1 is followed by peu , tin, ADF(1) and R2 in

decreasing order of power. The R2 test performs relatively poorly because it

is inappropriate in situations where the alternative model has no time trend.

For p non-zero (again with m2 = 0, 'pi < 1) the situation is slightly

different. The t, ADF(1) and R2 tests 
are all invariant to the value of

T'

p in the model. This is clearly illustrated by examining the rejection

frequencies for these test statistics in Tables 1 and 2 for different non-zero

values of p and any given value of 16 and noting how little they vary. The

R1 test, however, is not invariant to p and rejection frequencies for this
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test fall as p increases, making it the least powerful of the tests when

p 0. This is explained by the fact that the R1 test is inappropriate if the

alternative model has a time trend — in such a situation the econometrician

should prefer the R2 test (one might regard using the R1 test in situations

where p 0 as equivalent to wrongly performing a r test instead of a

test). For the other tests it is clear that -in terms of 'decreasing power we

have the order p r and ADF(1) for all values of /3. The relative power of
T'

the R2 test changes with the value of fl. For fl < 0.8 the power of R2 is

between that of I' and ADF(1). However, when /3 = 0.8 the R2 test
 is the most

powerful of the tests considered. This is because R2 is 
locally most powerful

in the neighbourhood of /3 = 1, and so we would expect it to out-perform the

other tests (for ji # 0) as /3 approaches 1.

One general point to note is that the rejection frequencies do not differ

very much from 1 until 16 reaches 0.8 (with the exception of the R1 test for

non-zero values of /4). For this reason, we concentrate on values of /3 a: 0.6,

and extend the analysis to include values of 11 = 0.85, 0.9, 0.95. Tables 3 to

6 show the remainder of the results. Since the R2 test and appropriate

versions of the T, p and ADF(1) tests are invariant to the value of p we 
only

show the effects of p = 0 and p = 0.05 on these tests.

Consider the cases where p = 0 (1/31 < 1) and tests are performed using 1%

critical values (Table 3; note that the results at 5% in Table 5 follow very

similar patterns). For a small mean shift (m2 =
 0.5 or 1) we find that the

rejection frequencies are not very much smaller than for the situation where

m2 = 
0. However as m2 increa

ses the rejection frequencies tend to fall. This

is most noticable when m2 =
 4 and the rejection frequencies fall very close to

zero for every test statistic when fl = 0.8. In fact, when fi = 0.8 a mean

shift of m2 = 2
 is sufficient to approximately halve the power of all the

tests (except R2) from the level experienced for m2 = 0.

Indeed, we may identify some cases where the tests are biased, in the
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•

sense that there seems to be a lower probability of rejecting the null

hypothesis that /I = 1 when it is false than when it is true (indicated in

Table 3 by rejection frequencies of less than 0.01). For example, see the

rejection frequencies for the test when m2 = 4
, fl = 0.6 and to = 60

, and

for the ADF(1) test when m2 = 4, fl = 0.6 or 0.8, and to = 40 or 60. Values

less than 0.008 .are significantly biased in 9604, replications using a 5% test.

The position of the mean shift (to) does seem to have some effect on the

rejection frequencies. Examination of Table 3 indicates that we have similar

results, in general, for to = 20 and 80, and similar results for to = 40 or

60, with higher rejection frequencies in the former case.

The comparative performance of the tests for p = 0 and m2 non-zero is

very similar to the p = m2 = 0 case. Thus the order in terms of decreasing

power seems to be R 1_ , p11 , t and ADF(1). The R2 
test is inappropriate here

(as p = 0), so we might expect it to be the least powerful of the tests in

this case. This is true for m2 = 0.5, but as m2 increases the relative

performance of the R2 test impr
oves (although its absolute power declines), so

that when m2 = 4 it is the most powerful of the tests considered. Thus the

mean shift does not reduce the power of the R2 test as much as it reduces the

power of the other tests.

We now turn to the cases where p = 0.05 (1,61 < 1) and tests are performed

using 1% critical values (Table 4; again the results for 5% follow similar

patterns: see - Table 6). In general we observe that as either m2 or
 /3 increase

the rejection frequencies for each test fall. It is fair to say therefore

that the results in Table 4 follow a similar pattern to those in Table 3, with

the notable exception of the R1 test. Not being invariant to the value of p,

the power of the RI, test falls towards zero as p increases, and so the R1 test

is the least powerful test for p non-zero.

One important difference between the results of Tables 3 and 4 is the

effect of the position of the mean shift (to). It is true that for some cases
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where p = 0.05 the effect of the value of to on rejection frequencies is the

same as for the itt = 0 cases. However, this seems to be the exception rather

than the rule, and the precise effect of the value of to seems unclear when au

is non-zero.

Comparing the performance of the tests from Table 4 leads us to exactly

the same conclusions.... as we _reached .from Table 1 with R2 being the most

powerful test for /3 close to 1, and pr being the most powerful elsewhere.

Note that these results hold for all other non-zero values of p not reported

here. The R test is not invariant to the value of p. This causes the R11 

test to be biased for many large values of p (for example p = 0.1). 
In fact,

as the value of p increases, the power of the R1 test falls to zero for any

given value of m2 and /3, since the calculated value of the R1 test statistic

will fall as p increases.

To summarise, we find that the introduction of a simple mean shift

reduces the power of all of the tests for a unit root considered here. This

reduction is more pronounced when the trend parameter p is non-ze
ro. However,

the power advantage of the p and R1 tests
 over the more commonly used T and

ADF(1) tests (when p = 0), and of the pT and R2 tests over the TT and ADF(1)

tests (when p 0), is maintained when m2 0. It also seems to be the case

that the larger is the mean shift m2, the greater is the advantage of the Ri

and R
2 

tests (when p = 0 and p 0 respectively) over the Dickey-Fuller and

augmented Dickey-Fuller tests. As an illustration of this, Figure 1 indicates

the power curves_ (generated for )6' = 0.6 (0.05) 1) of the tests whe
n m2 = 0

(the top four curves) and for m2 = 4 (the bottom four curves), in 
both cases

when p = 0.05. Notice how the power of the R2 test dominates that of
 the

other tests for 0.6 -5_ fl 1 when m2 = 
4.

4. Response Surfaces

We fit a response surface for the rejection frequencies for each of the
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test statistics. Response surfaces summarise the relationship between

rejection frequency and the parameters of the simulation (here, m2, p, /3 and

to). These estimated response surfaces should give us some idea of the

probable power loss due to any particular mean shift. Since we are concerned

with power we can exclude all experiments where /3 = 1.

It has already been indicated that the R1 test is inappropriate in

situations where p is non-zero, and so as we are interested in examining the

effect of a mean-shift on unit root tests, it is sensible to fit the response

surface for R1 only for those experiments where p = 0. Similarly, the

response surface for the R2 test is estimated only for those experiments with

non-zero values of IL

In addition, since the T
T
, p

T
, R2 tests and appropriate versions of the

ADF(1) test are invariant to the value of p we need only consider one value 
of

p, and so we fit response surfaces for the above tests only for experiments

where p = 0.05. We thus estimate eight response surfaces, each with a maximu
m

of 80 experiments.

For the rejection frequency n of each test statistic we use the logistic

transformation ln(n/(1-70); note that this means that experiments with it = 0

or 1 will be omitted from the response surface. All variables in the response

surfaces are multiplied by (N741-70)
112 (where N is the number of replications

of each experiment; here this is 9604) so that each transformed rejection

frequency will have unit variance. This heteroscedasticity transformation is

also used by Hendry and Neale (1991).

When m2 = 0
 we need to explain the power of each test by fl alone. In

fact, preliminary investigation showed that using fl3 provided a better fit in

each response surface regression than did /3. Since the simulation results

indicated similar patterns for to = 20 or 80, and for to = 40 or 60 (as

indicated by Perron (1990), we also use km2 as well as m2, where

k = min[t0/100, (1—t0/100)]. As an illustration, we report below response
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surfaces of the rejection frequencies of tests using 1 % critical values.

HL(r„) = 4.5075H - 7.38901-1163 - 0.6706Hm - 1 .6268Hkm
a" (7.66) (-7.42) (-3.64) 2 (-2.83) 2

R2 = 0.6019 DW = 0.7912 53 observations
AR(1) = 22.96 Norm(2) = 5.05 Hetero(1) = 1.05

HL(r) = 5.0193H - 10.356511163 - 0.9598Hm + 0.7921Hkm
( 14.31) (-16.48) (-7.66) 2 (2.40) 2

R2 = 0.8494 DW = 0.8370 52 observations

AR(1) = 17.54 Norm(2) = 10.27 Hetero(1) = 1.30

HL(p ) = 4.5473H - 6.290611163 - 0.5343Hm - 1.8739Hkm

l4 (8.39) (-7.08) (-3.57) 2 (-4.31) 2

R2 = 0.6824 DW = 0.5817 46 observations

AR(1) = 24.16 Norm(2) = 2.31 Hetero(1) = 0.94

HL(p,) = 4.9982H - 9.911811)63 - 0.8623Hm + 0 .7355Hkm
( 13.13) (-14.82) (-6.90) 2 (2.23) 2

R2 = 0.8185 DW = 0.8325 51 observations

AR(1) = 17.51 Norm(2) = 10.51 Hetero(1) = 0.11

HL(R ) = 4.7176H - 6.290011/13 - 0.5315Hm - 1.9070Hkm

I (8.77) (-7.19) (-3.65) 2 (-4.54) 2

R2 = 0.7136 DW = 0.6039 43 observations

AR(1) = 20.63 Norm(2) = 1.58 Hetero(1) = 1.13

HL(R ) = 4.9170H - 9.702111)63 - 0.6330Hm + 0.0719Hkm

2 ( 23.92) (-25.45) (-7.81) 2 (0.32) 2

R2 = 0.8849 DW = 0.6345 70 observations

AR(1) = 32.49 Norm(2) = 15.15 Hetero(1) = 0.003

HL ( AD F ( 1)) = 3.8714H - 6.73251-Ifi3 - 0.7642Hm - 1.7074Hkm2

[p = 0] ( 12.98) (-12.69) (-4.43) 2 (-3.04)

R2 = 0.7481 DW = 0.8737 65 observations

AR(1) = 21.88 Norm(2) = 8.49 Hetero(1) = 0.03

HL(ADF(1)) = 3.6990H - 7.763011)63 - 1.1693Hm + 0.6086Hkm

[ p = .05] ( 14.56) (-14.45) (-7.69) 2 (1.51) 2

R2 = 0.8000 DW = 0.3749 72 observations

AR(1) = 47.89 Norm(2) = 9.09 Hetero(1) = 0.86

Numbers in parentheses below estimated coefficients are asymptotic t-ratios;
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the serial correlation (denoted AR), normality, and heteroscedasticity tests

are all asymptotically distributed as x2, with degrees

parentheses.

As might be

in every response

as m2 increases.

particularly high.

of freedom given in

expected, the regressors )63 and m2 h
ave negative coefficients

surface, indicating .that power falls as /1 approaches 1, or

However, the R2 for each response surface is not

This may be because this Monte Carlo study uses a wide

range of values of )6, whereas other similar studies (for example, Hendry and

Neale (1991)) have considered a smaller range of values of ft so that any

power function may be approximately linear.

The heteroscedasticity transformation seems to perform well, as we are

unable to reject the null hypothesis of homoscedastic errors for any of the

response surfaces, even at a 10% significance level. However, there is clear

evidence of serial correlation in the residuals of each response surface

regression. As our regression data have no specific order, it may be possible

to reorder the data in such a way so as to remove this serial correlation.

However, taken together with the relatively low R2 values this evidence of

serial correlation suggests that the relationships are misspecified, so that

it is likely that the response surfaces could be improved upon.

We may use the response surfaces to predict the power loss f
or each test

due to a particular mean shift. If a test (labelled Z) has an estimated

response surface given by

HL(Z) = aoH + a1Hfl3 + a2Hm2 + a3Hkm2 ,

then the power of the test will be given by exp(y)[1+exp(y)]-1, wh
ere

A 3

y = ao + a1fl +a2m2 
+a

3
km2 .

11



5. Conclusions

Our simulation results show that, at least for alternatives close to the

unit root, either an appropriate Bhargava test statistic or the suitably

normalised OLS estimator of the unit root (i.e. piu or Ar) has higher power

than the Dickey-Fuller or augmented Dickey-Fuller t-tests. In particular, in

models• with a trend, an increase in the 'mean shift does not reduce the power

of Bhargava's R2 test as much as it reduces the power of the other tests.

Estimated response surfaces illustrate how we may summarise the likely power

loss due to any particular mean shift.
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Table 1

Rejection Frequencies Without a Mean Shift

1% critical values
(M2

=0)

p fl t iT P
P 
IP R R2 

ADF(1)
T. 1

0 0.2 1.000 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0.998 1.000

0.6 0.998 1.000 1.000 0.952 0.969
0.8 0.517 0.683 0.719 0.379 0.414

1 0.010 0.010 0.010 0.010 0.009

0.001 0.2 1.000 1.000 1.000 1.000 1.000

0.4 1.000 1.000 1.000 0.997 0.994

0.6 0.975 0.989 1.000 0.952 0.857
0.8 0.296 0.364 0.719 0.380 0.235
1 0.011 0.010 0.009 0.012 0.011

0.01 0.2 1.000 1.000 1.000 1.000 1.000

0.4 1.000 1.000 1.000 0.996 0.994

0.6 0.976 0.989 0.999 0.955 0.861
0.8 0.301 0.375 0.682 0.375 0.237
1 0.011 0.010 0.010 0.011 0.010

0.05 0.2 1.000 1.000 0.963 1.000 1.000
0.4 1.000 1.000 0.762 0.996 0.995
0.6 0.978 0.991 0.363 0.952 0.865

0.8 0.300 0.371 0.125 0.383 0.230

1 0.010 0.011 0.010 0.011 0.011

0.1 0.2 1.000 1.000 0.000 1.000 1.000

0.4 1.000 1.000 0.000 0.996 0.995
0.6 0.978 0.988 0.000 0.947 0.860
0.8 0.295 0.367 0.000 0.382 0.227
1 0.010 0.010 0.007 0.010 0.010
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Table 2

Rejection Frequencies Without a Mean Shift

5% critical values
(1112

0)

P IP 1 
R2 

ADF(1)
P
/T
T r 

0 0.2 1.000 1.000 1.000 1.000 1.000

0.4 1.000 1.000 1.000 1.000 1.000

0.6 1.000 1.000 1.000 0.993 0.999

0.8 0.879 0.955 0.969 .0.722 0.798

1 0.052 0.050 0.053 0.048 0.052

0.001 0.2 1.000 1.000 1.000 1.000 1.000

0.4 1.000 1.000 1.000 1.000 1.000

0.6 0.999 1.000 1.000 0.992 0.981

0.8 0.662 0.739 0.969 0.719 0.568

1 0.051 0.050 0.051 0.050 0.051

0.01 0.2 1.000 1.000 1.000 1.000 1.000

0.4 1.000 1.000 1.000 1.000 1.000

0.6 0.999 1.000 1.000 0.992 0.984

0.8 0.661 0.735 0.956 0.718 0.564

1 0.051 0.050 0.053 0.049 0.052

0.05 0.2 1.000 1.000 1.000 1.000 1.000

0.4 1.000 1.000 0.996 1.000 1.000

0.6 0.999 1.000 0.891 0.991 0.982

0.8 0.664 0.741 0.454 0.726 0.562

1 0.053 0.051 0.048 0.051 0.054

0.1 0.2 1.000 1.000 0.008 1.000 1.000

0.4 1.000 1.000 0.000 1.000 1.000

0.6 0.999 1.000 0.000 0.992 0.981

0.8 0.666 0.745 0.002 0.720 0.562

1 0.050 0.049 0.035 0.048 0.051



Table 3

Rejection Frequencies at 1% critical values when /4 = 0

m2 fl to T .. 
P 

R
1 

R
2 

ADF(1)
1.4 P 

0 0.6 0.998 1.000 1.000 0.952 0.969

0.8 0.517 0.683 0.719 0.379 0.414

0.85 0.255 0.383 0.418 0.181 0.218

0.9 0.095 0.146 0.160 0.069 0.090

0.95 0.027 0.040 0.042 0.023 0.027

0.5 0.6 20 0.998 1.000 1.000 0.942 0.951

40 0.994 0.999 0.999 0.943 0.941

60 0.995 0.999 1.000 0.947 0.942

80 0.996 0.999 1.000 0.947 0.950

0.8 20 0.485 0.662 0.700 0.358 0.390

40 0.486 0.658 0.696 0.372 0.391

60 0.486 0.658 0.694 0.373 0.396

80 0.491 0.666 0.701 0.373 0.397

0.85 20 0.252 0.368 0.402 0.181 0.213

40 0.249 0.369 0.406 0.177 0.203

60 0.253 0.377 0.412 0.179 0.211

80 0.242 0.376 0.410 0.176 0.205

0.9 20 0.088 0.140 0.155 0.064 0.082

40 0.085 0.144 0.159 0.065 0.082

60 0.089 0.143 0.157 0.066 0.086

80 0.088 0.142 0.156 0.067 0.081

0.95 20 0.029 0.043 0.046 0.022 0.029

40 0.026 0.038 0.042 0.021 0.025

60 0.025 0.039 0.041 0.023 0.026

80 0.028 0.040 0.043 0.026 0.026

1.0 0.6 20 0.991 0.999 0.999 0.936 0.906

40 0.982 0.996 0.997 0.940 0.854

60 0.980 0.996 0.998 0.935 0.848

80 0.988 0.998 0.999 0.938 0.891

0.8 20 0.451 0.608 0.644 0.353 0.352

40 0.421 0.574 0.613 0.354 0.328

60 0.420 0.588 0.630 0.354 0.332

80 0.448 0.617 0.660 0.351 0.357

0.85 20 0.226 0.343 0.372 0.169 0.193

40 0.208 0.325 0.352 0.173 0.172

60 0.211 0.324 0.358 0.179 0.178

80 0.221 0.343 0.380 0.174 0.187

0.9 20 0.087 0.138 0.153 0.068 0.082

40 0.081 0.127 0.142 0.065 0.072

60 0.079 0.130 0.145 0.065 0.075

80 0.084 0.139 0.154 0.064 0.076

0.95 20 0.026 0.040 0.043 0.022 0.026

40 0.026 0.041 0.044 0.024 0.023

60 0.023 0.036 0.040 0.019 0.024

80 0.026 0.038 0.040 0.021 0.025
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2.0 0.6 20 0.917 0.969 0.971 0.877 0.664

40 0.751 0.880 0.899 0.872 0.400

60 0.720 0.870 0.900 0.868 0.364

80 0.849 0.955 0.972 0.878 0.551

0.8 20 0.318 0.439 0.453 0.283 0.236

40 0.226 0.337 0.365 0.302 0.163

60 0.219 0.341 0.381 0.295 0.163

80 0.296 0.448 0.495 0.286 0.220

0.85 20 0.166 0.244 0.258 0.146 0.138

40 0.130 0.199 0.218 0.147 0.106

60 0.130 0.212 0.239 0.149 0.107

80 0.167 0.266 0.299 0.147 0.135

0.9 20 0.066 0.104 0.115 0.061 0.059

40 0.061 0.100 0.110 0.062 0.058

60 0.060 0.098 0.111 0.062 0.055

80 0.074 0.119 0.135 0.064 0.068

0.95 20 0.025 0.039 0.041 0.024 0.026

40 0.023 0.035 0.038 0.024 0.023

60 0.023 0.036 0.038 0.020 0.024

80 0.023 0.034 0.036 0.022 0.022

4.0 0.6 20 0.225 0.290 0.246 0.431 0.063

40 0.011 0.027 0.030 0.492 0.001

60 0.005 0.021 0.032 0.487 0.001

80 0.069 0.198 0.289 0.431 0.013

0.8 20 0.066 0.085 0.075 0.118 0.044

40 0.014 0.023 0.024 0.146 0.009

60 0.012 0.026 0.033 0.140 0.008

80 0.045 0.103 0.135 0.116 0.035

0.85 20 0.049 0.063 0.060 0.075 0.037

40 0.016 0.025 0.028 0.088 0.012

60 0.017 0.026 0.031 0.085 0.012

80 0.047 0.088 0.110 0.077 0.040

0.9 20 0.031 0.041 0.042 0.044 0.028

40 0.020 0.029 0.030 0.048 0.018

60 0.017 0.030 0.035 0.042 0.016

80 0.037 0.061 0.068 0.043 0.031

0.95 20 0.017 0.024 0.025 0.020 0.018

40 0.017 0.024 0.026 0.022 0.016

60 0.016 0.026 0.028 0.021 0.015

80 0.020 0.030 0.034 0.019 0.019
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Table 4

Rejection Frequencies at 1% critical values when /4 = 0.05

m2 13 to T
T 

R
1 

R2 
ADF(1)PT 

0 0.6 0.978 0.991 0.363 0.952 0.865

0.8 0.300 0.371 0.125 0.383 0.230

0.85 0.131 0.171 0.085 0.180 0.112

0.9 0.052 0.063 0.057 0.070 0.047

0.95 0.018 0.020 0.030 0.022 0.017

0.5 0.6 20 0.971 0.985 0.199 0.951 0.846

40 0.972 0.988 0.145 0.947 0.840

60 0.973 0.988 0.148 0.949 0.848

80 0.966 0.984 0.203 0.951 0.835

0.8 20 0.287 0.357 0.071 0.368 0.221

40 0.298 0.367 0.060 0.373 0.230

60 0.291 0.357 0.061 0.370 0.219

80 0.286 0.355 0.079 0.367 0.221

0.85 20 0.127 0.163 0.056 0.179 0.110

40 0.134 0.168 0.053 0.178 0.114

60 0.127 0.161 0.053 0.177 0.108

80 0.137 0.176 0.066 0.184 0.112

0.9 20 0.050 0.062 0.043 0.070 0.046

40 0.053 0.063 0.041 0.067 0.048

60 0.048 0.060 0.042 0.062 0.043

80 0.051 0.061 0.047 0.071 0.045

0.95 20 0.018 0.020 0.023 0.025 0.017

40 0.018 0.021 0.025 0.021 0.019

60 0.020 0.022 0.027 0.022 0.017

80 0.021 0.021 0.028 0.023 0.020

1.0 0.6 20 0.950 0.973 0.081 0.937 0.790

40 0.958 0.978 0.031 0.931 0.806

60 0.957 0.978 0.034 0.931 0.801

80 0.953 0.976 0.091 0.939 0.786

0.8 20 0.272 0.333 0.040 0.344 0.207

40 0.278 0.342 0.025 0.354 0.213

60 0.276 0.345 0.026 0.352 0.216

80 0.274 0.334 0.048 0.355 0.215

0.85 20 0.127 0.162 0.037 0.172 0.105

40 0.124 0.159 0.028 0.175 0.105

60 0.127 0.158 0.030 0.172 0.108

80 0.126 0.160 0.049 0.167 0.102

0.9 20 0.050 0.063 0.034 0.071 0.044

40 0.047 0.056 0.027 0.061 0.044

60 0.048 0.059 0.030 0.066 0.048

80 0.050 0.061 0.039 0.068 0.045

0.95 20 0.019 0.021 0.024 0.023 0.018

40 0.018 0.021 0.025 0.023 0.017

60 0.019 0.021 0.025 0.021 0.018

80 0.020 0.024 0.026 0.022 0.020
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2.0 0.6 20 0.849 0.902 0.006 0.879 0.576

40 0.880 0.931 0.000 0.872 0.630

60 0.888 0.931 0.000 0.874 0.649

80 0.843 0.898 0.008 0.882 0.565

0.8 20 0.213 0.265 0.009 0.295 0.162

40 0.243 0.296 0.002 0.311 0.182

60 0.232 0.285 0.003 0.299 0.175

80 0.216 0.269 0.015 0.294 0.163

0.85 20 0.105 0.136 0.012 0.145 0.086

40 0.109 0.136 0.004 0.146 0.092

60 0.109 0:137 0.006 0.144 0.095

80 0.106 0.133 0.019 0.148 0.087

0.9 20 0.043 0.053 0.016 0.060 0.042

40 0.045 0.054 0.012 0.060 0.043

60 0.044 0.054 0.014 0.059 0.042

80 0.044 0.051 0.025 0.060 0.043

0.95 20 0.019 0.020 0.015 0.022 0.021

40 0.019 0.020 0.018 0.022 0.020

60 0.018 0.020 0.017 0.024 0.018

80 0.018 0.019 0.020 0.020 0.016

4.0 0.6 20 0.264 0.347 0.000 0.439 0.089

40 0.397 0.501 0.000 0.484 0.170

60 0.435 0.512 0.000 0.480 0.187

80 0.261 0.343 0.000 0.441 0.084

0.8 20 0.076 0.101 0.000 0.122 0.055

40 0.107 0.136 0.000 0.142 0.077

60 0.106 0.129 0.000 0.132 0.082

80 0.080 0.106 0.000 0.120 0.059

0.85 20 0.051 0.066 0.001 0.082 0.043

40 0.062 0.081 0.000 0.086 0.053

60 0.064 0.077 0.000 0.080 0.054

80 0.052 0.066 0.002 0.080 0.043

0.9 20 0.031 0.039 0.003 0.043 0.028

40 0.034 0.042 0.001 0.046 0.030

60 0.030 0.034 0.001 0.041 0.029

80 0.031 0.038 0.008 0.042 0.029

0.95 20 0.018 0.020 0.009 0.021 0.017

40 0.017 0.018 0.009 0.018 0.017

60 0.016 0.017 0.009 0.019 0.017

80 0.015 0.016 0.015 0.019 0.015
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Table 5

Rejection Frequencies at 5% critical values when ,u = 0

m2 13 to T. P R1 R2 
ADF(1)

0 0.6 1.000 1.000 1.000 0.993 0.999

0.8 0.879 0.955 0.969 0.722 0.798

0.85 0.639 0.780 0.821 0.475 0.575

0.9 0.337 0.460 0.502 0.240 0.314

0.95 0.123 0.169 0.182 0.095 0.120

0.5 0.6 20 1.000 1.000 1.000 0.991 0.998

40 1.000 1.000 1.000 0.991 0.998

60 1.000 1.000 1.000 0.991 0.996

80 1.000 1.000 1.000 0.992 0.997

0.8 20 0.864 0.946 0.961 0.706 0.779

40 0.868 0.951 0.962 0.717 0.775

60 0.861 0.944 0.944 0.713 0.779

80 0.868 0.949 0.965 0.720 0.783

0.85 20 0.630 0.770 0.808 0.472 0.561

40 0.626 0.765 0.804 0.464 0.563

60 0.632 0.770 0.810 0.474 0.565

80 0.630 0.769 0.814 0.467 0.562

0.9 20 0.318 0.437 0.477 0.229 0.296

40 0.321 0.450 0.488 0.232 0.300

60 0.329 0.455 0.494 0.231 0.315

80 0.329 0.456 0.493 0.232 0.303

0.95 20 0.130 0.175 0.192 0.095 0.131

40 0.125 0.172 0.185 0.096 0.117

60 0.126 0.172 0.190 0.097 0.122

80 0.128 0.174 0.187 0.098 0.128

1.0 0.6 20 1.000 1.000 1.000 0.989 0.993

40 1.000 1.000 1.000 0.988 0.988

60 1.000 1.000 1.000 0.989 0.984

80 1.000 1.000 1.000 0.990 0.989

0.8 20 0.841 0.930 0.945 0.694 0.752

40 0.804 0.906 0.928 0.692 0.708

60 0.809 0.912 0.933 0.708 0.717

80 0.830 0.928 0.952 0.688 0.742

0.85 20 0.600 0.740 0.775 0.454 0.528

40 0.574 0.720 0.762 0.462 0.507

60 0.569 0.710 0.755 0.461 0.501

80 0.591 0.746 0.794 0.460 0.529

0.9 20 0.313 0.433 0.470 0.235 0.297

40 0.297 0.416 0.453 0.229 0.279

60 0.309 0.426 0.466 0.228 0.285

80 0.322 0.445 0.488 0.229 0.301

0.95 20 0.123 0.171 0.183 0.094 0.122

40 0.123 0.167 0.182 0.099 0.121

60 0.118 0.164 0.180 0.090 0.119

80 0.121 0.167 0.181 0.090 0.119
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2.0 0.6 20 0.998 0.999 1.000 0.980 0.946

40 0.978 0.995 0.997 0.975 0.811

60 0.967 0.994 0.997 0.974 0.782

80 0.987 0.999 1.000 0.983 0.883

0.8 20 0.712 0.831 0.848 0.621 0.608

40 0.592 0.738 0.774 0.632 0.485

60 0.582 0.736 0.784 0.633 0.467

80 0.668 0.830 0.883 0.623 0.569

0.85 20 0.486 0.625 0.650 0.409 0.427

40 0.412 0.544 '0.582 0.412 0.355

60 0.410 0.554 0.607 0.420 0.355

80 0.475 0.639 0.705 0.409 0.419

0.9 20 0.273 0.368 0.394 0.221 0.246

40 0.245 0.339 0.365 0.217 0.228

60 0.244 0.341 0.371 0.213 0.221

80 0.271 0.388 0.435 0.218 0.253

0.95 ,20 0.119 0.160 0.172 0.097 0.114

40 0.117 0.153 0.164 0.092 0.110

60 0.112 0.154 0.170 0.091 0.110

80 0.116 0.160 0.176 0.093 0.112

4.0 0.6 20 0.773 0.865 0.832 0.839 0.421 '

40 0.208 0.371 0.411 0.821 0.045

60 0.144 0.321 0.424 0.823 0.025

80 0.402 0.715 0.857 0.834 0.138

0.8 20 0.314 0.382 0.356 0.365 0.233

40 0.107 0.165 0.181 0.404 0.073

60 0.092 0.168 0.206 0.393 0.061

80 0.219 0.384 0.501 0.374 0.165

0.85 20 0.224 0.273 0.263 0.252 0.186

40 0.093 0.139 0.151 0.285 0.078

60 0.086 0.144 0.175 0.275 0.068

80 0.195 0.326 0.411 0.259 0.165

0.9 20 0.147 0.181 0.180 0.161 0.135

40 0.092 0.127 0.140 0.175 0.086

60 0.087 0.142 0.165 0.163 0.082

80 0.152 0.239 0.287 0.160 0.142

0.95 20 0.085 0.107 0.113 0.085 0.084

40 0.076 0.105 0.116 0.087 0.076

60 0.082 0.110 0.122 0.082 0.080

80 0.097 0.137 0.155 0.081 0.096
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Table 6

Rejection Frequencies at 5% critical values when p = 0.05

DI
2 fl to T R1 

R2 
ADF(1)

T 
Ar 

0 0.6 0.999 1.000 0.891 0.991 0.982

0.8 0.664 0.741 0.454 0.726 0.562

0.85 0.403 0.474 0.333 0.474 0.348

0.9 0.190 0.225 0.232 0.233 0.178

0.95 0.087 0.095 0.130 0.092 0.085

0.5 0.6 20 0.999 1.000 0.778 0.993 0.979

40 0.999 1.000 0.713 0.991 0.978

60 0.999 1.000 0.718 0.991 0.980

80 0.999 1.000 0.783 0.992 0.976

0.8 20 0.646 0.724 0.336 0.716 0.548

40 0.653 0.729 0.302 0.707 0.559

60 0.656 0.734 0.311 0.707 0.555

80 0.647 0.718 0.362 0.703 0.546

0.85 20 0.392 0.459 0.259 0.473 0.342

40 0.398 0.463 0.238 0.469 0.343

60 0.387 0.455 0.232 0.462 0.338

80 0.398 0.472 0.275 0.477 0.353

0.9 20 0.196 0.233 0.190 0.233 0.180

40 0.201 0.239 0.183 0.239 0.188

60 0.186 0.220 0.182 0.229 0.177

80 0.193 0.229 0.197 0.231 0.179

0.95 20 0.082 0.091 0.116 0.094 0.080

40 0.082 0.090 0.115 0.094 0.085

60 0.087 0.094 0.120 0.091 0.084

80 0.087 0.098 0.124 0.096 0.089

1.0 0.6 20 0.998 0.999 0.592 0.991 0.963

40 0.998 1.000 0.428 0.988 0.969

60 0.997 0.999 0.426 0.988 0.970

80 0.997 0.999 0.612 0.989 0.962

0.8 20 0.618 0.695 0.236 0.684 0.524

40 0.633 0.716 0.185 0.700 0.533

60 0.632 0.708 0.190 0.689 0.539

80 0.628 0.704 0.273 0.693 0.534

0.85 20 0.393 0.460 0.192 0.460 0.338

40 0.386 0.453 0.152 0.459 0.342

60 0.392 0.461 0.160 0.461 0.344

80 0.384 0.446 0.225 0.460 0.334

0.9 20 0.193 0.233 0.151 0.236 0.180

40 0.188 0.221 0.133 0.229 0.175

60 0.187 0.218 0.143 0.227 0.177

80 0.189 0.218 0.170 0.231 0.176

0.95 20 0.085 0.091 0.110 0.094 0.081

40 0.084 0.093 0.105 0.094 0.081

60 0.085 0.092 0.110 0.091 0.084

80 0.086 0.096 0.126 0.098 0.085
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2.0 0.6 20 0.983 0.994 0.208
40 0.988 0.996 0.049
60 0.990 0.995 0.051
80 0.980 0.993 0.221

0.8 20 0.543 0.616 0.085
40 0.572 0.652 0.038
60 0.565 0.638 0.046
80 0.532 0.610 0.126

0.85 20 0.334 0.397 0.081
40 0.343 0.411 0.047
60 0.346 0.407 0.053
80 0.337 0.398 0.127

0.9 20 0.175 0.208 0.083
40 0.183 0.209 0.064
60 0.178 0.207 0.075
80 0.175 0.211 0.126

0.95 20 0.084 0.092 0.078
40 0.080 0.090 0.079
60 0.085 0.091 0.079
80 0.074 0.085 0.100

4.0 0.6 20 0.701 0.782 0.001
40 0.796 0.873 0.000
60 0.840 0.890 0.000
80 0.674 0.772 0.002

0.8 20 0.270 0.330 0.003
40 0.330 0.399 0.001
60 0.345 0.391 0.000
80 0.272 0.328 0.009

0.85 20 0.200 0.241 0.007
40 0.239 0.288 0.002
60 0.226 0.261 0.002
80 0.197 0.238 0.021

0.9 20 0.123 0.149 0.015
40 0.147 0.172 0.008
60 0.138 0.155 0.013
80 0.125 0.148 0.049

0.95 20 0.080 0.087 0.042
40 0.083 0.087 0.039
60 0.077 0.081 0.047
80 0.070 0.078 0.077

0.982
0.973
0.975
0.981

0.636
0.635
0.628
0.623

0.412
0.409
0.409
0.417

0.211
0.214
0.213
0.217

0.094
0.089
0.091
0.088

0.844
0.820
0.815
0.842

0.377
0.393
0.387
0.375

0.266
0.285
0.257
0.261

0.161
0.169
0.157
0.156

0.088
0.086
0.079
0.083

0.880
0.906
0.912
0.871

0.447
0.490
0.470
0.439

0.300
0.302
0.306
0.297

0.165
0.169
0.165
0.162

0.085
0.083
0.082
0.073

0.362
0.498
0.545
0.340

0.208
0.269
0.277
0.211

0.171
0.210
0.205
0.169

0.117
0.137
0.130
0.117

0.079
0.081
0.073
0.072
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