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Abstract

A mean shift can cause tests for a unmit root to erroneously fail to reject the
null hypothesis of the existence of a unmit root. Perron (1990) and Hendry and
Neale (1991) providc simulation evidence of this for (augmented) Dickey-Fuller
tests in models without a time trend. This paper extends these analyses by
considering a wider range of test statistics (including statistics proposed by
Bhargava (1986)) applied to models (possibly including a time trend) subject
to a shift in mean. Our simulation results show that, at least for
alternatives close to the unit root, either an appropriate Bhargava test
statistic or the suitably normalised OLS estimator of the unit root has higher
power than the Dickey-Fuller or augmented Dickey-Fuller t-tests. In
particular, in models with a trend, an increase in the mean shift does not

reduce the power of Bhargava’s R2 test as much as it reduces the power of the

other tests. Estimated response surfaces summarise the likely power loss due
to any particular mean shift.

KEYWORDS : Testing; unit roots; structural break; mean shift; simulation.




1. Introduction

A mean shift can cause tests for a unit root to erroneously fail to
reject the null hypothesis of the existence of a unit root. Perron (1990) and
Hendry and Neale (1991) provide simulation evidence of this for (augmented)
Dickey-Fuller- tests in models without a time trend. This paper extends these
analyses by considering - a -wider .range of test statistics (including statistics
proposed by Bhargava (1986)) applied to models (possibly including a time
trend) subject to a shift in mean.

In the next section we outline various tests for a unit root, in models
with and without a linear trend, and comsiders how a simple mean shift may be
incorporated into the models. Section 3 outlines a Monte Carlo simulation
study of the size and power properties of various tests for a unit root when
applied to models subject to a mean shift. In Section 4 we show how estimated
response surfaces can summarise the likely power loss due to any particular

mean shift. Section 5 concludes.

2. Unit Root Tests with Mean Shifts
A simple but common representation of a nonstationary time series is the

random walk with drift model
y, = H + Y, + ¢ | £ ~ IN(O,az)

We can write

t
yt=y0+ut+zsi

i=1

which is clearly nonstationary since E[yt] = ut is time-dependent. The random
walk with drift model is sometimes used to explain a variable that is believed
to have a time trend. A common alternative to this is a model which is

stationary about a deterministic trend, i.e.

y - (m + ut) = By, - (@ + p(t-1)) + ¢ 18] <1




where m is the mean of the stationary series (yt — ut). The problem we
investigate here is that of a step change in m, such that m = m for t < t,
and m = m + m, for t = t, - Both Perron (1990) and Hendry and Neale (1991)
argue that mean shifts may characterise many economic time series.

This paper seeks to examine (i) the extent to which the mean shift (or
structural change) causes umit root tests to erroneously fail to reject ~the
null hypothesis that a unit root exists, and (ii) the relative performance of
a selection of different unit root tests under the influence of the mean
shift. Recently, Hendry and Neale (1991) considered the impact of structural
change in models without time trends on two Dickey-Fuller unit root tests.
This study extends their analysis by considering models both with and without
time trends and by examining the effect of mean shifts on unit root tests
suggested by Bhargava (1986), in addition to Dickey-Fuller tests.

The Dickey-Fuller tests considered here are those commonly labelled Tt

u

(used by Hendry and Neale), T P P and appropriate versions of the

”,
augmented Dickey-Fuller test of order one, labelled ADF(1) here.  Note that
there are two different ADF(1) tests, one when the augmented regression
excludes a linear trend (as in Hendry and Neale’s (1991) analysis), and
another when the augmented regression includes a linear trend.

The first of the two Bhargava (1986) unit root test statistics considered
here is

< 2

tzgyt - yt-l) B 4T
R1 = — — where y = T ‘z;y'

NCAES 2.

t=1

The R, test is a uniformly most powerful invariant test of the null hypothesis
that y follows a random walk, against the one-sided stationary alternative

that

(Yt‘— m) = B(y_ - m) + & g ~ IN(0,67) 0B <1




This test statistic (which is clearly equivalent to the Durbin-Watson test
statistic) is invariant to the values of m and o*. 1% and 5% critical values
are given in the first rows of table 1 of Sargan and Bhargava (1983).

The second of the Bhargava test statistics is

T
,Lﬁy‘ -y ) @D -y

R’
2

(T-l)'zi (R* - R**)?
t=1

where R’:‘ = (T—-l)yt - (t'.—l)y,r - (T—t)yl
and R¥* = (T-D[y - O.S(y1 + yT)]

This is a locally most powerful invariant test in the neighbourhood of g = 1
of the null hypothesis that y, follows a random walk with non-zero constant

drift against one-sided stationary alternatives of the form

(y, - m - ut) = Biy_, - m-ut-1) + &
g ~ IN(0,6?) =g <1

The R2 test statistic is invariant to the values of x4, m and a*. 5% critical
values are given in table 1 of Bhargava (1986). A 1% critical value for
sample size T = 100 is estimated by Monte Carlo simulation; the estimated

véluc based on 8101 replications is 0.47.

Monte Carlo Simulation
The experimental design of our Monte Carlo simulation analysis sets three
parameters as fixed, i.e. T = ? =1 and m = 1. Other parameters vary
as follows:
={0 05 1 2 4}
{0 0.001 0.01 0.05 0.1}
t {20 40 60 80 }

0
g =1{02 04 06 08 1}

m
2
u

The sample size is fixed at T = 100 for two reasons. First, critical values
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for both the Dickey-Fuller and Bhargava tests seem to be available for only
two sample sizes, T = 50 and 100. Second, much of the extensive literature on
the finite sample performance of unit root tests suggests that for alternative
hypotheses with S close to 1 these test all have very low power for small to
moderate sample sizes. For example, DeJong et al. (1992, p. 431) recommend
against using: unit root ‘tests when T <100. ‘Given that ‘we fix both m = 1 and
o° = 1, our choice of values for m, has the effect of defining the mean shift
relative to the (standardised) value of a*, as is done by Hendry and Neale
(1991). This experimental design defines a total of 500 experiments for the
test statistics, which we evaluate at both 1% and 5% critical values. We set
the number of replications of each experiment to 9604, so as to give a maximum
95% confidence interval for the test rejection frequency of 0.01.

For the experiments where |B| < 1 the initial value y, of the y, series

is given as

y, = om, + (1—,8)'”28O where g, ~ IN(O,az)

so that Yo has the same distribution as the other values in the (detrended) y,
series for t < t. As all the test statistics can be shown to be invariant to
the value of y, when f = 1, we set y, = 0 in these cases.

We begin the analysis of the simulation results by commenting on the
cases where f§ = 1, that is, where the null hypothesis is true so that we are
estimating the sizes of the tests (nmot that these are not reported here in any
detail). Using 1% critical values, all the rejection frequencies for every
test statistic fall Qitﬁin the approximate 95% confidence interval about 0.01.
In fact, if we report the rejection frequencies to two decimal places we find
only ome case (for the R test) where the rejection frequency is not equal to
0.01.

For 5% critical values, examining the results for g = 1 we find for the

Dickey-Fuller, R2 and ADF(1) tests all the rejection frequencies fall between




0.04 and 0.06. Even to two decimal places there are only a couple of cases
where the rejection frequency is not observed to be 0.05. The story for the
R test is rather different. The R test is appropriate only when u = 0. As
u increases, ceteris paribus, the value of the Rl test statistic falls, and
hence so do rejection frequencies for the Rl test. As a result, in 27 out of
100 experiments “(with B = ‘1) the rejection -frequency is mot equal to 0.05 to
two decimal places (in fact these are all less than 0.05) and in 21 of these
cases the rejection frequency is less than 0.04.  These cases all occur for
relatively large values of 4 (0.05 or 0.1).

In genmeral these results indicate that the existence of a mean shift
(i.e. when S 0) of which the econometrician is unaware does not prevent
finding a unit root if ome is present. Except for the problems with R, noted
above, we can use the tabulated critical values to estimate the powers of the
tests.

We now consider the cases where m = 0 (and |B| < 1), so that no mean
shift occurs at all (see Tables 1 and 2). Rejection frequencies will
therefore be estimates of the power of the tests for a umit root. As one
would expect, for any given value of u rejection frequencies for each test
decline as B increases towards ome. For u = 0, Rl seems to be the most
powerful of the tests considered, rejection  frequencies only deviating
significantly from 1 when f = 0.8. R, is followed by p w T ADF(1) and R, in
decreasing order of power. The R, test performs relatively poorly because it

is inappropriate in situations where the alternative model has no time trend.

For u non-zero (again with m, = 0, |B| < 1) the situation is slightly

different. The p T ADF(1) and R2 tests are all invariant to the value of
4 in the model. This is clearly illustrated by examining the rejection
frequencies for these test statistics in Tables 1 and 2 for different non-zero
values of 4 and any given value of B and noting how little they vary. The

R test, however, is not invariant to u and rejection frequencies for this
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test fall as u increases, making it the least powerful of the tests when
u # 0. This is explained by the fact that the R test is inappropriate if the
alternative model has a time trend - in such a situation the econometrician
should prefer the R test (one might regard using the R test in situations
where 4 # 0 as equivalent to wrongly performing a 7 u test instead of a 7.
“test). For ‘the other tests it is clear -that in terms of decreasing power we
have the order p » Tp and ADF(1) for all values of S. The relative power of
the R test changes with the value of . For B < 0.8 the power of R, is
between that of T, and ADF(1). However, when g = 0.8 the R test is the most
powerful of the tests considered. This is because R, is locally most powerful
in the neighbourhood of # = 1, and so we would expect it to out-perform the
other tests (for u = 0) as B approaches 1.

One general point to mnote is that the rejection frequencies do not differ
very much from 1 until B reaches 0.8 (with the exception of the R test for
non-zero values of u). For this reason, we concentrate on values of 8 = 0.6,
and extend the analysis to include values of g = 0.85, 0.9, 0.95. Tables 3 to
6 show the remainder of the results. Since the R2 test and appropriate
versions of the 7, p and ADF(1) tests are invariant to the value of u we only
show the effects of u = 0 and u4 = 0.05 on these tests.

Consider the cases where u4 = 0 (|f]| < 1) and tests are performed using 1%
critical values (Table 3; note that the results at 5% in Table 5 follow very
similar patterns). For a small mean shift (m2 = 0.5 or 1) we find that the

rejection frequencies are not very much smaller than for the situation where

m, = 0. However as m, increases the rejection frequencies tend to fall. This

is most noticable when m, 6 = 4 and the rejection frequencies fall very close to
zero for every test statistic when g = 0.8. In fact, when g = 0.8 a mean
shift of m, = 2 is sufficient to approximately halve the power of all the
tests (except Rz) from the level experienced for m, = 0.

Indeed, we may identify some cases where the tests are biased, in the
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sense that there seems to be a lower probability of rejecting the null
hypothesis that # = 1 when it is false than when it is true (indicated in
Table 3 by rejection frequencies of less than 0.01).  For example, see the
rejection frequencies for the ™ test when m = 4, p = 0.6 and t = 60, and
for the ADF(1) test when m = 4, f = 0.6 or 0.8, and t, = 40 or 60. Values
less than 0.008.are.significantly biased .in 9604, replications .using a 5% test.

The position of the mean shift (to) does seem to have some effect on the
rejection frequencies.  Examination of Table 3 indicates that we have similar
results, in general, for t, = 20 and 80, and similar results for t = 40 or
60, with higher rejection frequencies in the former case.

The comparative performance of the tests for 4 = 0 and m_ non-zero is
very similar to the u = m, = 0 case. Thus the order in terms of decreasing
power seems to be R, »p w u and ADF(1). The R test is inappropriate here
(as 4 = 0), so we might expect it to be the least powerful of the tests in
this case. This is true for m = 0.5, but as m, increases the relative
performance of the R2 test improves (although its absolute power declines), so
that when m = 4 it is the most powerful of the tests considered. Thus the
mean shift does not reduce the power of the R test as much as it reduces the
power of the other tests.

We now turn to the cases where 4 = 0.05 (|#| < 1) and tests are performed
using 1% critical values (Table 4; again the results for 5% follow similar
patterns: see Table 6). In gemeral we observe that as either m or B increase
the rejection frequencies for each test fall. It is fair to say therefore

that the results in Table 4 follow a similar pattern to those in Table 3, with

the notable exception of the R test. Not being invariant to the value of 4,

the power of the Rl test falls towards zero as u increases, and so the R ) test
is the least powerful test for x4 non-zero.
One important difference between the results of Tables 3 and 4 is the

effect of the position of the mean shift (t). It is true that for some cases
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where 4 = 0.05 the effect of the value of t  on rejection frequencies is the
same as for the u = O cases. However, this seems to be the exception rather
than the rule, and the precise effect of the value of t seems unclear when 4
is non-zero.

Comparing the performance of the tests from Table 4 leads us to exactly
the same. conclusions..as..we .reached .from .Table 1 with R, being the most
powerful test for S close to 1, and Py being the most powerful elsewhere.
Note that these results hold for all other non-zero values of u not reported
here. The R test is not invariant to the value of u. This causes the R
test to be biased for many large values of u (for example 4 = 0.1). In fact,
as the value of u increases, the power of the Rl test falls to zero for any
given value of m, and B, since the calculated value of the R test statistic
will fall as u increases.

To summarise, we find that the introduction of~ a simple mean shift
reduces the power of all of the tests for a unit root considered here.  This
reduction is more pronounced when the trend parameter 4 is non-zero. However,
the power advantage of the p p and R1 tests over the more commonly used T,U and
ADF(1) tests (when y = 0), and of the p T and R2 tests over the T, and ADF(1)
tests (when g # O0), is maintained when m, ¥ 0. It also seems to be the case
that the larger is the mean shift m, the greater is the advantage of the R
and R tests (when 4 = 0 and u # O respectively) over the Dickey-Fuller and
augmented Dickey-Fuller tests. As an illustration of this, Figure 1 indicates
the power curves. (generated for g = 0.6 (0.05) 1) of the tests when m, = 0

(the top four curves) and for m, = 4 (the bottom four curves), in both cases

when u = 0.05. Notice how “the power of the R test dominates that of the

other tests for 0.6 =< f < 1 when m = 4.

4. Response Surfaces

We fit a response surface for the rejection frequencies for each of the
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test  statistics. Response surfaces summarise the relationship  between
rejection frequency and the parameters of the simulation (here, m,, 4, p and
INE These estimated response surfaces should give us some idea of the
probable power loss due to any particular mean shift. Since we are concerned
with power we can exclude all experiments where g =1

It has - already been -indicated that the R  test is inappropriate in
situations where u is non-zero, and so as we are intc'rcsted in examining the
effect of a mean-shift on unit root tests, it is semsible to fit the response
surface for R . only for those experiments where 4 = 0. Similarly, the
response surface for the R~ test is estimated only for those experiments with
non-zero values of u.

In addition, since the 7 r P R, tests and appropriate versions of the
ADF(1) test are invariant to the value of u we need only consider one value of
u, and so we fit response surfaces for the above tests only for experiments
where 4 = 0.05. We thus estimate eight response surfaces, each with a maximum
of 80 experiments.

For the rejection frequency m of each test statistic we use the logistic
transformation ln(x/(1-7)); note that this means that experiments with =7 = 0
or 1 will be omitted from the response surface. All variables in the response
surfaces are multiplied by (N77:(1—71:))”2 (where N is the number of replications
of each experiment; here this is 9604) so that each transformed rejection
frequency will have unit variance. This heteroscedasticity transformation is

also used by Hendry and Neale (1991).

When m = 0 we need to explain the power of each test by g alone. In

fact, preliminary investigation showed that using B provided a better fit in
each response surface regression than did B. Since the simulation results
indicated similar patterns for t = 20 or 80, and for t, = 40 or 60 (as
indicated by Perron (1990), we also use km2 as well as m, where

k= min[tol 100, (l—tO/ 100)]. As an illustration, we report below response
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surfaces of the rejection frequemcies of tests using 1% critical values.

HL(r,) = 4.5075H - 7.3890HB> - 0.6706Hm - 1.6268Hkm
(7.66)  (-7.42) (-3.64) 2 (-2.83)

= 0.6019 DW = 0.7912 53 observations
AR(1) = 22.96 Norm(2) = 5.05 Hetero(1) = 1.05

HL(r,) = 5.0193H - 10.3565HA’ - 0.9598Hm, + 0.7921Hkm,
(1431) (-16.48) (-7.66) (2.40)

R? = 0.8494 DW = 0.8370 52 observations
AR(1) = 17.54 Norm(2) = 10.27 Hetero(1) = 1.30

HL(p,) = 4.5473H - 6.2906HA° - 0. 5343Hm, - 1.8739Hkm,
A (8.39)  (-7.08) (-3.57) 2 (4.31)

2 = 0.6824 DW = 0.5817 46 observations
AR(1) = 24.16 Norm(2) = 2.31 Hetero(1) = 0.94

HL(p,) = 4.9982H - 9. 9118HA® - 0.8623Hm_ + 0.7355Hkm,
(13.13) (-14.82) (-6.90) * (2.23)

R? = 0.8185 DW = 0.8325 51 observations
AR(1) = 17.51 Norm(2) = 10.51 Hetero(1) = 0.11

HLR) = 4. 7176H - 6.2900HB’ - 0. 5315Hm, - 1. 9070Hkm,,
(8.77) (-1.19) (-3.65) 2 (—4.54)

R? = 0.7136 DW = 0.6039 43 observations
AR(1) = 20.63 Norm(2) = 1.58 Hetero(1) = 1.13

HL(R,) = 4.9170H - 9. 7021HB® - 0.6330Hm_ + 0.0719Hkm_
(23.92) (-25.45) (-7.81) * (0.32)

R? = 0.8849 DW = 0.6345 70 observations
AR(1) = 32.49 Norm(2) = 15.15 Hetero(1) = 0.003

HL(ADF(1)) = 3.8714H - 6.7325HF° - 0.7642Hm_ - 1.7074Hkm,
[g = 0] (12.98) (-12.69) (—4.43) 2 (=3.04)

= 0.7481 DW = 0.8737 ~ 65 observations
AR(I) = 21.88 Norm(2) = 8.49 Hetero(1) = 0.03

= 3.6990H - 7.7630HF> - 1. 1693Hm, + 0.6086Hkm,
(14.56) (-14.45) (-7.69) (1.51)

R? = 0.8000 DW = 0.3749 72 observations
AR(1) = 47.89 Norm(2) = 9.09 Hetero(1) = 0.86

HL(ADF(I)
[u = 0.05

)
]

Numbers in parentheses below estimated coefficients are asymptotic ¢-ratios;
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the serial correlation (denoted AR), normality, and heteroscedasticity  tests
are all asymptotically distributed as x*, with degrees of freedom given in

parentheses.

As might be expected, the regressors B and m, have negative coefficients
in every response surface, indicating -that power falls as B . approaches 1, or
as m, increases. However, the R? for each response surface is not
particularly high. This may be because this Monte Carlo study uses a wide
range of values of B, whereas other similar studies (for example, Hendry and
Neale (1991)) have considered a smaller range of values of B so that any
power function may be approximately linear.

The heteroscedasticity transformation seems to perform well, as we are
unable to reject the null hypothesis of homoscedastic errors for any of the
response surfaces, even at a 10% significance level. However, there is clear
evidence of serial correlation in the residuals of each response surface
regression. As our regression data have no specific order, it may be possible
to reorder the data in such a way so as to remove this serial correlation.
However, taken together with the relatively low R? values this evidence of
serial correlation suggests that the relationships are misspecified, so that
it is likely that the response surfaces could be improved upon.

We may use the response surfaces to predict the power loss for each test
due to a particular mean shift. If a test (labelled Z) has an estimated

response surface given by

HLZ) = o H + «Hf + o Hm + o Hkm,

then the power of the test will be given by exp(y)[l-i—exp(y)]'l, where

—A A 3 A A
Yy =aq, + alﬂ + am + oz3km2




5.  Conclusions

Our simulation results show that, at least for alternatives close to the
unit root, either an appropriate Bhargava test statistic or the suitably
normalised OLS estimator of the unit root (i.e. p i or p r) has higher power
than the Dickey-Fuller or augmented Dickey-Fuller ¢-tests. In particular, in
models with - a trend, -an increase in the 'mean ‘shift does not reduce the power
of Bhargava’s R test as much as it reduces the power of the other tests.
Estimated response surfaces illustrate how we may summarise the likely power

loss due to any particular mean shift.
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Table 1
Rejection Frequencies Without a Mean Shift (m2 = 0)
1% critical values

™=

pylo, R, R, ADF(1)

1.000 . 1.000
1.000 1.000 . 1.000
1.000 : . 0.969
0.683 . 0.414
0.010 . . 0.009

1.000 . . 1.000
1.000 . . 0.994
- 0.989 . . 0.857
0.364 . . 0.235
0.010 . . 0.011

1.000 . 1.000
1.000 . 0.994
0.989 . 0.861
0.375 . 0.237
0.010 . . 0.010

1.000 . . 1.000
1.000 . . 0.995
0.991 . 0.865
0.371 0.230
0.011 0.011

—Oo0o0
CONP N

—OO0o0
Y-S Y- N

—=o000D

1Yo N )

0.
0.
0
0.
1

1.000 . . 1.000
1.000 . . 0.995
0.988 0.860
0.367 0.227

0.010

—Oooo
(o X S o)




Table 2
Rejection Frequencies Without a Mean Shift (m2 = 0)

5% critical values

p”/pT R, R, ADF(1)

. . 1.000
1.000 1.000 1.000 1.000
1.000 1.000 0.999

0.969 ‘ 0.798
0.052

1.000
1.000
0.981
0.568
0.051

1.000
1.000
0.984
0.564
0.052

1.000
1.000
0.982
0.562
0.054

1.000
1.000
0.981
0.562
0.051




Table 3
Rejection Frequencies at 1% critical values when y = 0

t, P R, R, ADF(1)
0.998 1.000 1.000 0.952 0.969
0.517 0.683 0.719 0.379 0.414
0.255 0.383 0.418 0.181 0.218
0.095 0.146 0.160 0.069 0.090
0.027 0.040 0.042 0.023 0.027

0.998 1.000 1.000 0.942 0.951
0.994 0.999 0.999 0.943 0.941
0.995 0.999 1.000 0.947 0.942
0.996 0.999 1.000 0.947 0.950

0.485 0.662 0.700 0.358 0.390
0.486 0.658 0.696 0.372 0.391
0.486 0.658 0.694 0.373 0.396
0.491 0.666 0.701 0.373 0.397

0.252 0.368 0.402 0.181 0.213
0.249 0.369 0.406 0.177 0.203
0.253 0.377 0.412 0.179 0.211
0.242 0.376 0.410 0.176 0.205

0.088 0.140 0.155 0.064 0.082
0.085 0.144 0.159 0.065 0.082
0.089 0.143 0.157 0.066 0.086
0.088 0.142 0.156 0.067 0.081

0.029 0.043 0.046 0.022 0.029
0.026 0.038 0.042 0.021 0.025
0.025 0.039 0.041 0.023 0.026
0.028 0.040 0.043 0.026 0.026

0.991 0.999 0.999 0.936 0.906
0.982 0.996 0.997 0.940 0.854
0.980 0.996 0.998 0.935 0.848
0.988 0.998 0.999 0.938 0.891

0.451 0.608 0.644 0.353 0.352
0.421 0.574 0.613 0.354 0.328
0.420 0.588 0.630 0.354 0.332
0.448 0.617 0.660 0.351 0.357

0.226 0.343 0.372 0.169 0.193
0.208 0.325 0.352 0.173 0.172
0.211 0.324 0.358 0.179 0.178
0.221 0.343 0.380 0.174 0.187

0.087 0.138 0.153 0.068 0.082
0.081 0.127 0.142 0.065 0.072
0.079 0.130 0.145 0.065 0.075
0.084 0.139 0.154 0.064 0.076

0.026 0.040 0.043 0.022 0.026
0.026 0.041 0.044 0.024 0.023
0.023 0.036 0.040 0.019 0.024
0.026 0.038 0.040 0.021 0.025
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Table 4
Rejection Frequencies at 1% critical values when 4 = 0.05

t, T, P, R, R, ADF(1)
0.978 0.991 0.363 0.952 0.865
0.300 0.371 0.125 0.383 0.230
0.131 0.171 0.085 0.180 0.112
0.052 0.063 0.057 0.070 0.047
0.018 0.020 0.030 0.022 0.017

0.971 0.985 0.199 0.951 0.846
0.972 0.988 0.145 0.947 0.840
0.973 0.988 0.148 0.949 0.848
0.966 0.984 0.203 0.951 0.835

0.287 0.357 0.071 0.368 0.221
0.298 0.367 0.060 0.373 0.230
0.291 0.357 0.061 0.370 0.219
0.286 0.355 0.079 0.367 0.221

0.127 0.163 0.056 0.179 0.110
0.134 0.168 0.053 0.178 0.114
0.127 0.161 0.053 0.177 0.108
0.137 0.176 0.066 0.184 0.112

0.050 0.062 0.043 0.070 0.046
0.053 0.063 0.041 0.067 0.048
0.048 0.060 0.042 0.062 0.043
0.051 0.061 0.047 0.071 0.045

0.018 0.020 0.023 0.025 0.017
0.018 0.021 0.025 0.021 0.019
0.020 0.022 0.027 0.022 0.017
0.021 0.021 0.028 0.023 0.020

0.950 0.973 0.081 0.937 0.790
0.958 0.978 0.031 0.931 0.806
0.957 0.978 0.034 0.931 0.801
0.953 0.976 0.091 0.939 0.786

0.272 0.333  0.040 0.344 0.207
0.278 0.342 0.025 0.354 0.213
0.276 0.345 0.026 0.352 0.216
0.274 0.334 0.048 0.355 0.215

0.127 0.162 0.037 0.172 0.105
0.124 0.159 0.028 0.175 0.105
0.127 0.158 0.030 0.172 0.108
0.126 0.160 0.049 0.167 0.102

0.050 0.063 0.034 0.071 0.044
0.047 0.056 0.027 0.061 0.044
0.048 0.059 0.030 0.066 0.048
0.050 0.061 0.039 0.068 0.045

0.019 0.021 0.024 0.023 0.018
0.018 0.021 0.025 0.023 0.017
0.019 0.021 0.025 0.021 0.018
0.020 0.024 0.026 0.022 0.020
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Table 5
Rejection Frequencies at 5% critical values when u = 0

t, T Py R, R, ADF(1)
1.000 1.000 1.000 0.999
0.879 0.955 0.969 0.798
0.639 0.780 0.821 0.575
0.337 0.460 0.502 0.314
0.123 0.169 0.182 0.120

1.000 1.000 1.000 0.998
1.000 1.000 1.000 0.998
1.000 1.000 1.000 0.996
1.000 1.000 1.000 0.997

0.864 0.946 0.961 0.779
0.868 0.951 0.962 0.775
0.861 0.944 0.944 0.779
0.868 0.949 0.965 0.783

0.630 0.770 0.808 0.561
0.626 0.765 0.804 0.563
0.632 0.770 0.810 0.565
0.630 0.769 0.814 0.562

0.318 0.437 0.477 0.296
0.321 0.450 0.488 0.300
0.329 0.455 0.494 0.315
0.329 0.456 0.493 0.303

0.130 0.175 0.192 0.131
0.125 0.172 0.185 0.117
0.126 0.172 0.190 0.122
0.128 0.174 0.187 0.128

1.000 1.000 1.000 0.993
1.000 1.000 1.000 0.988
1.000 1.000 1.000 0.984
1.000 1.000 1.000 0.989

0.841  0.930 0.945 0.752
0.804 0.906 0.928 0.708
0.809 0.912 0.933 0.717
-0.830 0.928 0.952 0.742

0.600 0.740 0.775 0.528
0.574 0.720 0.762 0.507
0.569 0.710 - 0.755 0.501
0.591 0.746 0.794 0.529

0.313 0.433 0.470 0.297
0.297 0.416 0.453 0.279
0.309 0.426 0.466 . 0.285
0.322 0.445 0.488 0.301

0.123 0.171 0.183 0.122
0.123 0.167 0.182 0.121
0.118 0.164 0.180 0.119
0.121 0.167 0.181 0.115
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Table 6
Rejection Frequencies at 5% critical values when u = 0.05

t, T, P, R, R, ADF(1)
0.999 1.000 0.891 0.991 0.982
0.664  0.741 0.454 0.726  0.562
0.403 0.474 0.333 0.474  0.348
0.190  0.225 0232  0.233 0.178
0.087 0.095 0.130 0.092 0.085

0.999 1.000 0.778 0.993 0.979
0.999 1.000 0.713 0.991 0.978
0.999 1.000 0.718 0.991 0.980
0.999 1.000 0.783 0.992 0.976

0.646 0.724 0.336 0.716 0.548
0.653 0.729 0.302 0.707 0.559
0.656 0.734 0.311 0.707 0.555
0.647 0.718 0.362 0.703 0.546

0.392 0.459 0.259 0.473 0.342
0.398 0.463 0.238 0.469 0.343
0.387 0.455 0.232 0.462 0.338
0.398 0.472 0.275 0.477 0.353

0.196 0.233 0.190 0.233 0.180
0.201 0.239 0.183 0.239 0.188
0.186 0.220 0.182 0.229 0.177
0.193 0.229 0.197 0.231 0.179

0.082 0.091 0.116 0.094 0.080
0.082 0.090 0.115 0.094 0.085
0.087 0.054 0.120 0.091 0.084
0.087 0.098 0.124 0.096 0.089

0.998 0.999 0.592 0.991 0.963
0.998 1.000 0.428 0.988 0.969
0.997 0.999 0.426 0.988 0.970
0.997 0.999 0.612 0.989 0.962

0.618 0.695 0.236 0.684 0.524
0.633 0.716 0.185 0.700 0.533
0.632 0.708 0.190 0.689 0.539
0.628 0.704 0.273 0.693 0.534

0.393 0.460 0.192 0.460 0.338
0.386 0.453 0.152 0.459 0.342
0.392 0.461 0.160 0.461 0.344
0.384 0.446 0.225 0.460 0.334

0.193 0.233 0.151 0.236 0.180
0.188 0.221 0.133 0.229 0.175
0.187 0.218 0.143 0.227 0.177
0.189 0.218 0.170 0.231 0.176

0.085 0.091 0.110 0.094 0.081
0.084 0.093 0.105 0.094 0.081
0.085 0.092  0.110 0.091 0.084
0.086 0.096 0.126 0.098 0.085
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Figure 1: Power when myp = 0 or 4
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