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Abstract

In the present paper, the saddle point approximations to the density and

tail probability of a ratio of quadratic forms in normal variables are

derived. A numerical exposition via the Durbin-Watson test statistic

reveals several desirable features. Beyond their accuracy and robustness to

extreme scenarios, the approximations, which only involve a limited number

of computable functions, provide the practitioner with an accessible and a

very powerful tool.
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1. INTRODUCTION

A large number of statistics can be expressed as a ratio of quadratic

forms in normal variables, namely

r=
x'Fx
x'Gx '

where the elements of the column vector x are inddpendently and normally

distributed, each with a zero mean and variance T
2
, F and G are (nxn)

non-stochastic matrices and G is assumed to be positive semi-definite.

Although the exact distribution of r is only known in some special cases,

the computation of its cdf is made possible by the availability of

numerical procedures such as Imhof (1961), Davies (1973), or Shively et al.

(1990). Nevertheless, given the abundance of such statistics and their

frequent use in applied statistics and econometrics, there is undoubtedly a

need for tractable and accurate approximations to their density and

distribution functions.

Unless G is an identity or an idempotent matrix, any attempt to provide

such approximations by methods of matching moments or curve fitting

techniques is doomed to a hopeless computational task, as then, the moments

of r are expressed as infinite sums of invariant polynomials with multiple

matrix arguments, see Smith (1989). Evans and King (1985) have shown that

the beta approximation-to-The-size of-the-Durbin-Watson test statistic is

reasonably accurate. The approximate powers, however, could not have been

obtained, due to the algebraic complexity of the moments under the

alternative hypothesis.

In this paper, the saddle point method is used in deriving a compact and

accurate formula to the distribution of a ratio of quadratic forms in
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normal variables. Unlike their direct Edgeworth counterparts, expansions

based on the saddle point method contain relative rather than absolute

errors, are non-negative everywhere (for the density function), and are

almost uniformly superior to the former in the tails of the distribution,

where most of the statistical interest lies. Ample evidence is available,

see for instance, Easton and Ronchetti (1986), McCullagh (1987), Reid

(1988), or Barndorff-Nielsen and Cox (1989).

Following Barndorff-Nielsen and Cox's (1979) development of the tilted

Edgeworth expansion or, equivalently, the saddle point expansion, this

method received a dramatic surge in popularity in the literature.

Consequent applications to related problems have mostly utilized the

probabilistic notion of exponential tilting, rather than the more

traditional complex variable technique of steepest descent. Daniels (1987)

showed that both approaches lead to identical density approximations, but

not so for the tail probabilities.

The saddle point approximation to the density function is derived in

section 2. The relative error is 0(n-1). This approximation is of

particular importance, as unlike the cdf, the density function of r is not

provided by any existing algorithm. It is demonstrated that by a

straightforward transformation, an extension follows for the case of a

ratio of a bilinear form to a quadratic form. The Lugannani and Rice (1980)

formula is -applied —in --otrtaining an explicit • expression for the cdf in

section 3. This expression is shown to be remarkably simple. A brief

numerical exposition via the power of the Durbin-Watson test statistic

follows in section 4 and section 5 concludes the paper.



2. SADDLE POINT APPROXIMATION TO THE DENSITY FUNCTION

Although the exact mgf of r is known, its algebraic form as demonstrated

by Smith (1989) is sufficient to deter one from any practical attempt to

directly invert the Fourier transform

c+103
k (w)-wr

f(r) =e dw, (2.1)

c-Ito

where f(r), k (w), are the density and cgf of r respectively and c is a

real positive constant in the convergence strip, that is assumed to contain

in its interior the origin. Instead, we embark on an approach previously

taken by Daniels (1956) and Holly and Phillips (1979) in their derivations

of the saddle point approximations to the densities of the serial

correlation coefficient and the k class estimator in a simultaneous system,

respectively. The starting point in both is Geary's (1944) inversion

formula for the density of a ratio.

For notational convenience and parsimony, the distinction between random

variables and given values will not always be entertained. The

interpretation should be clear from the context though.

Given the assumptions above, the joint mgf of x'Fx, x'Gx is

w x' Gx + w x' Fx
1 2

1.4(w ,w ) = Ee
1 2

—1/2

• -- = 11 — (Cd1G + 6)2F1

see for example, Johnson and Kotz (1970). From Geary's (1944) extension to

Cramer's theorem, the inversion formula for the density of r may be

written as

3



c+ico

1 r
f(r) 

=• 
2ni j

c-103

8M(U—rW
2
,w
2
)

au
dw ,
2

u=0

(2.2)

where the change of variables, wi= u - rw2, has occurred, the assumption

that G is positive semi-definite was used and the contour of integration

runs along the imaginary axis in the w2 plane. Let D = F - rG, R = I - 2(uG

+ w 
2
D). Using the result,

equation (2.2) becomes

f(r) =

1
2ni

—1/2
—1/2_ 

au  - IRI tr (1-1G) ,

—1 —1/2

tr[(I - 2wD) C] II - 2wD I dw

—1 -1/2 E ln(1-2wd.)
= 1

tr[(I - 2wD) G] e 
11

dw, (2.3)

where the 
di's' 

i = 1,...,n, are the ordered eigenvalues of D, d1 
d
2

dn, and the subscript have been omitted. Now, with B(w) = tr[(I -
-1

2wD) G], nO(w) = -1/21E11n(1 - 2wdi), equation (2.3) is of the general

form of integrals

C4-103

h(r) = 
1 r

2ni j
c—ID)

ntp(w)
B(w) e w, (2.4)

for which, the saddle point method can be readily applied. The key idea

behind the technique is to find an admissible deformation of the path of

integration in the complex plane, such that the contribution to the value

of h(r) outside the immediate neighborhood of the saddle point of the
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integrand is negligible. It follows directly from the Cauchy-Reimann

equations that if the chosen contour is a straight line parallel to the

imaginary axis, then it intersects the real axis orthogonally at the saddle

point. The point c becomes the real saddle point, w, satisfying i,1" (w) = 0.

The approximation is, then

B(w)eriVIw) 
[ 1 + 0(

n
71) ]

(2
h(r) -

(6)))1/2
nor

For a detailed and readable account, the reader is refered to De Bruijn

(1958). Applying the method to the problem in hand, the saddle point

defining equation is seen to be

with

f(r) -

(d./(1-2wd. )1 = 0, (2.5)
1=1 2.

tr[(I - 2wD) G] expi-1/2 E 111(1 - 2wd01
[ 1 + 0(n-1) ], (2.6)

1=1 

{ n 2

4n 
11

[d./(1-2wd ) ]
= 1 

, 2 1 1/2

1

which agrees with the general form of the saddle point approximation for

the density of a ratio, given in Daniels (1954, sec. 9). The modulus of the

integrand decreases most rapidly on either side of the saddle point along

A.

the contour of steepest descent. Since this curve has a sharp peak at w,

the saddle point method embodies in it exactly the same principle as the

method of Laplace. De Bruijn (1958) illustrates this point with an

intuitive explanation.

-1
The approximation has a relative error of 0(n ). In contrast, the

Edgeworth expansion to the density function, when available, contains

generally only an absolute error of 0(n-1/2).

So far in the discussion, we have made an implicit assumption that B(w)

and O(w) are analytic on the path. In view of (2.6) then, the necessary
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condition for B(w) and O(w) to be analytic in the neighborhood of w, is

that w # 1/2d., Vi, i = 1,...,n. The sufficient conditions are that w lies

in the open interval containing the origin (c1,c2), such that

{ 

c = 1/2d , c = 1/2d if d >...0 >...> d
n

c = -co, c = 1/2d
11 2 

if d
1 

...>> 
n
> 0 .

See also Rice (1980), for the case of a single quadratic form.

A

(2.7)

By the definition of w, in (2.5), it will also be convenient to refer to

the sufficient conditions, (2.7), as the range of the saddle point.

Specifically, as r runs from -03 to co and 0 to co, w runs from 1/2d to 1/2d1

and -00 to 1/2d
1' 

respectively. A justification of (2.6) as a valid

asymptotic expansion is established by the use of Watson's Lemma, see for

example, Daniels (1954, sec. 2). Finally, by the convexity of nO(w), (w)

n 2 2

= 2 
1
E
1i 

] > 0, the uniqueness of the saddle point is also

ensured.

2.1 Ratio of a Bilinear Form to a Quadratic Form

The expansion appearing in (2.6) is not restricted to a ratio of

quadratic forms. Holly and Phillips (1979) derived the saddle point

approximation to the density of g , the k class estimator in a simultaneous

equations model. In their notation,
gk

y' A y
2 k 1 

From lemma 1 in Lye
y' A y
2 k2

(1991), a ratio --of-a 'bilinear form to a quadratic form can be easily

transformed into a ratio of quadratic forms. Writing then,

A

gk

6
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z'B z
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where (YyllZ =

( 2),
B = 1/2 (

_ 1

0 A

A 0
B
2

0

the approximate density of Pk follows from (2.6), with the di's,

1,...,n, now being the eigenvalues of B1 - gkB2. In their derivation, Holly

and Phillips (1979) have made an explicit use of the joint mgf of a

bilinear form and a quadratic form which, evidently, rendered the saddle

point approximation non-uniform, the expression being dependent on the

range of r. See p. 1535 of their paper.

There are, of course, numerous statistics which fall into the same

category. A prominent example arises in the context of the first order

stochastic difference equation,

Yt X'tP ut'

with u
t 
= pu 

-1 
• + e

t
, e

t 
- N(0, 0.2), t = 1,...,T,

t 

where y
t-1

, u
t-1

are lag values of 
y, 

u, respectively, 1p1 < 1, g is a
tt

(kx1) coefficient vector and Xt
is (kx1). The OLS estimator of 7 is

-
Y' M Yt-i t

where M = I - X(X'X)-1X'. As is well known, ; is biased. Knowledge of the

A.

approximate density enables us to calculate the moments and bias of T. To

retain the asymptotic properties of the saddle point approximation, the kth

-moment of r-about-the-on4gin-can-be obtatned.by, numerical integration of

(2.6), namely Mrk) = r
k 
f(r) dr. This important feature is not entailed

-co

by any of the procedures mentioned in the introduction.

3. APPROXIMATE TAIL PROBABILITIES

We proceed by fitting an expression to the tail probability. If

normalization is required, then the approximate density needs to be
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numerically integrated. However, as will be demonstrated in the next

section, for the case considered, this will generally be unnecessary. Using

Geary's (1944) formula for the density, the tail probability is, formally,

co

pr(r c*) = f f(r)dr

c*

c+1 to

1
27ri

-1 -1/2

trt(I - 2w(F - rG)) Gill - 2w(F - rG)I dw dr

-1 -1/2

tr[(I - 2w(F - rG)) Gill - 2w(F - rG)I dr dw

-1/2

II - 2w(F - c G)I dw

dw
e
-1/2 in 1I-2wD

w ,
(3.1)

c-iao

where D = F - c*G. Now, -1/21n11 - 2wD* is the cgf of the quadratic form
n

"Q = 
iEH1d.Y1(1) 

, where the d.'s are the eigenvalues of D and the
= 

X
2

1(1) 

,
S, i = I,.• • ,n, are independent central Chi-squared variates, each

with one degree of freedom. By the additivity property of cgfs,

k (w) = E k (w),
Q* 1=1 * 2

d -X
1 1(1)

where K (w) is the cgf of Z. Thus, (3.1) is, conveniently,

1 i (6))1 dCi)
expf E k

2ni 1=1 
d
*
X
2 C4)

c-Ito 1 1(1)

8
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There are several different versions of saddle point approximations to

integrals of the form of (3.2), of which, distinctively, the most appealing

in terms of its simplicity is due to Lugannani and Rice (1980). Applied to

(3.2), the approximation is

pr(r c*) = 1 - (I)(i) + 0(i)[ 1 - (3.3)

where I?, 0, are the standard normal cdf and pdf respectively, z ='w

n * * 1/2

21E101,--/(1-26)ci.)2=Elm(1-26x1Jsgn(;), and W as defined
= 1=1

• 
by (2.5), is in the open interval (c

* 
,c
• 
), with c

*
, j = 1,2, given by

2

(2.7), except that the di's replace the d.'s everywhere, i = 1,...,n.

0.6

Sgn(w) is -, 0, + when Q* is = , E(Q*), respectively. See the

appendix for rationale. When Q* = E(Q*), equation (3.3) can be shown to

collapse to

3
pr( r 2 c*) = 1/2 - -

6(2701/2'

where p3 is the third standardized cumulant of Q*, given by
fl *3 *2 3/2

p = 8 d. /(2 E d. ) .
3 i=1 1 1=1 1

(3.4)

3.1 Brief Discussion

Unlike other saddle point approximations to the tail area, which account

in different ways to the pole in the origin in (3.2), Lugannani and Rice's

formula is valid over the entire range of the statistic. See for

comparisons, Holly and Phillips (1979, appendix B), Robinson (1982), or

Daniels (1987). Practically, the formula is very simple to execute, merely

requiring the calculation of the eigenvalues of D* and a grid search

solution for the saddle point, by means such as described by Easton and

Ronchetti (1986). Most standard computer packages provide these facilities.

The only drawback of the technique arises in the vicinity of E(Q*). As

K'(0) = µ, the mean of the distribution, it follows from (2.5) that when Q*

9



is close to E(Q*), w is close to zero, hence, from (3.3), the terms 1/z,

1/ may become exceedingly large, resulting in a deterioration of the

approximation. The problem is handled by tightening the convergence

tolerance of (2.5).

4. NUMERICAL EXAMPLE

The method applies for a wide class of test •statistics for

autocorrelation and heteroscedasticity. Shively et a71: (1990) discuss the

subclasses consisting of locally best invariant and most powerful invariant

tests, all of which can be expressed as a ratio of quadratic forms in time

series regression residuals. The Durbin-Watson test statistic which

attracted a large number of studies over the years, is probably the most

popular test for autocorrelation and so, it is chosen for our exposition.

Consider the classical linear model,

y = xg + u,

where y is (nx1), X is (nxk) non-stochastic and of rank k, g is (kx1) and

u is an (nx1) disturbance vector. The Durbin-Watson test statistic for a

first order autocorrelation in the OLS residuals is given by

d - 
u'MAMu
u' Mu

where M is defined above, and A is the usual first differencing matrix.

Under the alternative hypothesis of a positive AR(1) process, u WO, E),

with

1
= 2

1-p

[
n-4

1 p ... p _2

p 1 p... pn
I

n-1
p
 
... pi

and p is the autoregressive coefficient. The power of this test is,

usefully,
[ v, (E1/2),mAmm 1/2)v

1 - pr(d c*) = 1 -
v' CE

1/2
YM(E

1/2
)11

10



where v - N(0, I). In this particular case, D* = MCA - c*I)M. The

experiment is specifically designed to examine the technique's robustness

to extreme situations, as well as is conventional, to conform with typical

econometric scenarios. The data sets, containing intercepts, are;

EVL (EVS); The six largest (smallest) eigenvectors of the A matrix. Their

use results in the bounding extremes of the distribution of d.

WTS; Watson's matrix, consisting of (a a )/i2 and (a a )/V2 as
2 n-1 3 n-2

the regressors, the al's, i = 1,..,n, being the eigenvectors corresponding

to the roots of of A, sorted in increasing order. The distribution of d

under the null with this data matrix is symmetric around the mean of two.

SPIRIT; Log real income per head and log relative price of spirits in the

U.K., commencing 1870, as in Durbin and Watson (1950).

TREND; A linear time trend.

POP; Australian household population, households and household headship

ratio, 1966 and 1971.

Sample sizes of 20, 40 and p in the range 0 - .99 are considered.

Approximate powers are reported to four decimal places in tables 1 and 2

and are compared with exact values obtained by the Davies (1973) algorithm.

*

Numerically, w is chosen to satisfy I 
11

{d./(1-2wd)}I 10
-6
. This

=

convergence criterion is generally only necessary around the mean of Q*,

where w is small. Otherwise, the powers are largely. insensitive to drastic

changes in it.

As demonstrated, at least for the range of data sets considered, the

approximation is generally accurate to three decimal places in most

practical situations. As is natural for an asymptotic expansion, accuracy

increases uniformly with the sample size, but most importantly, also

towards the tails of the distribution, where the interest is. The formula

11



still performs reasonably well in the unlikely circumstances of the

eigenvectors data, with 6 regressors and n = 20. This should provide the

practitioner with a considerable amount of confidence in the technique,

even if these extremes happen to eventuate.

5. FINAL REMARKS

The class of estimators and statistics that can be expressed either as a

ratio of quadratic forms, or a ratio of a bilinear form to a quadratic

form, encompasses virtually most relevant statistics in current use. For

the general case, neither an expression, nor a numerical algorithm exists

for the density function of these statistics. Procedures are only available

for the computation of the cdf.

In this article, we have provided saddle point approximations to both the

density and tail probability of a ratio of quadratic forms in normal

variables. The requirement of a full knowledge of the cgf, always being the

major hindrance of the technique, was circumvented by Geary's (1944)

inversion formula for the density of the ratio. The futility of a direct

inversion of the Fourier transform is immediately obvious from the form of

the mgf as exhibited by Smith (1989).

The merits of the saddle point method and its superiority over the

Edgeworth expansion have been extensively studied in the modern literature.

The current research enforces previous findings. In particular, the

technique'siexceptional—performance in-the—tails.of .the distribution an
d

robustness to unusual events are certainly encouraging.
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Table 1

Approximate powers of the Durbin-Watson test statistic.

n=40

Data SPIRIT TREND POP

Davies Sp Davies Sp Davies Sp

0.00 .0500 .0500 .0500 .0500 .0501 .0500

0.10 .1382 .1381 .1422 .1420 .1381 .1380

0.20 .2987 .2983 .3127 .3124 .2986 .2981

0.30 .5101 .5095 .5369 .5363 .5111 .5103

0.40 .7129 .7122 .7458 .7452 .7163 .7155

0.50 .8580 .8573 .8864 .8859 .8636 .8629

0.60 .9387 .9383 .9574 .9571 .9449 .9444

0.70 .9757 .9755 .9859 .9857 .9808 .9806

0.80 .9905 .9904 .9955 .9954 .9941 .9940

0.90 .9960 .9960 .9984 .9984 .9983 .9983

0.99 .9978 .9977 .9991 .9991 .9994 .9994

Data EVL EVS WTS

P Davies Sp Davies Sp Davies Sp

0.00 .0500 .0499 .0500 .0501 .0500 .0500

0.10 .1241 .1237 .1215 .1215 .1308 .1307

0.20 .2484 .2476 .2559 .2557 .2752 .2748.

0.30 .4091 .4079 .4532 .4528 .4678 .4672

0.40 .5730 .5715 .6693 .6687 .6594 .6585

0.50 .7096 .7080 .8410 .8404 .8043 .8034

0.60 .8067 .8052 .9397 .9393 .8898 .8892

0.70 .8679 .8666 .9815 .9813 .9276 .9281

0.80 .9028 .9016 .9952 .9951 .9266 .9282

0.90 .9202 .9191 .9989 .9988 .8604 .8620

0.99 .9257 .9247 .9996 .9996 .6699 .6736

Sp : Saddle point approximation.

Davies : The Davies algorithm.
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Table 2

Approximate powers of the Durbin-Watson test statistic.

n=20

Data SPIRIT TREND POP

Davies Sp Davies Sp Davies Sp

0.00 .0500 .0498 .0500 .0499 "..0500 .0495

0.10 .0980 .0976 .1000 .0996 .0961 .0948

0.20 .1743 .1734 .1810 .1799 .1684 .1658

0.30 .2796 .2778 .2940 .2921 . .2677 .2633

0.40 .4050 .4024 .4287 .4258 .3871 .3806

0.50 .5349 .5314 .5661 .5625 .5133 .5050

0.60 .6528 .6487 .6874 .6834 .6321 .6227

0.70 .7482 .7439 .7816 .7775 .7334 .7239

0.80 .8177 .8134 .8468 .8430 .8134 .8045

0.90 .8625 .8583 .8862 .8828 .8725 .8648

0.99 .8820 .8778 .9011 .8977 .9094 .9026

Data EVL EVS WTS

Davies Sp Davies Sp Davies Sp

0.00 .0500 .0492 .0500 .0502 .0500 .0498

0.10 .0814 .0799 .0814 .0814 .0875 .0870

0.20 .1221 .1197 .1310 .1307 .1421 .1408

0.30 .1700 .1665 .2050 .2039 .2123 .2100

0.40 .2218 .2169 .3063 .3041 .2909 .2872

0.50 .2749 .2685 ,4304 .4268 .3659 .3608

0.60 .3302 .3225 .5635 .5588 .4236 .4179

0.70 .3965 .3890 .6875 .6821 .4516 .4473

0.80 .4967 .4936 .7880 .7826 .4400 .4398

0.90 .6642 .6524 .8596 .8547 .3864 .3926

0.99 .9113 .8939 .9008 .8961 .3159 .3290

Sp : Saddle point approximation.

Davies : The Davies algorithm.
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APPENDIX: THE LUGANNANI-RICE FORMULA

No attempt will be made here to rederive the Lugannanni-Rice formula, or

justify its asymptotic properties. The reader is, however, encouraged to

refer to Daniels (1987, sec. 4), or Barndorff-Nielsen and Cox (1989, p.

115), for alternative derivations of the same expression.

Let X
i' 

i = 1,...,n, be independent random variables, each with a cgf

K
x 
(w) and let S = E 

11 X,* 
By the additivity property of cgfs, K

s
(w)

1=

= 
11
E k (w). The Fourier inversion formula for the tail probability may be
=  X

1

written as

Pr(S s) =

c+ico

L2 IC-,03
tfl

exp{ E (k (6)) - wx )1 dw (c > 0), (A.1)
1=1 X

wheres,x1, aregiverivaluesofSamiX., 
respectively. The Lugannani-Rice

1 

approximation to (A.1) is

1 - + 0(i) [
1 1

{where, in addition to the definitions in section 3, e = 2 E (wx
i=i i

•••

1t2 f n 11 / 2A A

K
x 
(A))1 sgn(w") and z = w Z K" (w) For the problem in hand, X. E

1=1 x
1 

1
1 

* 2
a weighted Chi-squared variate with one degree of freedom,d

i
x
i(i)'

*
K * 2 (W) = -1/21n(1 - 2wd

i
) and E x. = E dx

2
= 0. The full

dX
1

1=1 1 1=1 1 1(1) 
(1)

expressions for z and e in (3.3) easily follow.
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