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ABSTRACT

Many studies have investigated the issue of time stationarity of an asset's systematic

risk. While there is considerable evidence to suggest that an asset's systematic risk is best

described by some stochastic parameter model, little work has been conducted in deter-

mining the most appropriate stochastic parameter model. This paper addresses this issue.

We extend the study conducted by Fail', Lee and Fry (1992) to investigate which varying

coefficient model best describes the systematic risk of assets in the Australian equity mar-

ket, for those assets for which a constant coefficient model is found to be inadequate. Our

testing stategy is point optimal (see King (1987a)) given that this approach to testing is

designed to have good small sample properties. Our results suggest that generally in cases

where a stochastic parameter is appropriate a Hildreth-Houck (1968) random coefficient

model is the preferred model.
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1. INTRODUCTION

The notion of risk and its measurement is of fundamental importance to modern finance

theory. For many years the dominant paradigm of the equilibrium risk-return trade-off has

been the capital asset pricing model (CAPM). This model states that the relevant risk mea-

sure is the systematic risk or beta, because all other risk measures can be diversified away

through holding the market portfolio. Empirically this systematic risk is often estimated

by applying ordinary least squares (OLS) to the market model.

In recent times the literature on the market model has shown a great deal of con-

cern with the issue of whether beta is time varying. Such variation in beta may arise

through the influence of microeconomic or macroeconomic factors. The evidence from this

literature suggests that beta is not constant but is best described by some type of stochas-

tic parameter modell. For instance, Fabozzi and Francis (1978), Francis and Fabozzi

(1980), Fabozzi, Francis and Lee (1982) and Alexander and Benson (1982) suggest the

Hildreth-Houck (1968) random coefficient model as an appropriate model of time variation

in systematic risk. Alternatively Sunder (1980), Garbade and Rentzler (1981), Alexander,

Benson and Eger (1982) and Simonds, La Motte and McWhorter (1986) propose a random

walk coefficient model as most appropriate. Another possibility is to consider a more gen-

eral alternative. Such an alternative is Rosenberg's (1973) AR(1) or return to normalcy

coefficient model. This alternative has been suggested by Bos and Newbold (1984) and

Faff, Lee and Fry (1992)2.

Given the existence of a number of alternatives the obvious question is which alternative

is best. This issue has received scant attention in the literature, although it was considered

by Bos and Newbold. Using classical large sample tests to compare the Hildreth-Houck

model and the Rosenberg model, they found in favour of the Hildreth-Houck model. How-

ever this may merely be a reflection of the low power of their tests.

The aim of this paper is to extend the study conducted by Faff, Lee and Fry (1992),

by further investigating the issue of whether the constant coefficient model is an adequate

simplification of reality using a more powerful testing strategy. Moreover we go on to
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determine which varying coefficient model is most appropriate if the constant coefficient

model is found to be inadequate3.

Faff, Lee and Fry (1992) used a sample of monthly data from the Australian equities

market. They employed a locally best invariant test for the AR(1) coefficient model (see

King (1987b)) for individual and portfolio betas over two five year time periods: 1978 to

1982 and 1983 to 1987. It was found that across all variations of their analysis a non-trivial

degree of beta non-stationarity was evident. Using continuous returns and a value weighted

market index they found evidence, (at the 5 % significance level) of non-stationarity for

11.3 % and 12.9 % of the individual firms in each sample period, respectively. Generally,

when assets were formed into portfolios and as the size of the portfolios was increased they

displayed a greater degree of non-stationarity. For example, in the 1983 to 1987 period for

portfolios (sorted by firm size) of 5, 10 and 20 assets, the rejection rates observed were 24.2

%, 45.2 % and 53.3 %, respectively. Finally, constancy rejection rates were slightly higher -

for randomly formed portfolios of 10 assets compared to their size based counterparts. For

example, in the 1983 to 1987 period the rejection rate was 47 %.

The testing strategy used in our study is point optimal (see King (1987a)). We first

consider Brooks' (1992a) point optimal test for constant coefficients against the alternative

of a Rosenberg (1973) coefficient. For those cases where we reject coefficient constancy

we then apply Brooks and King's (1992) approximately point optimal invariant test of the

Hildreth-Houck (1968). model against the Rosenberg (1973) alternative.

The plan of our paper is therefore as follows. In section two we provide some motivation

for time variation in systematic risk and then outline the alternative parametric forms of

time variation. Section three explains our testing strategy. Section four then reports the

results from extending the Faff, Lee and Fry (1992) study. Section five contains some

concluding remarks.
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2. MODELS OF TIME VARIATION

While it would be appealing to derive the time variation in systematic risk directly

along with the derivation of the market model, this is typically not the approach taken in

the literature. Such literature has typically attempted to overcome supposed deficiencies

in the derivation of the market model.

A number of authors have argued that time variation may be due to microeconomic

factors at the level of the firm. Fabozzi and Francis (1978) suggest the reasons of alterations

to the product mix or changes in leverage or dividend policy as giving rise to time variation

in systematic risk. Bos and Newbold (1984) claim that changes in the operational structure

of the firm may be the cause of time variation in systematic risk. Dielman and Nantell

(1982) argue that the key operational change is likely to be merger activity. Turnbull (1977)

identified maturity and growth of the firm as important determinants of systematic risk.

Therefore, as the firm matures and its growth rate fluctuates through time, then so too

may its beta risk change. Time variation in systematic risk due to microeconomic factors

is also consistent with some of the arguments provided by Blume (1975). For example, he

suggested that when firms engage in any project which is risky, the risk of the project may

tend to be less extreme over time.

Alternatively macroeconomic factors may lead to time variation in the systematic risk.

Both Fabozzi and Francis (1978) and Bos and Newbold (1984) claim that business cycle

factors such as inflation and unemployment may account for the time variation in sys-

tematic risk. Another possibility is to attribute time variation in systematic risk to the

behaviour of portfolio managers as is done in Alexander, Benson and Eger (1982).

Despite the desirability of actually modelling the factors that lead to time variation

of systematic risk, their unobservability prevents one from doing so. Accordingly we now

consider some simple parametric models for time variation of systematic risk.
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First consider the market model:

Rit = ai +13iRmt uit

where Rit is the return on asset i, limt is the return on the market portfolio and uit is

assumed to be distributed EV(0, 0,2) and ai and are unknown firm specific parameters.

This paper considers the possibility that the systematic risk /3 varies over time. The

two possible alternative varying coefficient models for 13 which we consider are Hildreth

and buck's (1968) random coefficient model and Rosenberg's (1973) AR(1) coefficient

model. Accordingly one has three possible models for /3:

(a) /3t = /3, for all t,

(b) Pt = + vt,

(c) fit = Oifit_i + (1 — 01)13 + Wt,

where vt is assumed to be distributed as IN(0,A0a2) and wt is assumed to be distributed

as EV(0, Ai a2).

Model (a) is the constant coefficient model, (b) is the random coefficient model and

(c) is the AR(1) coefficient model. All of the models are desirable because they possess

mean reversion properties for O. In the constant coefficient model /0 is always fixed at

its mean value. Alternatively in the random coefficient model any deviation of /3 away

from its mean value is confined to the period in which that deviation occured. The AR(1)

coefficient model has more interesting mean reversion properties as in this case the effect of
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any deviation from the mean value persists over time. However, in the long run reverts to

its mean value. As this mean value is of some economic significance, such mean reversion

properties are important.

Further to this these possible models have a strong justification in the previous empirical

literature. Fabozzi and Francis (1980) and Fabozzi, Francis and Lee (1982) using New York

Stock Exchange data find evidence in favour of the random coefficient model. Francis and

Fabozzi (1980) also find similar evidence for data on mutual funds. Bos and Newbold

(1984) using New York Stock Exchange data find limited evidence in favour of the AR(1)

coefficient model. Faff, Lee and Fry (1992) using Australian data also find evidence in

favour of the AR(1) coefficient model.

3. TESTING PROCEDURE

The first test that one requires is one to discriminate the constant coefficient model

from either of the varying coefficient models. To carry out such a test one requires a choice

of alternative between the two possible varying coefficient models. The most appropriate

choice would be one which also provides good power against the other possible alternative.

Brooks (1992b) considers the problem of determining which of the two alternative varying

coefficient models is the most appropriate alternative to test against. The analysis of

this problem suggests that the more general alternative is to be preferred. Therefore this

paper chooses the AR(1) coefficient model as the alternative, as it is the most general and

encompasses the random coefficient model as a special case.

This is therefore a problem of testing whether A is significantly different from zero. The

interesting feature to this problem given our choice of the more general alternative is the

presence of the nuisance parameter 01. The problem of testing the constant coefficient

model against the alternative of an AR(1) coefficient model has been well researched. For

this problem, Watson and Engle (1985) suggested an approximate version of Davies' (1977)

test, King (1987b) suggested a locally best invariant (LB/) test, Shively (1988) suggested a
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point optimal test for this problem and, by way of an empirical power comparison shows its

superiority to Watson and Engle's (1985) and King's (1987b) tests. Brooks (1992a) showed

that improvements can be made to Shively's (1988) test. Recently King and Shively (1992)

suggested the use of a locally most mean powerful test for this problem. On the basis of

power considerations this study uses the version of the point optimal test suggested by

Brooks (1992a).

The point optimal invariant test for this problem is of the form:

s(Ai, 01) =

where ii is the generalised least squares (GLS) residual vector assuming covariance

matrix (/ Ai S2(01)), ti is the OLS residual vector and Q(01) is a matrix with element

(s, t) equal to 
(RmsRmt011.9--tlic

OM, where Rmt is the return on the market portfolio

and the regressor with the varying coefficient. The test rejects the null hypothesis of a

constant coefficient model for small values of the test statistic.

The test is made operational by a choice of Ai and 01 values. Following Brooks

(1992a), 01 is chosen to maximise the average power of the test over the grid of points

çb = (0.1,0.5,0.9), while Ai is chosen to make this maximised average power equal to

0.5. This test is then applied. If Ho is rejected a varying coefficient model is considered

more appropriate. For those cases where rejection occurs a test is then carried out to

discriminate between the two possible varying coefficient alternatives.

For those cases where one rejects the constant coefficient model, one then has to de-

termine which of the varying coefficient alternatives is best. This is therefore a problem

of testing the AR(1) parameter cki in the presence of a significant A parameter. As such

the problem of testing the random coefficient model against the AR(1) coefficient model

has not been extensively researched. Bos and Newbold (1984) consider this problem and

solve it by using asymptotically valid Wald and Likelihood Ratio tests. Even with their

comparatively large sample, they believe such tests lack power. Accordingly this paper
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uses the approximately point optimal invariant (APOI) test suggested by Brooks and King

(1992), which is designed to have good power properties in finite samples.

The approximately point optimal invariant test for this problem is of the form:

s(A0,A1,01).iii(r+Ain(00)—iiviv(i+A0E2c)u

where 7.1 is the GLS residual vector assuming covariance matrix (I A00), where C20

is a diagonal matrix with typical element (R2mt). The test rejects the null hypothesis of

the random coefficient model for small values of the test statistic.

The test is made operational by a choice of Ao, A1 and 01. For choices of the A values

one requires both a lower and upper bound. The lower bound on A is obvious and is set

to 0, the upper bound is more difficult as there is no theoretical restriction on the value it

can take. Therefore this paper follows Brooks and King's compromise solution of choosing

the upper bound to be (10/max R2mt). Given this range Ao is chosen in conjunction with

the critical value to ensure that the size of the test equals its desired level at the endpoints

and is below its desired level between the endpoints. The values for A1 and 01 are chosen

arbitrarily, A1 to be half of the upper bound on A and 01 to be 0.5. The evidence in Brooks

and King (1992) suggests that these choices do not adversely effect the power of the test.

Having explained the tests at a theoretical level we are at the stage of their empirical

implementation. Because all of the unknown parameters required for GLS estimation are

fixed when testing, it is possible to transform the data, and then estimate the model by

OLS. Therefore given the appropriate transformations it is possible to calculate all of the

test statistics in terms of OLS residuals. The details of this are provided in the appendix.
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4. EMPIRICAL RESULTS

The basic data used in this paper is the same as that analysed by Faff, Lee and Fry

(1992). Their data is on monthly returns on ordinary Australian equities obtained from

the Price Relatives File of the Centre for Research in Finance at the Australian Graduate

School of Management. We analyse both of their two sub-periods, being from 1978:1 to

1982:12 and 1983:1 to 1987:9. In the first sub-period this gives a sample of 159 assets,

while in the second sub-period the sample is of 310 assets. There are 94 assets which are

common to both sub-periods. All returns data is on a continuously compounded basis.

The returns are analysed individually for the each asset in the respective sub-period and

then for certain portfolios of assets. The return on the market portfolio is based on a value

weighted index. We do not consider the alternative case in Faff, Lee and Fry (1992) where

the return on the market portfolio is based on an equally weighted index.

First let us consider the results for testing i3 stationarity for individual assets. For

our initial problem of testing constant coefficients against AR(1) coefficients the POI test

requires the choice of parameter values for Ai and 01. Based on a five percent level of

significance the parameter values chosen for the first sub-period are A1 = 0.0071954 and

= 0.561, while for the second sub-period the choice of parameter values is A1 = 0.0061606

and 01 = 0.544. These parameters are fixed over all the assets and portfolios we consider as

their choice depends only on the explanatory variable, the return on the market portfolio.

The application of the test to the data gives the results in Table 1. These results

enable comparison of Faff, Lee and Fry's (1992) use of a Burr (1942) approximation to

the distribution of King's (1987) LBI test and the POI test. The first point to note is the

remarkable similarity in the overall number of assets for which # stationarity is rejected. In

each case one only finds a small number of additional assets are rejected by the POI test.

Further one could also note the degree of similarity in the proportions of assets rejected

across the two sub-periods.

Comparing at the level of which individual assets are rejected one also finds a large

overlap between the rejections of the two tests. Table 2 shows at the different significance
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levels the number of assets rejected by both tests (common) and those for which only one

test rejects.

Accordingly we now take the 34 assets from the first sub-period and the 76 assets for the

second sub-period which either test has rejected at the 10 % significance level and analyse

which of the two possible varying coefficient models is most appropriate. To do this we use

the APOI test of random against AR(1) coefficients: Given a 5 percent significance level

the choice of parameter values for the first sub-period is A0 = 0.03339818, A1 = 0.025329,

01 = 0.5, and for the second sub-period the choice of parameter values is A0 = 0.03547816,

A1 = 0.025953 and 01 = 0.5. These parameter values are again fixed over all the different

assets and portfolios considered as their choice only depends on values of the explanatory

variable, the return on the market portfolio.

Using the APOI test gives the results in Table 3. These results show that the large

majority of cases of individual assets with fi non-stationarity appear to be better modelled

by a random coefficient model rather than an AR(1) model for both of the sub-periods

considered. This result is consistent with that of Bos and Newbold (1984) and more

significantly has been found with a test that is designed to have good power properties.

It is of interest to consider whether there is any relationship between the form of beta

non-stationarity and certain firm characteristics. The link between beta non-stationarity

and firm characteristics was investigated by Faff, Lee and Fry (1992). The characteristics

they considered were riskiness (measured by the OLS point estimate of beta), firm size

(measured by market capitalisation) and industry sector membership.

We therefore examine the link between our three alternative models for beta and the

above characteristics. The results for the different sub-periods are presented in Table 4.

This table shows the proportions of firms with particular characteristics that are best

modelled by a particular beta process. In this table the higher risk is represented by an

increase in beta, and Si represents those firms with the lowest market capitalisation, while

S5 represents those firms with the highest market capitalisation.

10



The most interesting feature of the results is the difference across the two sub-periods.

In the second sub-period the degree of both types of non-stationarity increases greatly for

high risk firms, while in the first sub-period this result occurs for medium risk firms. With

respect to firm size in the first sub-period the proportion of random betas falls markedly

for medium size firms, while for the second sub-period the link is not so apparent. In terms

of industry classification resources stocks display a greater degree of non-stationarity of

both types in the second sub-period.

Let us now consider the results with respect to portfolios of assets. In this study

we consider only a subset of the portfolios analysed in Faff, Lee and Fry (1992). We

consider size based portfolios of five assets , ten assets and twenty assets based on market

capitalisation. For the five asset portfolios in the first sub-period we consider 31 of these

portfolios, while for the second sub-period we consider 62 such portfolios. For the ten asset

portfolios in the first sub-period there are 15 such portfolios while in the second sub-period

there are 31 such portfolios. For the twenty asset portfolios there are 7 such portfolios in

the first sub-period and 15 such portfolios in the second sub-period. Analysis of this data

yields the results in Table 5.

If we again compare the two tests on the basis of the number of rejections, we again

find the numbers to be very close. Comparing percentages of rejections we find that the

proportion of size based portfolios for. which # stationarity can be rejected differs from those

proportions found in the case of individual assets. In the first sub-period the rejection

probabilities are lower, while in the second they are higher. Further the proportion of

rejections increases as the portfolio size increases.

This result is somewhat counter-intuitive. For example, Ferson and Harvey (1991, p.52)

state, "Of course, portfolio betas are more stable than individual common stock betas."

The rationale for this statement is that as more assets are combined into portolios the

extent of instability in individual firm betas will tend to offset one another and hence be

diversified away. However this ignores the complications of background noise. While in-

creasing portfolio size is likely to reduce actual beta instability, it also reduces background

noise making beta instability easier to detect. To the extent that this reduction in back-
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ground noise more than offsets the diversification effect, then one would expect greater beta

instability to be detected in portfolios as opposed to individual stocks. This background

noise argument was proposed by Collins, Ledolter and Rayburn (1987) in explaining a

similar result to ours which they found with American data.

Comparing at the level of individual portfolios of size five, for the first sub-period one

finds few common rejections of beta stationarity. The only common rejection is for that

portfolio which both tests are able to reject at the 1 % significance level. For the second

sub-period the results are similar to those of the individual assets with a large number of

common rejections. For the larger portfolios of size ten and twenty there is again a large

degree of overlap between the tests as is shown in Table 6.

One can now consider the appropriate form of beta non-stationarity for those cases

where beta stationarity has been rejected at the 10 % significance level by either test.

For the portfolios of size five, in the first sub-period this gives 7 portfolios, while for the

second sub-period it gives 20 portfolios. For the portfolios of size ten, this gives 5 portfolios

in the first sub-period, and 15 portfolios in the second sub-period. For the portfolios of

size twenty this gives 5 portfolios in the first sub-period, and 8 portfolios in the second

sub-period. The results of testing for a Hildreth-Houck (1968) beta against a Rosenberg

(1973) beta are given in Table 7.

We again find the result that the preferred model of beta non-stationarity is the sim-

pler Hildreth-Houck (1968) model in both sub-periods and for all portfolio sizes, a result

consistent with that found for the analysis of individual assets.

Finally we consider some randomly chosen portfolios of 10 assets and analyse the f3

stationarity for these portfolios. In each of our sub-periods we consider 100 such portfolios.

In Table 8 we consider the testing of # stationarity for such portfolios. We again note the

similarity in the number of rejections by each of the tests. Further the proportion of

rejections in the first sub-period is quantitatively similar to the proportion in the other

cases. A difference does however appear when one considers the second sub-period, where

one finds the proportion of rejections to be larger than in the case of individual assets
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or size based portfolios. When comparing at the level of individual portfolios one finds a

number of rejections common to both tests, details of which are provided in Table 9.

Again one needs to consider the appropriate form of beta non-stationarity for those

cases where beta stationarity is rejected. This involves 29 portfolios in the first sub-period

and 54 portfolios in the second sub-period. The results are given in Table 10.

Examining the appropriate form of beta non-stationarity we again find the bulk of

evidence in favour of the simpler Hildreth-Houck (1968) model in both sub-periods.

5. CONCLUSIONS

This study has extended the study conducted by Faff, Lee and Fry (1992) in considering

the analysis of time stationarity of systematic risk with Australian data. We first considered

the issue of whether or not, beta was time stationary using a more sophisticated test than

that used in Faff, Lee and Fry (1992). Despite this our results largely concur with the

earlier results.

Secondly, we considered the determination of the appropriate form of the time variation

for the systematic risk between the competing Hildreth-Houck (1968) and Rosenberg (1973)

models. The bulk of our evidence is consistent with that of the simpler Hildreth-Houck

(1968) model. This result accords with Bos and Newbold (1984) who found a similar result

with American data.

•
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ENDNOTES

1. Faff, Lee and Fry (1992) reviews the results of this previous research.

2. While there are other possibilities such as, the ARMA(1,1) coefficient model of

Ohlson and Rosenberg (1982) and Collins, Ledolter and Rayburn (1987) the random coef-

ficient, random walk coefficient and AR(1) coefficient models are the most popular.

3. However, one should note that for the purposes of our study we do not consider the

random walk coefficient alternative. This is because we do not consider such an alternative

theoretically appealing given its absence of a mean reversion property. Further we omit

from our study consideration of the more complex ARMA(1,1) coefficient model.

14



ACKNOWLEDGEMENTS

The authors wish to thank Max King and Kim Sawyer for helpful comments on earlier

versions of this paper.

_

15

_

•

..

,.



REFERENCES

Alexander, G.J. and P.G. Benson (1982), 'More on Beta as a Random Coefficient',

Journal of Financial and Quantitative Analysis 17, 27-36.

Alexander, G.J., Benson, P.G. and C.E. Eger (1982), 'Timing Decisions and the Be-

haviour of Mutual Fund Systematic Risk', Journal of Financial and Quantitative Analysis

17, 579-602.

Blume, M.E. (1975), 'Betas and their Regression Tendencies', Journal of Finance 10,

785-795.

Bos, T. and P. Newbold (1984), 'An Empirical Investigation of the Possibility of Sys-

tematic Stochastic Risk in the Market Model', Journal of Business 57, 35-41.

Brooks, R.D. (1992a), 'Alternative Point Optimal Tests for Regression Coefficient Sta-

bility', Journal of Econometrics, forthcoming.

Brooks, R.D. (1992b), 'The Robustness of Point Optimal Testing for Rosenberg Ran-

dom Regression Coefficients', mimeo, Monash University.

Brooks, R.D. and M.L. King (1992), 'Testing Hildreth-Houck Against Return to Nor-

malcy Random Regression Coefficients', mimeo, Monash University.

Burr, I.W. (1942), 'Cumulative Frequency Functions', Annals of Mathematical Statis-

tics 13, 215-232.

Collins, D.W., Ledolter, J. and J. Rayburn (1987), 'Some Further Evidence on the

Stochastic Properties of Systematic Risk', Journal of Business 60, 425-428.

Dielman, T.E. and T.J. Nantell (1982), 'Tender Offer Mergers and Shareholders Wealth:

A Random Coefficient Regression Approach', Proceedings of the Business and Economics

Statistics Section of the American Statistical Association, 334-339.

16



Fabozzi, F.J. and J.C. Francis (1978), 'Beta as a Random Coefficient', Journal of Fi-

nancial and Quantitative Analysis 13, 101-115.

Fabozzi, F.J., Francis, J.C. and C.F. Lee (1982), 'Specification Error, Random Coeffi-

cient and the Risk-Return Relationship', Quarterly Review of Business and Economics 2,

23-30.

Faff, R.W., Lee, J.H.H. and T.R.L. Fry (1992), 'Time Stationarity of Systematic Risk:

Some Australian Evidence', Journal of Business Finance and Accounting 19, 253-270.

Ferson, W.E. and C.R. Harvey (1991), 'Sources of Predictability in Portfolio Returns',

Financial Analysts Journal May-June, 49-56.

Francis, J.C. and F.J. Fabozzi (1980), 'Stability of Mutual Fund Systematic Risk Statis-

tics', Journal of Business Research 8, 263-275.

Garbade, K. and J. Rentzler (1981), 'Testing the Hypothesis of Beta Stationarity',

International Economic Review 22, 577-586.

Hildreth, C. and J.P. Houck (1968), 'Some Estimators for a Linear Model with Random

Coefficients', Journal of the American Statistical Association 63, 584-595.

King, M.L. (1987a), 'Towards a Theory of Point Optimal Testing', Econometric Reviews

6, 169-218.

King, M.L. (1987b), 'An Alternative Test for Regression Coefficient Stability', Review

of Economics and Statistics 69, 379-381.

King, M.L. and T.S. Shively (1992), 'Locally Optimal Testing When A Nuisance Pa-

rameter is Present Only Under the Alternative', Review of Economics and Statistics, forth-

coming.

17



Ohlson, J. and B. Rosenberg (1982), 'Systematic Risk of the CRSP Equal-Weighted

Common Stock Index: A History Estimated by Stochastic Parameter Regression', Journal

of Business 55, 121-145.

Rosenberg, B. (1973), 'The Analysis of a Cross-Section of Time Series by Stochastically

Convergent Parameter Regression', Annals of Economic and Social Measurement 2, 399-

428.

Shively, T.S. (1988), 'An Analysis of Tests for Regression Coefficient Stability', Journal

of Econometrics 39, 367-386.

Simmonds, R., La Motte, L. and A.McWhorter (1986), 'Testing for Nonstationarity

of Market Risk: An Exact Test and Power Considerations', Journal of Financial and

Quantitative Analysis 21, 209-220.

Sunder, S. (1980), ̀Stationarity of Market Risk: Random Coefficient Tests for Individ-

ual Stocks', Journal of Finance 35, 883-896.

Turnbull, S.M. (1977), 'Market Value and Systematic Risk', Journal of Finance 32,

1125-1142.

Watson, M.W. and R.F. Engle (1985), 'Testing for Regression Coefficient Stability with

a Stationary AR(1) Alternative', Review of Economics and Statistics 67, 341-346.

18



TABLE 1- TESTS FOR BETA STATIONARITY '

INDIVIDUAL ASSETS

Rejections at different significance levels

0.01 0.05 0.10

1978:1982

LBI 8 18 28

5.0 % 11.3 % 17.6 %

POI 9 22 30

5.7 % 13.8 % 18.9 %

1983:1987

LBI 17 40 68

5.5 % 12.9 % 21.9 %

POI 19 43 69

6.1 % 13.9 % 22.3 % s
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TABLE 2- PERFORMANCE OF DIFFERENT TESTS

INDIVIDUAL ASSETS

- Rejections at different significance levels

0.01 0.05 0.10

1978:1982

Common 7 16 24

LBI Only 1 2 4

POI Only 2 6 6

1983:1987

Common 14 35 61

LBI Only 3 5 7 .

POI Only 5 8 8
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TABLE 3- FORM OF BETA NON-STATIONARITY

INDIVIDUAL ASSETS

Rejections at different significance levels

0.01 0.05 0.10

1978:1982

H-H 34 30 28

21.4 % 18.9 % 17.6 %

AR(1) 0 4 6

0.0% 2.5% 3.8%

1983:1987

H-H 71 59 54

• 22.9 % 19.0 % 17.4 %

• AR(1) 5 17 22

1.6 % . 5.5% 7.1%
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TABLE 4- BETA TYPE AND FIRM CHARACTERISTICS

Constant H-H AR(1) Total

1978:1982

Beta

4 < 0.8 78.8 % 18.2 % 3.0 % 99

0.8 < 4 < 1.2 69.6 % 21.7 % 8.7 % 23

4 > 1.2 83.7 % 13.5 % 2.7 % 37

Size

Si 74.2 % 25.8 % 0.0 % 31

S2 90.6 % 6.3 % 3.1 % 32

S3 87.4 % 6.3 % 6.3 % 32

S4 71.9 % 25.0 % 3.1 % 32

S5 68.7 % 25.0 % 6.3 % 32

Industry

Resources 78.6 % 19.0 % 2.4 % 42

Industrials 78.6 % 17.1 % 4.3 % 117
,

1983:1987

Beta

4 < 0.8 84.7 % 11.5 % 3.8 % 131

0.8 < 4 < 1.2 80.6 % 13.9 % 5.5 % 72

> 1.2 60.7 % 27.1 % 12.2 % 107

Size

Si 64.5 % 22.6 % 12.9 % 62

52 67.7 % 21.0 % 11.3 % 62

S3 79.0 % 17.8 % 3.2 % 62

S4 83.8 % 8.1 % 8.1 % 62

S5 82.2 % 17.8 % 0.0 % 62
,

Industry

Resources 67.4 % 23.7 % 8.9 % 135

Industrials 81.7 % 12.6 % 5.7 % 175

22



TABLE 5- TESTS FOR BETA STATIONARITY '

SIZE BASED PORTFOLIOS

Rejections at different significance levels

0.01 0.05 0.10

PORTFOLIO SIZE = 5

1978:1982 LBI 1 2 4

3.2 % 6.5 % 12.9 %

POI 1 3 4

'

3.2 % 9.7 % 12.9 %

1983:1987 LBI 8 15 19

12.9 % 24.2 % 30.6 %

POI 9 15 17

,
14.5 % 24.2 % 27.4 %

PORTFOLIO SIZE = 10

1978:1982 LBI 1 2 5

6.7 % 13.3 % 33.3 %

POI 1 2 4

6.7 % 13.3 % 26.7 %

1983:1987 LBI 6 14 15

19.4 % 45.2 % 48.4 %

POI 6 12 14

19.4 % 38.7 % 45.2 %

PORTFOLIO SIZE = 20

1978:1982 LBI 1 2 4

14.3 % 28.6 % 57.1 %

POI 0 1 5

0.0% 14.3% 71.4%

1983:1987 LBI 5 8 8

33.3 % 53.3 % 53.3 %

POI 6 _ 7 8

P40% 46.7% 53.3%
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TABLE 6- PERFORMANCE OF DIFFERENT TESTS '

SIZE BASED PORTFOLIOS

Rejections at different significance levels

0.01 0.05 0.10

PORTFOLIO SIZE = 5

1978:1982

Common 1 1 1

LBI Only 0 1 3

POI Only 0 2 3
,

1983:1987

Common 8 15 16

LBI Only 0 0 3

POI Only 1 0 1

PORTFOLIO SIZE = 10

1978:1982

Common 1 9 4

LBI Only 0 0 1

POI Only 0 1 0

1983:1987

Common 6 12 14

LBI Only 0 2 1

POI Only 0 0 0

PORTFOLIO SIZE = 20

1978:1982 .

Common 0 1 4

LBI Only 1 1 0

POI Only 0 0 1

1983:1987

Common 5 7 8

LBI Only 0 1 0

POI Only 1 0 0
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TABLE 7- FORM OF BETA NON-STATIONARITY

SIZE BASED PORTFOLIOS

Rejections at different significance levels

0.01 0.05 0.10

PORTFOLIO SIZE = 5

1978:1982 H-H 7 6 4

22.6 % 19.4 % 12.9 %

AR(1) 0 1 3

'

0% 3.2% 9.7%

1983:1987 H-H 17 15 14

27.4 % 24.2 % 22.6 %

AR(1) 3 5 6

4.8% 8.1% 9.7%

PORTFOLIO SIZE = 10

1978:1982 H-H 5 4 3

33.3 % 26.7 % 20.0 %

AR(1) 0 1 2

0.0 % 6.7 % 13.3 %

1983:1987 H-H 13 12 10

41.9 % 38.7 % 32.3 %

AR(1) 1 2 4

3.2 % 6.5 % 12.9 %

PORTFOLIO SIZE =20

1978:1982 H-H 4 . 4 4

57.1 % 57.1 % 57.1 %

AR(1) 1 1 1

14.3 % 14.3 % 14.3 %

1983:1987 H-H 6 6 4

40.0 % 40.0 % 26.7 %

AR(1) 2 2 4

,
13.3 % 13.3 % 26.7 %
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TABLE 8- TESTS FOR BETA STATIONARITY

RANDOM PORTFOLIOS

Rejections at different significance levels

0.01 0.05 0.10

1978:1982 ,

LBI

POI

6

5

19

15

25

22

1983:1987

,

LBI

POI

30

33

47

47

51

54

26



TABLE 9- PERFORMANCE OF DIFFERENT TESTS

RANDOM PORTFOLIOS

Rejections at different significance levels

0.01 0.05 0.10

1978:1982

Common 5 14 18

LBI Only 1 5 7

POI Only 0 1 4

1983:1987

Common 30 46 51

LBI Only 0 1 0

POI Only 3 1 3
,
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TABLE 10- FORM OF BETA NON-STATIONARITY ,
RANDOM PORTFOLIOS

Rejections at different significance levels

0.01 0.05 0.10

1978:1982

H-H

AR(1)

28

1

25

4

21

8

1983:1987 .

H-H

AR(1)

53

1

42

12

.

41

13
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APPENDIX

For the random coefficient model the appropriate transformations are:

= R2t/(1 )0R2mt)1/2, Ot = 1/(1 + )oR2mt)1/2, ilmt = Rmt/(1 AoR2mt)1/2.

The denominator of Brooks and King's (1992) APOI test can then be found as the sum

of squared residuals from an OLS regression of IL on at and RA tnt•

For the AR(1) coefficient model the appropriate transformations are:

Rit = Rit/Rnit, Ct = 1/Rmt, /lint = Rmt/Rmt,

for the first observation, and for the remaining observations in the sample,

Rit = Rit/Rmt OiRit-i/Rmt-i,

C't = 1/Rmi - Oil/Rmt-i,

Rmt = RintIRmt — OiR Rmt—i•

Then another transformation is required. For the first observation this is,

= R41,1, = Ct/L1,17 -11mt = Rmt/L1,1.

and for the remaining observations in the sample,

flit = - Lt,t-lilit-1)/Lt,t7
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at '--- (et - Lt,t-1 at-1)/Lt,t,

itnt = (timt - Lt,t-111mt-1)/Lt,t•

where the Lij are elements of a tri-diagonal matrix of the form:

L1,1 = (1/R2m1 ± A1/(1 —

Lt,t --= (0i/R2mt-1 + 1/R2mt + A1 — 4t--1)1/2,

Lt,t—i ---= —01/(R2mt_1 * Lt--1,t-1)•

and the numerator of both Brooks' (1992a) test and Brooks and King's (1992) test can

be found as the sum of squared residuals from an OLS regression of Ilit on at and ilmt•
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