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Generalized additive modelling of mixed distribution
Markov models with application to Melbourne's
rainfall

Rob J. Hyndmanl and Gary K. Grunwald2 11 December 1998

Abstract: We consider modelling time series using a generalized additive model with first-
order Markov structure and mixed transition density having a discrete component at zero
and a continuous component with positive sample space. Such models have application,
for example, in modelling daily occurrence and intensity of rainfall, and in modelling the
number and size of insurance claims.

We show how these methods extend the usual sinusoidal seasonal assumption in standard
chain-dependent models by assuming a general smooth pattern of occurrence and intensity
over time. These models can be fitted using standard statistical software. The methods of
Grunwald and Jones (1998) can be used to combine these separate occurrence and intensity
models into a single model for amount. We use 36 years of rainfall data from Melbourne,
Australia, as a vehicle of illustration, and use the models to investigate the effect of the El
Nino phenomenon on Melbourne's rainfall.

1 Introduction

Time series with a mixed density composed of a discrete component at zero and a continuous
component on the positive real line commonly occur with meteorological and environmen-
tal data where there may be no recordable level of precipitation or pollutant at some times.
They also occur in some business contexts such as insurance claims and non-recurrent ex-
penditure.

Most of the previous discussion about modelling such data has concentrated on modelling
daily rainfall occurrence and amounts. We will also use some rainfall data as a vehicle of
illustration, although our methods are generally applicable to all such time series with mixed
density.

One approach, developed by Stern and Coe (1984) uses GLMs (Generalized Linear Mod-
els; see McCullagh and Nelder, 1989) to model rain occurrence (probability) and intensity
(amount when it rains). These methods are effective in describing typical rainfall patterns
throughout the year, but they assume the same seasonal pattern for each year and thus are
not capable of highlighting droughts, trends, or other effects not well-modelled by periodic
seasonal patterns. The result is also separate models for occurrence and intensity rather than

1Department of Econometrics and Business Statistics, Monash University, Clayton VIC 3168, Australia.
2Center for Human Nutrition, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
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Generalized additive modelling of Melbourne's rainfall 2

a single model for rainfall amount.

Recent developments in statistical methodology have made formulation and estimation of
more complex models possible. In this paper we use the Generalized Additive Models
(GAMs) of Hastie and Tibshirani (1990) to relax the assumption that each year follows the
same seasonal pattern, and the Markov models for mixed distributions of Grunwald and
Jones (1998) to combine the separate occurrence and intensity models into a single model for
amount.

To illustrate our model and estimation methods, we use daily rainfall data from Melbourne,
Australia (the Melbourne city station, 86071) for the period 1 January 1963 to 30 September
1998. During this period rainfall was recorded on 39.8% of the 13,057 days. We will show
that for this series, rainfall is influenced by several factors including seasonality, drought,
and rainfall occurrence and intensity the preceding day.

2 The model

Let Yt be a random variable denoting the series at time t, t = 1, , n. This is referred to as the
amount process. Let pt(yIX,_1 = xt_i) denote the transition density for Yt where X,..1 denotes
a vector of covariates including Y, and possibly other explanatory variables. We assume p
is a mixed density comprising a discrete component at y =0 and a continuous component for
y> 0. Following Stern and Coe (1984) and others, we introduce the occurrence and intensity
processes to simplify the expression for the transition density of

The occurrence process is ft = 1 if Yt > 0 and ft = 0 otherwise. Thus it is an indicator process
of whether Yt is positive. We assume .11 has conditional Bernoulli distribution with 7C1 (Xt_ =
Pr(J, = 1 I = xt_1). Note that .4 is not strictly Markovian since Jt may depend on Yt_i and
not only on ft-i. We use the logit link function so that

irt(xt....)= gnit (Xt- 1 )) where f(u) = eu I (1 + eu),

mt(xt-i) = ao +I (akit-k+ gk(yt-k)) + t-1) gr±i(t),
k=1 i=p+i

= (.11-1, • • • 74-p7K-17 • • • Yt-p7X1, t-17 • • • 7Xr-p, t-i)' is a vector of covariates, and each gi
(i = 1,2, ... + 1) is a smooth function. We can generalize this model further by allowing
some interaction between the covariates.

The intensity process when Yt > 0 is Wt [Yt Ift = 1] with continuous conditional density
it(w I X1-1) for w> 0 and 0 otherwise. We assume that ft is a gamma density with mean
ilt(xt- ) and log link function so that

logut(xt-1)) = PO +1, (Pkit-k+ hk(Yt-k)) hi(xi-p, 1-1) ± hr+i(t)
k=1 i=p+1

where each hi is a smooth function.

The shape parameter of the density ft is assumed to be constant for all t and xt_1. Note
that we could replace the gamma density assumption by some other appropriate density

•



Generalized additive modelling of Melbourne's rainfall

such as the log-normal which was used by Katz and Parlange (1995). Or, more generally,
we could estimate ft nonparametrically using the methods of Hyndman, Bashtannyk and
Grunwald (1996) and Hyndman and Yao (1998). However, in this paper we shall use the
gamma density.

The transition density of Yt can now be written as

Pr(Y(Xt-i = xt-i) = [1 — Et(xt-i)]80(Y) -F7ct(xt-i).ft(Yixt-1) (2.1)

where 50(y) denotes a Dirac delta function with support zero. Properties of Yt such as mo-
ments conditional on Yt_i can be found as in Aitchison (1955). We give such results as we
use them below.

Following Grunwald and Jones (1998), we shall assume that nt(xt_i) and ft (wIxt_i) have no
common model terms, so that the likelihood admits a simple factorization.

The above model generalizes the model of Grunwald and Jones in several ways. First, we
allow the dependence of Yt on t and Xt_i and of J on t and Xt_i to be non-linear by using a
GAM. Second, we do not assume the same seasonal patterns recur every year, thus providing
the facilities to model unusual events (such as droughts if Yt denotes rainfall).

Note that intervention effects such as changes in measurement or relocation of a recording
station, which in Grunwald and Jones (1998) needed to be modelled explicitly by dummy
variables, can now be modelled by r±i(t) and hr+i(t), and need not be included in the model
separately. However, these effects will now be included in a smooth form, so if the effect is
of real interest in its own right, or if it is expected to be discontinuous in effect, including a
term may be useful.

One by-product of our model is a natural method for producing seasonally adjusted esti-
mates of probabilities of occurrence and mean intensity.

3 Estimation

Fitting this model requires estimating a./ and pi (j = 0, , p), and the functions gi and hi, (i =
1, ,r 1). Since the mixed transition density is not of a standard form, standard methods
and software are not available for doing this. However, Grunwald and Jones (1998) show
that for GLIvls, if it is assumed that there are no common parameters in the occurrence and
intensity models, the Markov likelihood function for {y2, ... ,y„} conditional on Y1 = yi, as
found from (2.1), factors into separate parts for the occurrence and intensity models. Thus,
the overall likelihood is maximized by the estimates of ai, pi, gi and hi which maximize the
occurrence and intensity models separately. The same argument holds for GAlvls. Since the
occurrence and intensity models do have standard transition densities (binary and gamma
respectively) the standard methods and software of GAMs can be used.

Estimation of the functions and parameters in the separate models can be done using GANIs
with any nonparametric smoothing method including moving averages, locally weighted
polynomials such as loess (Cleveland, Grosse and Shyu, 1992), smoothing splines (Green
and Silverman, 1994) or penalized regression splines (Eilers and Marx, 1996). The present
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implementation of generalized additive modelling in S-Plus allows loess or spline smooth-
ing, and we choose the latter since it is faster computationally. Repetition of various aspects
of the analyses using loess does not show any notable differences.

We also need to select the r+ 1 smoothing parameters for each of the occurrence and intensity
models. As a guide to selecting these smoothing parameters, we shall use Akaike's Informa-
tion Criterion (AIC), defined by AIC = deviance + 2k where k is the total number of degrees of
freedom in the model. We have had mixed success in using the AIC as a bandwidth selection
method. In Grunwald and Hyndman (1998) we show that the AIC is optimal or nearly so
for selecting the smoothing parameter when smoothing non-Gaussian time series, whereas
the Bayesian Information Criterion (BIC) gives extreme oversmoothing (selecting very small
degrees of freedom). For fitting GAMs, the BIC also tends to give extreme oversmoothing,
and the AIC often suggests reasonable smoothing parameters. However, occasionally the
AIC is minimized with smoothing parameters which do not appear to highlight the effect
being modelled. Consequently, we use it as a guide rather than as an automatic bandwidth
selector. When the AIC suggests reasonable smoothing parameters we use them, otherwise
we subjectively select the smoothing parameters to provide a model which highlights the
effect of interest.

4 Modelling rainfall occurrence in Melbourne

To simplify the analysis of seasonality, we omitted the 9 leap days from the series, although
the leap day data were used as the lagged regressors on March 1 when it followed a leap day.
As in Grunwald and Jones (1998), we use the log of previous rainfall values to improve the
fit. Specifically, we use log(yt_i + c) for some c> 0. (Without this transformation, a variable
bandwidth would be necessary due to the extreme skewness of Yt_i.) For the GLIVIs fitted by
Grunwald and Jones, c was chosen by maximum likelihood to be equal to 0.2. To facilitate
comparisons between models, we shall also use c = 0.2 in this paper.

We include the covariate xi, t_i = I where It denotes the value of the Southern Oscillation In-
dex (SOT), the standardized anomaly of the Mean Sea Level Pressure (MSLP) between Tahiti
and Darwin. If Tk denotes the Tahiti MSLP and Dk denotes the Darwin MSLP for month k,
then the monthly value of Ik is calculated as Ik=10(Tk—Dk—Pk)/ak where Pk denotes the long
term average of (Tk — Dk) for that month and o-k denotes the standard deviation of Tk —Dk for
that month. (This is known as the Troup SOT.) Figure 1 shows the monthly values between
January 1963 and September 1998. There is clearly a lot of random variation in the measure-
ment. We have highlighted the underlying trend with a loess curve of degree 2 and span
6%. Negative values of Ik indicate "El Nino" episodes and are usually accompanied by sus-
tained warming of the central and eastern tropical Pacific Ocean, a decrease in the strength
of the Pacific Trade Winds, and a reduction in rainfall over eastern and northern Australia.
Positive values of Ik are associated with stronger Pacific trade winds and warmer sea tem-
peratures to the north of Australia (a "La Nina" episode). Together these are thought to give
a high probability that eastern and northern Australia will be wetter than normal. It should
be noted that the effect of the Southern Oscillation is greater in Queensland and New South
Wales than Victoria (Allan, Lindesay and Parker, 1996). We define It to be the value of the
fitted loess curve at day t. (Almost identical results are obtained if h is calculated by linearly
interpolating the raw values of 4.)
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Figure 1: Monthly Southern Oscillation Index with smooth line highlighting the pattern. The smooth
line was computed using a loess curve of degree 2 with span of 6%.

We also include the covariate x2, t-1 = St = tmod 365 to model the seasonal variation. The
function g1,+2 is constrained to be periodic; that is, we constrain g p +2(St) to be smooth at the
boundary between St = 365 and St = 1.

Thus our occurrence model has

mt (xt- = (akit-k + gk(log(yt-k + c)) + g + (It) + gp+2 (St) + gp+3 (t).
k= 1

Models with p = 1, 2, 3 and 4 were fitted. The results were very similar for all p so we selected
p = 1 as it simplifies the interpretation.

The smooth term involving It was not significantly different from a linear function and so
g2(1t) was restricted to the linear function g2(z) = a2z. Because g3(St) is a periodic function,
we model it using a Fourier function of the form

g3(S1) =I[ai,ssin(2,7rIcS,1365) + ai,c cos (27ckSt/365)] ,
k= 1

and select the value of m using the AIC. (An alternative approach would be to use a periodic
smoother.) The smooth terms g + c) and g4(t) were fitted using smoothing splines. The
final model had ai = 0.26, a2 = 0.0088, m =3 in g3(St) and smoothing parameters dfi = 4.9
and df4 =50 where dfi denotes the degrees of freedom for the smooth function gi. The value
of dfi was chosen by minimizing the AIC, while the smoothing parameter for g4(t) was
selected to allow sufficient flexibility to model changes in the probability of occurrence over
a period of two or three years.

The value of a2 was significant (using a t-test at the 5% level). However, if the SOI term was
omitted from the model and the other terms re-estimated, the deviance of the model did not
change significantly (using a x2 test at the 5% level). This anomaly occurs because, if SOI is
omitted, the g4(t) term can model the variation in SOI. We choose to include SOI because we
are interested in assessing its effect on rainfall.
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Figure 2: Lower solid line: estimated probability of rain following a dry day. Upper solid line:
estimated probability of rain following a day of median intensity (2mm). These estimates are based on
the GAM; dashed lines show analogous curves for the GLM.

Figure 2 shows some results for the fitted model. The lower solid line is the estimate of the
probability of rain following a dry day (y,...1 = 0):

Pr(Jt = 1 lYe_i = 0) = E(ao + gi (log c) + g2(k) - g3(St) g4(t))

The upper solid line is the estimate of the probability of rain following a day of median
intensity (2mm):

Pr(J, = 1 JYt.-i = 2) = gao +a1 + gi (log(2+ c)) + g2(k) + g3(St)-1-- g4(t)).

For comparison, analogous curves for a GLM are shown as dashed lines. This model had

3

mt (Xt-1) = 0(0 + al ft-1 ± allOgUt- 1 ± agt [OCi,s sin(27ckSt/365) + ai,c cos(2rckSt/365)] .
k=1

Again, the AIC was used to select the number of sinusoidal terms in the seasonal pattern.

Higher order AR models were tried but gave very similar results. Note that the GAM allows
the modelling of non-seasonal temporal variation whereas the GLM does not.

We can also look at the probability of rainfall occurrence as a function of the rainfall intensity
of the previous day. Figure 3 shows this relationship for two days in the period of the data.
The lower curves are for 17 February 1982 (when g2(k) + g3 (St) +g4(t) was minimized). The
upper curves are for 20 August 1992 (when g2(k) + g3 (St) + g4(t) was maximized). The solid
lines represent the probabilities calculated using the GAM, conditioning on the value of t.
The dashed lines show the analogous probabilities as calculated using the GLM.

4.1 Seasonally adjusted occurrence effects

One object of the GAM analysis is to highlight unusual periods of occurrence, relative to
"typical" annual occurrence patterns. For instance, comparing the GLM and GAM fits in
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Figure 3: Lower solid line: estimated probability of rain on 17 February 1982. Upper solid line:
estimated probability of rain on 20 August 1992. Dashed lines show analogous curves for the GLA4.

Figure 2 suggests that 1982 had unusually low occurrence and 1990-1993 had unusually high
occurrence. To facilitate and quantify such comparisons, we can apply a simple method of
seasonal decomposition to decompose mt(xt_1) into a seasonal term st (x,.._1) that repeats each
year and represents a "typical" year, and a remainder term rt(xt_ 1) that represents deviations
from this regular pattern. Let mt (xt_i) = st (xt_ 1 ) + rt (xt_i) where st (xt- 1 ) = St+365k(Xt-1) for
k = 1, 2, .... These effects can be interpreted in terms of odds of rain, so that

Pr[Jt = 1 I Xt_i = xt_d 
= exp {int (xt _1) } = exp {st (xt_ 1 ) } exp{rt (x,_ 1 ) } .

Pr[Jt . 0 I Xt_i =x_]

Thus exp{rt(xt_i )} represents the factor deviation of the odds of rain from the odds in a
typical year, at time t. The seasonally adjusted probability of rain is

7Etti (Xt- 1 ) 7-= t(3(xt-1) + rt(xt-i))

where .Ti(xt--1) = —3615 Z51 St (Xt-i ), and the seasonal probability of rain is

TC; (Xt- 1 ) --= gSt (Xt- 1 )) •

Our model provides a convenient estimate of st(xt_1). We let

gt (xt-1) = ao + Oci jr-i +i + ail+ g3 (St) ± g4

where J denotes the mean of j t, I denotes the mean of h, gi denotes the mean of gi(iog(yt_ i+
c)) and -g4 denotes the mean of g4(t), t = 1, . . . ,n.

Figure 4 shows estimates of the seasonal probability of rain, 7q., and the seasonally adjusted
probability of rain, 7tItz, plotted against time t. The curves for yt_i = 0 and yt-1 = 2mm are
shown. The most striking periods of low occurrence are in 1967, 1972, 1982 and 1998. Apart
from the most recent drought, these are exactly the droughts in areas encompassing Mel-
bourne, as reported by Keating, 1992. The period of highest probability of occurrence is 1992
(which had the greatest number of wet days of any year in the period studied).
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Figure 4: Top: Estimated seasonal probability of rain, Ttf. The horizontal bars show the proportion of
rainy days for each month during the data period. Bottom: seasonally adjusted estimated probability
of rain, 7 . Upper solid lines show curves following a dry day; lower solid lines show curves following
a day of median intensity (2mm). The dashed lines shows the estimated probability of rain further
adjusted to show the effect of the SOL

Our model attempts to separate the non-seasonal temporal variation, g2(h) g4(t), into two
parts: one due to the SOT and one which is unaffected by the SOT. To help visualize the effect
of this separation, the dashed lines in the bottom plot of Figure 4 show the probability of rain
predicted by the model after seasonal adjustment and removing the effect of g4(t). That is,
we plot the estimate of

goco ocift_i + gi (log(yt-i + c)) + a2/2 +g3+ -g4).

The resulting curve shows the effect of the SOT on rainfall probability.

The differences between the solid and dashed curves are of interest. For example, in 1967,
the solid curve is substantially lower than the dashed curve. This was a period of drought
(reflected by the dip in the solid curve) which was not associated with a corresponding low
in SOT. The drought of 1982 was associated with the SOT (hence the trough in the dashed
curve), but it was more severe than the SOT suggested. Thus, the solid line dips further than
the dashed line. The period 1991-1993 is one with unusually high rainfall occurrence that
was not associated with a corresponding high in the SOT.

Much of the non-seasonal temporal variation in rainfall probability is being modelled by
g4(t) rather than g2(h). So while the SOT appears to have some effect on the rainfall occur-
rence it is not a strong predictor and extreme values of the SOI do not always translate into
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Mean rainfall intensity after dry day using GAM and GLM
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Figure 5: Top: Estimated mean intensity of rain following a dry day. Bottom: estimated mean
intensity of rain following a day with 30.2mm of rain. Solid lines calculated from the GAM; dashed
lines calculated from the GLM.

extreme values of rainfall probability

5 Modelling intensity

Following the same sorts of modelling procedures as we used for the occurrence process, we
can construct GLMs and GAMs for rainfall intensity W. Recall that Wt E---_ [1'111't > 0], and that
we assume it has distribution G(p(xt_i), r) where G(p, r) denotes a Gamma distribution with
mean u> 0 and shape parameter r> 0. The fitted model had conditional mean

Pr(xt--1) = exP {Po + hi (Yr-1 + c) + h2(h)±h3(51)+114(t)} .

(As with occurrence, we also tried higher order autoregressive terms but they made little
difference to the fitted models.) The seasonal term h3 had m = 4 and the bandwidths for
hi (y,1) and h3(t) were 14 and 50 respectively, dfl chosen by minimizing the AIC.

„- The GLM we used had

{ 
. nkSt

Ilt(xt-i) = exp Po + plit_i +PI log(yt-i +0+ f3.2h + i [pk,ssin(2--5g-T)-i-pk,ccos(7-27:)]
k=1

The sinusoidal terms describe the seasonal pattern in rainfall intensity. The number of sinu-
soidal terms was chosen using the AIC.
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Mean rainfall intensity using GAM and GLM
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Figure 6: Mean rainfall intensity (calculated from the GAM) for two days: 24 January 1996 and
10 July 1997. These days were at the maximum and minimum of h2(1t) + h3(St) + 14(t) respectively.
Solid lines calculated from the GAM; dashed lines calculated from the GLM.

Figure 5 shows the mean rainfall intensity jut (xt_i) plotted against t for two different values
of yt-1. The top plot shows the curve following a dry day (yt_i = 0). For comparison, the
analogous curve from the fitted GLM is shown. The bottom plot shows the curve where the
previous day has rainfall yt_i = 30.2mm. This value of yt-1 provides the maximum value of
hi. The GLM curve in the lower plot is clearly biased downwards due to the assumption of
a linear relationship with log(yt_i + c).

Interestingly, the drought of 1982 does not appear to have affected rainfall intensity—it ap-
parently was an event mainly involving the frequency of rain, not the amount of rain when
it did rain. The summer of 1996-1997 had unusually low rainfall intensity, whereas it was
not unusual in the frequency of rain (compare Figure 2). While both years were associated
with an El-Nino event (indicated by low values of the SOI, see Figure 1), the effect appears
to have been different.

Figure 6 shows the mean rainfall intensity as a function of log(yt_i + c) for two days. The
value of t was chosen to provide the minimum and maximum values of 722(h) +1/3(St) +
h4(t). Clearly, the amount of rain on one day, yt-1, has virtually no effect on the amount of
rain on the subsequent day, yt, unless yt-1 > e3 - c ;,-, 20mm. In other words, there is little
autocorrelation in the intensity series unless there is a large rainstorm, in which case it will
probably extend into the following day. The clearly non-linear relationship demonstrates
why there is bias in the GLM estimate of intensity as seen in Figure 5.

The seasonally adjusted mean intensity is calculated in a similar way to that for probability of
occurrence described in Section 4.1. The results are shown in Figure 7. Of the major droughts,
not all are clearly identified by low intensity. The droughts of 1994 and 1997 appear to have
been in periods of low rainfall intensity, but not the drought of 1972. Although the SOI is
significant, its effect is small. The major non-seasonal temporal variation in intensity is not
associated with the SOL
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Figure 7: Top: Seasonal mean intensity. The horizontal bars show the average rainfall intensity for
each month during the data period. Bottom: Seasonally adjusted mean intensity. Lower curves show
the mean following a dry day; upper curves show the mean following a day with 30.2 mm of rain. The
dashed lines shows the probability of rain further adjusted to show the effect of the SOL

Markov Generalized Additive Models for rainfall

We now consider combining the occurrence and intensity models of previous sections to
give a model for rainfall amount with a mixed density as given in (2.1). In some applications
this combined model will be of most interest since it has units of mm/day while intensity
has units of mm/wet day. The fitted amount model yields a mixed density which can be
summarized in various ways. For instance, we can calculate the mean of Yt directly from
(2.1) as

E(Yt IXt_i = xt-i) = (Xt-1)Pt (Xt-1) •

We are also interested in the marginal mean

Mt = E(YtIXI, t-i = xi, t-I, • • • t-1 = xr-p, t-i)

although this is difficult to calculate analytically from the fitted model. Instead we simulate
10,000 sample paths from the model and average across the sample paths to calculate Rt.

To find the seasonally adjusted mean of Yt, we let average(RH-36sk) for t = 1, ,365 and
the average is taken over k =0, ±1, ±2, .... Then we smooth s'.;* using a periodic smoother to
obtain St, the average rainfall for day t. Finally, the seasonally adjusted rainfall on day t is
rt = Mt — st gt . The results are shown in Figure 8 with the seasonal average (St) shown in the
top plot and the seasonally adjusted values (rt) shown in the bottom plot.
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Figure 8: Top: Seasonal mean amount. Bottom: Seasonally adjusted mean amount. In both graphs
the lower curves show means conditional on previous day being dry; the upper curves show means
conditional on previous day having median intensity (2mm); the centre (bold) curves show uncondi-
tional means. The horizontal lines in the top graph show the average amount for each month in the
data period.

Note that there is far less variability in the seasonal mean amount than in the seasonal proba-
bility of occurrence or seasonal mean intensity. The probability of occurrence is highest in the
winter months while the mean intensity is highest in the summer months. These seasonal
patterns largely cancel each other out to give a relatively flat daily mean amount across the
year. However, the density of amount varies a lot throughout the year, even though the mean
is relatively stable. This is seen, for example, in the conditional density functions shown in
Grunwald and Jones (1998).

The seasonally adjusted values show that droughts in southern Victoria are more complex
than may have previously been understood. Comparing Figures 4, 7 and 8, we note that
the drought of 1994, for example, appears to have resulted from lower intensity than usual
but that the occurrence was not particularly low for that year. However, the drought of 1982
appears to be more due to low occurrence than low intensity.

Crude estimates of the seasonally adjusted mean curves for amount, intensity and occur-
rence could be obtained by relatively simple smoothing techniques. However, the modelling
approach we have proposed here has enabled us to go much further in estimating curves
conditional on past observations, in estimating the effect of the Southern Oscillation Index
on both occurrence and intensity, and in decoupling the effects of occurrence and intensity
on rainfall amounts.
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6.1 Forecasting

One application of the model presented here is forecasting the series of interest. To produce
forecasts, we must estimate the conditional mean functions for the occurrence and intensity
models for future times.

This can be done by simulating future sample paths from the model, and then averaging
these at each time point. Where xi_p, t_i is not known in advance (such as with SOI), it must
be replaced by a forecast. The non-seasonal temporal variation must also be forecast as the
functions g r±i(t) and 144.1(t) are not defined for t beyond the range of the historical data.
These can be computed by fitting stationary AR models. This approach has the advantages
of (1) being able to model the cyclic fluctuations seen in the models for Melbourne's rainfall,
and (2) producing long-term forecasts which converge to the long-term mean (see Makri-
dakis, Wheelwright and Hyndman, 1998).

Currently, the Bureau of Meteorology uses forecasts of the SOI to guide their long-term cli-
mate prediction. The analysis presented here suggests that that procedure is not going to
yield good prediction for southern Victoria because the relationship between SOI and rain-
fall is not strong. The method is probably much better for locations in New South Wales
and Queensland where the relationship between SOI and rainfall is stronger (Allan, Linde-
say and Parker, 1996). However, even there the model presented here will probably lead to
better long-term forecasts as it incorporates temporal variation not due to the SOI.

Acknowledgments

Gary Grunwald and Rob Hyndman were supported by Australian Research Council grants.
Much of the work by Gary Grunwald was completed when he was in the Department of
Statistics, University of Melbourne. The work by Rob Hyndman was done while he was
visiting the Department of Statistics, Colorado State University.

References

AITCHISON, J. (1955) On the distribution of a positive random variable having a discrete
probability mass at the origin. I. Amer. Statist. Assoc., 50, 901-908.

ALLAN, R., LINDESAY, J. and PARKER, D. (1996) El Nino: Southern oscillation and climatic
variability. CSIRO Publications, Melbourne, Australia.

CLEVELAND, W.S., GROSSE, E. and SHYU, W.M. (1992) Local regression models, in
J.M. Chambers and T.J. Hastie (Eds.), Statistical models in S, Wadsworth and Brooks: Pa-
cific Grove.

EILERS, P.H.C. and MARX, B.D. (1996) Flexible smoothing with B-splines and penalties
(with discussion). Statist. Sci., 89, 89-121.

GREEN, P.J. and SILVERMAN, B.W. (1994) Non parametric regression and generalized linear mod-
els: a roughness penalty approach. Chapman and Hall: London.

GRUNWALD, G.K. and HYNDMAN, R.J. (1998) Smoothing non-Gaussian time series with



Generalized additive modelling of Melbourne's rainfall 14

autoregressive structure. Computational Statistics and Data Analysis, 28,171-191.

GRUNWALD, G.K. and JoNEs, R.J. (1998) Markov models for time series with mixed distri-
bution. Environmetrics, to appear.

HASTIE, T.J. and TIBSHIRANI, C. (1990) Generalized additive models. Chapman and Hall:
London.

HYNDMAN, R.J., BASHTANNYK, D.M. and GRUNWALD, G.K. (1996) Estimating and visual-
izing conditional densities. I. Comp. Graph. Statist. 5(4), 315-336.

HYNDMAN, R.J. and YAO, Q. (1998) "Nonparametric estimation and symmetry tests for con-
ditional density functions". Working paper, Department of Econometrics and Business
Statistics, Monash University

KATZ, R.W. and PARLANGE, M.B. (1995) Generalizations of chain-dependent processes: ap-
plications to hourly precipitation. Water Resources Research, 31,1331-1341.

KEATING, J. (1992) The drought walked through: a history of water shortage in Victoria. Depart-
ment of Water Resources Victoria: Melbourne.

MAKRIDAKIS, S., WHEELWRIGHT, S. and HYNDMAN, R. (1998) Forecasting: methods and ap-
plications. John Wiley & Sons: New York.

MCCULLAGH, P. and NELDER, J. (1989) Generalized linear models. 2nd ed., Chapman and
Hall: London.

STERN, R.D. and COE, R. (1994) A model fitting analysis of daily rainfall data (with discus-
sion). I. R. Statist. Soc. A, 147,1-34.



.

.•

•


