
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


4

/MON ASH

UNIVERSITY

AUSTRALIA

43A0"

RATIONALIZATION OF EXPONENTIAL SMOOTHING IN TERMS OF A

STATISTICAL FRAMEWORK WITH MULTIPLICATIVE DISTURBANCES

Anne Koehler, Keith Ord and Ralph D. Snyder

Working Paper No. 7/92

July 1992

DEPARTMENT OF ECONOMETRICS



ISSN 1032-3813

ISBN 0 7326 0357 9

RATIONALIZATION OF EXPONENTIAL SMOOTHING IN TERMS OF A

STATISTICAL FRAMEWORK WITH MULTIPLICATIVE DISTURBANCES

Anne Koehler, Keith Ord and Ralph D. Snyder

Working Paper No. 7/92

July 1992

DEPARTMENT OF ECONOMETRICS, FACULTY OF ECONOMICS COMMERCE & MANAGEMENT

MONASH UNIVERSITY, CLAYTON, VICTORIA 3168, AUSTRALIA.



RATIONALIZATION OF EXPONENTIAL SMOOTHING

IN TERMS OF A STATISTICAL FRAMEWORK

WITH MULTIPLICATIVE DISTURBANCES

by

Anne Koehler

Department of Decision Science

.Miami University, Oxford, Ohio

Keith Ord

Department of Management Science

PennState University, Pennsylvania

Ralph D. Snyder

Department of Econometrics

Monash University, Melbourne, Australia

Third Draft: June, 1992



ABSTRACT

It is established in this paper that exponential smoothing, in its

most general linear form, is an optimal method of forecasting in large

samples for time series with an irregular component, the size of which

depends on a local mean. As such it is demonstrated that exponential

smoothing has a statistical basis that extends beyond the framework of

Box and Jenkins.
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1. INTRODUCTION

Although the exponential smoothing methods are simple, robust

approaches to forecasting, particularly suited to business applications

(Gardner, 1985), their statistical foundations have proven to be rather

elusive. Brown (1963), the originator of the earliest versions of these

techniques, attempted a rationalization in terms of a linear statistical

model with constant coefficients: an approach that is incompatible with

a major feature of the technique, namely its capacity to accommodate

structural change. Explanations for Holt's (1957) methods based on the

work of Muth (1960), Theil and Wage (1964), Nerlove and Wage (1964) and

culminating in the structural approach of Harvey and Todd (1983), have

proven to be more satisfactory in that the coefficients in their models

are treated as time dependent random variables which may adapt to

structural change. However, independence assumptions imposed on the

disturbances of their models to restrict the number of parameters for

computational purposes result in unusual autocorrelation requirements

which can reduce the effectiveness of their approach (Newbold, 1983).

Only the framework of Box and Jenkins (1976) provides a reasonably

satisfactory basis for exponential smoothing because, as they show, it

underlies all linear forms of this method. The links become

particularly transparent when the equivalent state space framework

(Snyder, 1985, 1988) is used instead of the more usual ARMA and ARIMA

representations. The state of the process, represented in period t by a

vector b
t' 

is assumed to evolve over time according to the first-order

Markovian recurrence relationship

b
t 

= Tb
t-1 

+ ae
t '

(1a)

the e
t 
being NID(0,c

2
) disturbances, T a fixed 'transition' matrix and a

a fixed vector reminiscent of the smoothing parameters from exponential
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smoothing. The series values yt are related to the state of the process

by the so-called measurement equation

= x'b
t-1 

+ e
t '

(1b)

x being a fixed vector. The unusual feature of this framework in the

state space context is that it relies on only one disturbance source,

the e
t' 

and this occurs because it is a transformation of the ARMA and

ARIMA representations which themselves involve only one primary source

of randomness.

The fluctuations •in economic and business time series often

increase with the underlying level over time. Such phenomena may be

modelled using a variation of the above framework with multiplicative

disturbances:

y
t 

= x'b
t-1

(1 + et
)

b
t 

= Tb
t-1 

+ ae
t(
xib

t-1
) 
'

(2a)

(2b)

the e 1 being independent, zero mean disturbances with a common variance

T
2
. The purpose of the paper is to investigate this framework as the

basis for the estimation and prediction of time series.

1 Note that these disturbances are not necessarily normally

distributed.
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2. STRUCTURAL MODELS WITH MULTIPLICATIVE DISTURBANCES

2.1 Local Level Model

Although it is convenient to develop a theory of estimation and

prediction for the state space framework (2), most economic and business

applications would normally rely on only a few special cases of it. The

simplest is the local level model, where the state of the process in

typical period t is represented by only a single value:• the local level

it. The model takes the form

yt 
=

t-1
(1 + e

t
)

tt = t-1(1 + aet) '

(3.1)

(3.2)

the scalar a determining the amount of stochastic change in the level.

The case, a = 0, corresponding to a constant level, accommodates stable

situations. But positive values of a ensure that the model

accommodates structural change. In the special case of a = 1, the model

reduces to yt 
= 1" et)'

a multiplicative form of a random walk
Yt- 

process.

2.2 Local Trend Model

In many applications it is advisable to augment the local level

model with a growth rate gt to give

Yt = (tt-1 gt-1)(1 et)

= (1t-1 gt-1)(1 alet)

-1
)m
2
e
tgt = gt-1 (1t-1 gt

3

(4.1)

(4.2)

(4.3)



a
1 

and a
2 

being the two elements of a vector a. It represents a local

trend line, the position and slope of which changes over time in

response to structural changes implicit in phenomena such as business

cycles.

2.3 Seasonal Components

• A third possibility involves-seasonal indexes ct which, in the case

of p seasons per year, takes the form

(1t-1 + gt-1 
+ ct-p)(1 + et)

It ' It-1 gt-1 ' (It-1 gt-1 ct-p)alet

g
t-1 

+ + g
t1 

+ c
t-p

)a
2
e
t

p -1
- E ct_ (tt_i gt_ 

1 
+ c

t-p
)a
3
e
t

j=1

the last equation being the stochastic analogue of a common condition

for seasonal indexes, namely that they should sum to zero over the

period of a year, a3 being a third parameter. Although this model

contains lags in excess of 1, it is always possible, where necessary

with the use of additional relationships, to transform it into one

involving only first-order Markovian relationships, e.g. see Harvey

(1990, p.172).

Between them, these models define the basis of a structural

approach to time series analysis along the lines of Harvey and Todd

(1983). It may be distinguished from their approach in that (a) it only

relies on a single primary disturbance source and (b) the disturbances

are multiplicative in form.
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3. ESTIMATION OF STATE VECTORS

The dynamic system (2) has the closed form solution

t-1

0 
b
t

D
t
b + E Day

j=0

wherewhere D = T - ax' .

(6)

(7)

The role of D is reminiscent of the discount factor in an exponentially

weighted average and can be called a discounting matrix in cases where

D
t 
4 0 and t 4 co. Provided that the smoothing parameters a satisfy the

conditions shown in Table 1, it may be established that D behaves in

this way for the structural models in the previous section. These

conditions are reminiscent of those which ensure the invertibility of

certain integrated moving average processes (Box and Jenkins, 1976).

Model

,

Local Level Local Trend Seasonal

Conditions 0 < a < 2 2a
1 
+ a

2 
< 4 2a

1 
+ a

2 
< 4

a
3 

< 1

a
1
,a
2
,a
3 

> 0

Table 1: Conditions for D to be a discounting Matrix

Let G be the subjective estimate of the seed vector b
0 

used
0 

prior to observing the sample. Assume that subsequent estimates b of

the state vectors b
t

are generated recursively with each new

observation using the most general form of exponential smoothing (Box

and Jenkins, 1976)

t = T6t-1 a(Yt xi6t-1)

5
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The closed form solution of (8) has the same basic structure as (6) and

as a consequence

b
t 
- St = Dt(b

0 
- 6o) • 

(9)

The estimation error at time t therefore depends on the initial

estimation error but is independent of the sample. Whatever the mean

and variance of b
0' 

if D is a discount matrix, then the mean squared

error of  
coverges in large samples to zero. Exponential smoothing

in its most general linear form, therefore not only provides consistent

estimators for the ARIMA class of models, but also those conforming to

the non-linear framework (2).

The exponential smoothing algorithm is conditional on specific

values of a and so the latter must themselves be estimated. One

possibility is to minimize the sum of squared relative errors criterion

-2 -2
S = E et yt

t=2

where y = x'6t-1 
and e

t 
= Yt

(10)

Given that the structural models involve at most three parameters apart

from T, namely a
l' 

a
2' 

a
3' 

such an approach with numerical optimization

procedures is likely to be viable in many applications. Note that T

can be estimated, for given values of the a's, with

C)=. = /S/(n1)

4. PREDICTION

After obtaining the estimate of the state vector at the end of

period n with a sample of size n, estimates in of future state vectors

b
t 
may be generated recursively with
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S
tin 

= TS
t-lin 

t = n+1, n+2, . (11a)

and predictions of the series obtained with

= x'b
t-1n 

t = n+2, n+2, . • •
'ti

(11b)

The associated prediction error

A
e
tin = Yt C/tIn

reduces to

;
tin 

= x1(b
t-1 

-
t-1n

)(1 + e
t t-1In 
) + x'S e

t

so that the mean squared prediction error (scaled) is

2 -2
vti 

= x'B
t-lin

x(1 + ) + y
n tin

where

(12a)

E(Yt Crtin) 
_ S 2

= c2vtin and Vb
t-1 St-hint-1 = Bt-11n.

Subtracting (11a) from (2b) to give

b
ttin 

= T(b
t-1 

-
t-hin

+ ae
t
x'b

t-1 '

it is readily shown that

2 -2
B
tin = 

TB + ae(x'Bt_linxT + ytin), (12b)

a recurrence relationship which would be seeded,. n large samples, with

B
nin 

=0.

Both (12a) and (12b) form the basis of a method for computing mean

squared prediction errors. The latter could be used for establishing

confidence limits but the prediction errors 
etin

are unlikely to be



normally distributed. Simulation studies would be required to ascertain

the form of the distribution for this purpose.

5. CONCLUSIONS

There is a common belief that exponential smoothing is based on

only special cases of the Box-Jenkins framework and is therefore a more

restrictive approach to forecasting. However, Box and Jenkins

themselves have shown that any ARIMA model can be estimated in large

samples by linear first-order, error correction type recurrence .

relationships conforming to the structure in (8). In this paper,

matters have been taken further by establishing that exponential

smoothing in its most general linear form, can be used to estimate

models from another statistical framework, namely the nonlinear one

outlined in section 1. This conclusion may help explain why the

exponential smoothing methods have proved to be so robust in practice.

One point of particular interest concerns the multiplicative random

walk model outlined in Section 2.1. The results of this paper indicate

that, like the conventional random walk model, it is best estimated with

the so-called naive forecast tin = Y.
Given that price fluctuations

n 

are often proportional to the underlying level, this model should

provide a more satisfactory basis for analysing the behaviour of share

and commodity market prices.

8



References

Box, G.E.P. and G.W. Jenkins, 1976, Time Series Analysis: Forecasting

and Control, (Holden-Day, San Francisco).

Brown, R. G., 1959, Statistical Forecasting for Inventory Control, McGraw

Hill, New York.

Brown, R. G., 1963, Smoothing, Forecasting and Prediction of Discrete

Time Series, Prentice Hall, Englewood Cliffs, N.J..

Gardner, E. S., 1985, "Exponential smoothing: the state of the art",

Journal of Forecasting, 4, 1-28.

Harvey, A. C., 1990, Forecasting, Structural Time Series Models and the

Kalman Filter, Cambridge University Press, Cambridge.

Harvey, A.C. and P.H.J. Todd, 1983, "Forecasting economic time series

with structural and Box-Jenkins models (with discussion)", Journal

of Business and Economic statistics, 1, 299-315.

Holt, C.E., 1957, "Forecasting trends and seasonals by exponentially

weighted averages", ONR memorandum No. 52, Carnegie Institute of

Technology.

Muth, J.F., 1960, "Optimal properties of exponentially weighted

forecasts", Journal of the American Statistical Association, 55,

299-304.

Nerlove, M.I. and S. Wage, 1964, "On the optimality of adaptive

forecasting", Management Science, 10, 207-229.

Newbold, P., 1983, "Comment", Journal of Business and Economic

Statistics, 1, 311-312.

9



Snyder, R.D., 1985, "Recursive estimation of dynamic linear statis
tical

models", Journal of the Royal Statistical Society, B, 47, 272-276.

Snyder, R. D., 1988, "Statistical foundations of exponential smoothin
g",

Department of Econometrics Working Paper No. 5/88, Monash

University.

Theil, H. and S. Wage, 1964, "On some observations on adaptive

forecasting", Management Science, 10, 198-206.

10



#


